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Abstract

The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by
explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide)
and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The
conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped
according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the
links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by
distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-
exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the
bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the
FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the
binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is
a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have
limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an
enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding.
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Introduction

A wide variety of physiological processes and biochemical

reactions are regulated by the binding of natural ligands to

proteins. Furthermore, most known drugs are small molecules

that, upon specific binding, modulate the activity of enzymes or

receptors. Several experimental techniques for fragment-based

drug design have been developed in the past 15 years and

successful applications have been reported (see for a review [1,2]).

At the same time, a plethora of computer-based approaches to

small-molecule docking have been developed and applied to a

wide variety of protein targets. These in silico methods make use of

simple and efficient scoring functions and are based mainly on

stochastic algorithms, e.g., genetic algorithm optimization of the

ligand in the (rigid) substrate-binding site of an enzyme [3,4]. Only

recently, explicit solvent molecular dynamics (MD) simulations

have been used to investigate the binding of small fragments to

proteins at atomistic level of detail, which is very helpful for the

design of small-molecule inhibitors [5,6,7,8]. Out of equilibrium

simulations of pulling have been carried out for an hapten/

antibody complex [9] and small molecule inhibitors/enzyme

complexes [10], but it is not clear how much the external pulling

force alters the free energy surface.

In the past five years, new methods based on complex networks

have been proposed to analyze the free energy surface of folding

[11,12,13,14,15,16,17,18,19], which governs the process by which

globular proteins assume their well-defined three-dimensional

structure. These methods have been used successfully to analyze

MD simulations thereby revealing multiple pathways and

unmasking the complexity of the folding free energy surface of

b-sheet [11,13,20,21,22] and a-helical [23,24,25] peptides, as well

as small and fast-folding proteins [26,27,28,29]. Yet, no network

analysis of the free energy surface of ligand (un)binding has been

reported as of today. There are two main reasons for investigating

the (un)binding free energy landscape. First, a wide variety of

biochemical processes are regulated by the non-covalent binding

of small molecules to enzymes, receptors, and transport proteins,

and the binding/unbinding events are governed by the underlying

free energy surface. Second, the characterization of metastable

states within the bound state is expected to help in the

identification of molecular fragments that bind to protein targets

of pharmacological relevance, which could have a strong impact

on experimental [2] and computational [4] approaches to

fragment-based drug design.

Here we use complex network analysis [11] and the minimum

cut-based free energy profile (cut-based FEP) method [13] to

study the free energy landscape of the bound state and the

unbinding pathways of six small ligands of FKBP sampled by

explicit water MD at physiological temperature. These com-

pounds were chosen not only because of the knowledge of their

binding mode (X-ray structures of three of them) but also

because their experimentally measured dissociation constants

are in the mM range [30]. Therefore, we expected that several

events of spontaneous ligand unbinding from FKBP could be

sampled by running independent MD simulations starting from

the bound state without any external bias and within a 20-ns

simulation time (which requires about four days on a commodity

processor).
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Materials and Methods

MD simulations
The coordinates of FKBP in the complex with dimethylsulf-

oxide (DMSO), methyl sulphinyl-methyl sulphoxide (DSS), and 4-

hydroxy-2-butanone (BUT) were downloaded from the PDB

database (entries 1D7H, 1DHI, and 1D7J, respectively). The

starting conformation of tetrahydrothiophene 1-oxide (THI), 5-

hydroxy-2-pentanone (PENT), and 5-diethylamino-2-pentanone

(DAP) were prepared manually by overlapping the (CH2)2SO

group of THI to the DMSO atoms in the DMSO/FKBP

structure, while the (CH2)2CO group of PENT and DAP was

overlapped to the corresponding atoms in BUT. To reproduce

neutral pH conditions the side chains of aspartates and glutamates

were negatively charged, those of lysines and arginines were

positively charged, and histidines were considered neutral. The

protein was immersed in an orthorhombic box of preequilibrated

water molecules. The size of the box was chosen to have a minimal

distance of 13 Å between the boundary and any atom of the

protein. Solvent molecules within 2.4 Å of any heavy atom of the

protein were removed except for six water molecules present in the

crystal structure. The simulation system contained 8 sodium and 9

(10 for the DAP) chloride ion to compensate for the total charge of

FKBP which is +1 electron units. The MD simulations were

carried out with NAMD [31] using the CHARMM22 force field

[32] and the TIP3P model of water [33]. The parameters of the six

ligands were determined according to the general CHARMM

force field [34]. Periodic boundary conditions were applied and

electrostatic interactions were evaluated using the particle-mesh

Ewald summation method [35]. The van der Waals interactions

were truncated at a cutoff of 12 Åand a switch function was

applied starting at 10 Å. The MD simulations were performed at

constant temperature (310 K or 350 K) using the Langevin

thermostat and constant pressure (1 atm) [36] with a time step

of 2 fs. The SHAKE algorithm was used to fix the covalent bonds

involving hydrogen atoms.

For each ligand and temperature value, 50 independent MD

runs were carried out with different initial velocities. The runs

were stopped after 20 ns or before if the intermolecular distance

exceeded 30 Å. The Cartesian coordinates were saved every 4 ps

along the trajectories. Thus, the number of snapshots used for

analysis is different for different ligands, and ranges from 109569

for DMSO to 169511 for DSS.

Analysis of MD simulations and clustering procedure
The analysis of the MD trajectories was carried out with

CHARMM [37] and the MD-analysis tool WORDOM [38]. The

leader algorithm as implemented in the latter program was

employed for clustering according to the distance root mean

square between two MD snapshots a and b, DRMS

~ n{1
Xn

(i,j)
(d a

ij {d b
ij )2

h i1=2

, which was calculated using the

intermolecular distances dij between pairs of non-hydrogen atoms

in the ligand and eight residues in the FKBP active site (Tyr26,

Asp37, Phe46, Val55, Ile56, Trp59, Tyr82, and Phe99). A DRMS

threshold of 1 Å was used for clustering by the leader algorithm.

The complex network analysis (see below) and cut-based FEP (see

Fig. S22 in Text S1) are robust with respect to the choice of the

DRMS threshold in the range 0.8 to 1.0 Å. The DRMS

calculation does not require structural overlap. In other words,

rigid-body fitting is not necessary, which is an advantage with

respect to the root mean square deviation.

Construction of the unbinding network of BUT
The clustering of about 150000 MD snapshots of BUT (35 runs

of 10 ns, and 15 runs of 15–20 ns) yielded 18021 clusters with two

or more snapshots and 11425 one-snapshot clusters. The 29446

clusters are the nodes of the network and the transitions between

them are edges. Note that the terms node and cluster are used as

synonyms in this work. Totally there were 73473 edges within

nodes and 74801 edges between different nodes. The networks

were plotted using a spring-embedder algorithm [39] as

implemented in the program igraph (cneurocvs.rmki.kfki.hu).

The overall features of the network are robust with respect to

the choice of the thresholds on link and node size. Moreover, it is

important to note that the clustering was not used for the analysis

of unbinding kinetics but only for plotting the network and the cut-

based FEP. The unbinding times were extracted directly from the

MD trajectories without using the clustering.

Cut-based FEP
Projected free-energy surfaces are most useful if they preserve

the barriers and minima in the order that they are met during the

sequence of events. Krivov and Karplus have exploited an analogy

between the kinetics of a complex process and equilibrium flow

through a network to develop the cut-based FEP, a projection of

the free energy surface that preserves the barriers [13] and can be

used for extracting folding pathways and mechanisms from MD

simulations [21]. The input for the cut-based FEP calculation is

the transition network, which is derived by clustering, e.g., as

described above. For each node i in the transition network, the

partition function is Zi~
P

j cij , i.e., the number of times the node

i is visited, where cij is the number of direct transitions from node i
to node j observed along the time series. The transition

probabilities can then be calculated as pij~cij=
P

k cik. If the

nodes of the transition network are partitioned into two groups A

and B, where group A contains the reference node, then

ZA~
P

i[A Zi (the number of times a node in A is visited),

ZB~
P

i[B Zi, and ZAB~
P

i[A,j[B cij (the number of transitions

between nodes in A and nodes in B). The free energy of the

barrier between the two groups is DG~{kT log (ZAB=Z), where

Z is the partition function of the full transition network (Fig. 1).

The progress coordinate then is the normalized partition function

Author Summary

Most known drugs used to fight human diseases are small
molecules that bind strongly to proteins, particularly to
enzymes or receptors involved in essential biochemical or
physiological processes. The binding process is very
complex because of the many degrees of freedom and
multiple interactions between pairs of atoms. Here we
show that network analysis, a mathematical tool used to
study a plethora of complex systems ranging from social
interactions (e.g, friendship links in Facebook) to metabolic
networks, provides a detailed description of the free
energy landscape and pathways involved in the binding of
small molecules to an enzyme. Using molecular dynamics
simulations to sample the free energy landscape, we
provide strong evidence at atomistic detail that small
ligands can have multiple favorable positions and orien-
tations in the active site. We also observe a broad
heterogeneity of (un)binding pathways. Experimental
approaches to the study of fragment binding to proteins
have limitations in spatial and temporal resolution. Our
network analysis of the molecular dynamics simulations
does not suffer from these limitations. It provides a
thorough description of the thermodynamics and kinetics
of the binding process.
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ZA=Z of the reactant region containing the reference node, but

other progress coordinates can be used, because the cut-based FEP

is invariant with respect to arbitrary continuously invertible

transformations of the reaction coordinate [40].

In practice, the procedure to calculate the cut-based FEP

consists of three steps (Fig. 1): (1) The mean first passage time

(mfpt) of node i to the reference-node is the solution of the system

of equations mfpti~Dtz
P

pji
:mfptj with initial boundary

condition mfptreference{node~0 [41]. The timestep Dt corresponds

to the saving frequency of 4 ps; i.e., the mfpt of a node is defined as

one timestep plus the weighted average of the mfpt values of its

adjacent nodes. (2) Nodes are sorted according to increasing values

of mfpt (or decreasing values of the probability of binding); for

each value of the progress variable the relative partition function

ZA and the cut ZAB are calculated. (3) The individual points on

the profile are evaluated as (x~ZA=Z, y = {kT log (ZAB=Z)).

Figure 1. Illustration of the cut-based FEP [13]. (a) The high-dimensional free-energy surface is coarse-grained into nodes of the network. Two
nodes are linked if the system proceeds from one to the other along the considered timeseries. The mean first passage time (mfpt) is calculated for
each node analytically (see text). (b) For each value of mfpt the set A of all nodes with a lower mfpt value is defined. The free-energy DG of the barrier
between the two states formed by the nodes in A and the remainder of the network B can be calculated by the number of transitions ZAB between
nodes of either set [13]. (c) The cut-based FEP is a projection of the free-energy surface onto the relative partition function ZA=Z, which includes all
pathways to the reference node. For each value of mfpt, the point ZA=Z,{kT log (ZAB=Z)ð Þ is added to the FEP. The cut-based FEP projects the free-
energy surface faithfully for all nodes to the left of the first barrier (basin 1). After the first barrier, two or more basins overlap (e.g., basins 2 and 3) if
they have the same kinetic distance from the reference node.
doi:10.1371/journal.pcbi.1002002.g001

Free Energy Landscape of Small Molecule Unbinding
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The cut-based FEP method has been applied to characterize the

free energy surface and folding pathways of the b-hairpin of

protein G [13], a three-stranded antiparallel b-sheet peptide

[21,22], and a cross-linked a-helical peptide [25]. Recently, the

cut-based FEP analysis of a simplified model of an amphipathic

aggregation-prone peptide has provided strong evidence that

amyloid fibril formation is under kinetic control [42].

Detailed balance was imposed to the network, i.e., the number of

transitions from node i to node j (and vice versa) was set equal to the

arithmetic mean of the transitions from i to j and from j to i. Such

symmetrization of the transition network improves the statistics and

introduces a negligible error in the bound state since the trajectories are

much longer than the slowest relaxation time within the bound state.

Moreover, for each fragment several rebinding events were

observed along the MD runs, so that the sampling of the

dissociation barrier is at local equilibrium. The mfpt and the cut-

based FEPs were calculated by the program WORDOM [38]

using, as mentioned above, a time interval of 4 ps. The cut-based

FEPs were also evaluated using the same DRMS clustering but

taking into account MD snapshots saved with a time interval of 8

ps (see Fig. S23 in Text S1) to check that the clustering procedure

preserves the diffusive behavior of the dynamics [40]. This test is a

necessary (though not sufficient) condition for the appropriateness

of the clustering because the dynamics of spontaneous ligand

unbinding is expected to be in the diffusive regime.

Probability of unbinding and transition state
identification

The probability of unbinding can be evaluated for each MD

snapshot very efficiently by considering that all snapshots in a node

have the same probability of unbinding as described originally for

the probability of folding [43]. The basic assumption is that

conformations that are structurally similar have the same kinetic

behavior, hence they have similar unbinding probability [22,43].

The MD trajectory following a given snapshot is analyzed to check

if the unbinding condition is satisfied within a commitment time

that has to be chosen much shorter than the unbinding time. An

unbinding event is defined by a separation between the centers of

mass of the FKBP active site and the ligand larger than 15 Å. For

each node, the unbinding probability is the ratio between its

members that unbind and the total number of snapshots in the

node. The node with unbinding probability between 0.45 and 0.55

are defined as the transition state ensemble (TSE). Among these,

only those with at least 20 MD snapshots were taken into account.

Results

Starting from the bound conformation with the ligand in the

active site of FKBP [30], 50 independent MD runs at 310 K, as well

as 50 runs at 350 K presented mainly in the SI, were carried out for

each of the six ligands of FKBP (Table 1). Each run has a length

between 10 and 20 ns (as the simulations were not elongated when

the intermolecular distance exceeded 30 Å), and the cumulative

simulation time for the six ligands and two temperature values is

about 10 ms. The FKBP structure was remarkably stable in all MD

runs: the Ca root mean square deviation from the X-ray structure is

v2 Å for 95% of the snapshots at 310 K and for 79% of the

snapshots at 350 K. Moreover, only 0.1% and 1% of the snapshots

at 310 K and 350 K, respectively, have a Ca root mean square

deviation larger than 3 Å (and smaller than 4 Å). Most of the

analysis focusses on BUT while the networks and kinetic analysis of

the other five ligands are presented in the SI.

MD simulations of spontaneous unbinding
In the majority of the runs the ligand separates completely from

the surface of FKBP (Fig. 2,top, see also Figs. S1 and S2 in Text

Table 1. The six ligands of FKBP sorted according to binding affinity.

Compound
Unbindinga

events
Rebindingb

events Binding affinity (LIE model)
c

Unbindingd

Experimentale

value of KD

(mM)

vdWaals electr. Total time

(kcal/mol) (ns)

DMSO 49 5 {3:0+0:1 {0:4+0:3 -3.4 4+1 20.0

PENT 34 10 {3:9+0:2 {0:6+0:2 -4.5 9+2 2.0

BUT 40 8 {3:7+0:2 {0:7+0:2 -4.4 8+2 0.5

DAP 45 12 {6:2+0:6 {14:1+2:5 -20.3 7+2 0.5

DSS 29 9 {4:7+0:5 {0:1+0:9 -4.8 18+3 0.25

THI 32 10 {4:8+0:2 {1:5+0:3 -6.3 14+3 0.2

The six ligands are: BUT, 4-hydroxy-2-butanone; DMSO, dimethylsulfoxide; DAP, 5-diethylamino-2-pentanone; DSS, methyl sulphinyl-methyl sulphoxide; PENT, 5-
hydroxy-2-pentanone; THI, tetrahydrothiophene 1-oxide.
aAn unbinding event is defined as a separation of the ligand center of mass from the center of the FKBP binding site larger than 15 Å.
bA rebinding event is defined as an unbinding event followed by a separation of the ligand/FKBP binding site smaller than 10 Å.
cThe binding affinity in the LIE model is approximated as the difference of the interaction energy of the ligand with two different surroundings, the protein and solvent
in the bound state and only the solvent in the unbound state [50]. The LIE binding energy is calculated by averaging separately over all bound or unbound
conformations using a cutoff of the intermolecular distance of 15 Å to discriminate between bound and unbound. The electrostatic energy term is multiplied by 0.5 to
be consistent with the hydration energy of a single ion, which is equal to half the corresponding ion-water interaction energy [54]. The van der Waals energy term is
multiplied by an empirical parameter 0.56 which is derived from linear fitting using only the five neutral compounds. Each of the total sampling is divided into five
blocks and the block averaging errors for both energy terms are given in the table.

dThe unbinding time tfit
MD is calculated by a single exponential fit of the cumulative distribution of the unbinding events detected along the MD trajectories (see Fig. 5).

The unbinding time and error for each ligand are evaluated by single-exponential fitting using 25 randomly selected MD runs out of 50, and calculating the average
error for the remaining 25 MD runs not used for the fitting, i.e., the difference between the value predicted by the fitting curve and the unbinding time measured
along the MD trajectory. This procedure is repeated 100 times for each ligand, and average values of unbinding time and cross-validated error are reported in the table.

eMeasured by a fluorescence assay [30].
doi:10.1371/journal.pcbi.1002002.t001
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S1). The ligand with the lowest affinity, DMSO, shows the highest

number of unbinding events (49 in the 50 MD runs), while the two

ligands with highest affinity, THI and DSS the smallest number

(32 and 29, respectively, Table 1). The number of rebinding events

ranges from 5 for DMSO to 12 for DAP (Table 1 and see Fig. S2

in Text S1). Since there are many more unbinding events than

rebinding events the analysis focusses on unbinding kinetics and

the relative probabilities of the binding modes.

Figure 2. Multiple binding modes of BUT. The binding modes of BUT in the active site of FKBP, i.e., the subbasins within the bound state, were
determined by the cut-based FEP approach [13] and are shown by different colors. (Top,left) Time series of DRMS from the X-ray structure of the BUT/
FKBP complex [30] for one of the 50 MD runs at 310 K. The majority of MD snapshots in the most populated subbasin (red) have a DRMS smaller than
1.0 Å. The interconversions between subbasins are evident. The time series of other 20 MD runs are shown in Fig. S1 in Text S1. (Top,right) Cut-based
FEP at 310 K and distance between centers of mass of BUT and FKBP active site with y-axis on the left and right, respectively. The most populated
node is employed as reference, and the relative partition function Z A /Z is used as reaction coordinate as it takes into account all routes from the
reference state [13]. The cyan and blue nodes overlap in the third subbasin from the left because they have the same kinetic distance from the
reference node. (Bottom) Network representation [11] of the bound state of BUT. Nodes and links are the conformations (i.e., clusters obtained by
DRMS clustering) and direct transitions (i.e., within 4 ps), respectively, sampled in the 50 MD runs at 310 K. The size of each node is proportional to
the natural logarithm of its statistical weight, and only nodes connected by at least one link of weight §5 are shown to avoid overcrowding. Links
connecting pairs of nodes in the same subbasin have the same color of the subbasin, otherwise they are gray. In the insets close to each basin, the
FKBP surface is colored according to atom type with carbon atoms surface in yellow while BUT is shown by sticks with carbon atoms in green.
doi:10.1371/journal.pcbi.1002002.g002
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The dissociation rates, extracted for each ligand by fitting the

cumulative distribution of the unbinding events observed in the

50 MD runs (1=t
fit
MD, see subsection Multiple unbinding pathways

and single-exponential kinetics of unbinding), show a Pearson

correlation coefficient of 20.84 with the equilibrium dissociation

constants measured by a fluorescence assay [30] (see Fig. S3 in

Text S1). Since the dissociation constant is the ratio between the

off-rate and the on-rate the correlation indicates that the on-rate

might be similar for the six ligands considered in this study.

The residence time of a ligand on a protein surface or cavity can

be measured by NMR spectroscopy or surface plasmon resonance.

Experimentally, the residence time varies from picoseconds for

very small ligands, e.g., water and urea [44,45,46,47], to

milliseconds and seconds for potent binders, like high affinity

inhibitors and antibodies [48,49]. The six small ligands of FKBP

considered in the present study have intermediate size and affinity

so that their unbinding times in the nanosecond time scale are

consistent with the residence times measured experimentally for

smaller and larger molecules.

Energy contributions to binding affinity
It is not possible to calculate the free energy of binding directly

from the populations of bound and unbound as the MD runs

where stopped upon ligand dissociation so that the relative

populations are not correct. Therefore, the linear interaction

energy (LIE) model [50] is used to approximate the binding energy

as

DGbind~
1

2
SEelectrTbound{SEelectrTfree

� �
z

a SEvdWaalsTbound{SEvdWaalsTfree

� � ð1Þ

where Eelectr and EvdWaals are the electrostatic and van der

Waals interaction energies between the ligand and its surround-

ings, respectively. The ST denotes an ensemble average sampled

over a MD [51] or Monte Carlo [52] trajectory. Here, each of the

two non-bonding terms is averaged independently over the

trajectory segments during which the ligand is bound (ligand/

protein plus ligand/water interactions) and the segments when the

ligand is fully dissociated (ligand/water interactions). The

coefficient a~0:56 is determined empirically [51] by linear fitting

using the five neutral compounds. The multiplicative factor 1/2

for the electrostatic term has a physical justification which can be

explained by the fact that the electrostatic contribution to the

hydration energy of a single ion is equal to half the corresponding

ion-water interaction energy [53,54]. One advantage of the LIE

model is that the two non-bonding energy terms can be analyzed

individually. For the five neutral ligands the values of the binding

affinity (in the LIE approximation) span a relatively small range,

from {3:4 kcal/mol for DMSO to {6:3 kcal/mol for THI, and

the van der Waals term has a more favorable contribution than the

electrostatic term (Table 1). In contrast, the LIE binding affinity of

DAP is much more favorable ({20 kcal/mol) and is dominated by

the electrostatic energy because of the salt bridge between the

Asp37 side chain and the tertiary amino group of DAP which is

positively charged. Therefore, the binding affinity in the LIE

model is not a good approximation of the free energy of binding

particularly for charged compounds for which polarization effects

[55] are neglected in force fields with fixed partial charges. In

addition, the electrostatic desolvation penalty depends strongly on

the water model used in the simulations, which has a much

stronger influence on charged species than neutral.

Multiple binding modes
Analysis of the MD trajectories reveals that multiple binding

modes in the active site of FKBP are sampled for all six ligands

(Fig. 2 and see Figs. S4–S15 in Text S1). Interestingly, the

electron density maps indicate that PENT and DAP are present

in the soaked FKBP crystals, but the quality of the maps was

poor so that the crystallographers stated that ‘‘it is likely that

these rather flexible ligands bind in a number of different

conformations’’ [30]. Other computational and experimental

studies have also reported and analyzed multiple binding modes

[56,57,58].

It is useful to focus on BUT because it is one of the three ligands

(the other two are DMSO and DSS) for which the X-ray structure

in the complex with FKBP has been solved [30]. The ligand BUT

has two hydrogen bond acceptors and one donor, the carbonyl

and hydroxyl groups, separated by two methylene groups. It either

accepts a hydrogen bond from the amide nitrogen of Ile56 or

donates a hydrogen bond to the side chain of Asp37 as the distance

between the two polar groups of BUT is not long enough to allow

for the simultaneous formation of both intermolecular hydrogen

bonds. The network analysis [11] and FEP [13] consistently reveal

multiple subbasins in the bound state of BUT (Fig. 2) as well as for

the other ligands (See Figs. S4 and S5 in Text S1). The red and

green subbasins make up about 50% of the number of snapshots of

the bound conformation of BUT, and the binding mode of BUT

with its carbonyl group acting as acceptor for the NH of Ile56 (red

subbasin) is identical to the one in the X-ray conformation (Fig. 3).

There is also an end-to-end flipped orientation of BUT in which its

hydroxyl group (instead of the carbonyl) accepts from the NH of

Figure 3. The binding mode observed most frequently in the
MD simulations corresponds to the one in the X-ray structure.
Two binding poses of BUT from the red subbasin (carbon atoms in
green) are shown together with the pose of BUT in the crystal structure
(carbon atoms in blue) upon optimal overlap of the Ca atoms of FKBP.
The surface of FKBP is colored according to atom type with carbon,
oxygen, and nitrogen atoms in yellow, red, and blue, respectively. The
hydrogen bond between the NH of Ile56 and the carbonyl oxygen of
BUT is shown by green dashed lines.
doi:10.1371/journal.pcbi.1002002.g003

Free Energy Landscape of Small Molecule Unbinding
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Ile56. This pose makes up the subbasin of yellow nodes, which

include about 25% of total bound conformations. The energy

barriers between poses in different subbasins are small, which

allows fast interconversions as observed in the time series of

DRMS deviation from the X-ray structure (Fig. 2). There are

more jumps between green and red subbasins than between

green/red and yellow as the latter transitions require an end-to-

end flip of BUT.

Multiple unbinding pathways and single-exponential
kinetics of unbinding

The time series of DRMS show that in most trajectories of BUT

there are several interconversions between different binding

modes, which take place before the event of total dissociation

(Fig. 2). In addition, the network analysis illustrates that there are

different unbinding pathways without a single predominant route

(Fig. 4). The unbinding pathways are spread over a large section of

Figure 4. Multiple unbinding pathways. The red/green coloring illustrates the distance between centers of mass of BUT and FKBP active site. To
illustrate the unbinding pathways, all frames of the 50 MD runs are first overlapped in space [66] using the coordinates of the Ca atoms of FKBP. The
different positions and orientations of BUT are then clustered according to DRMS with a threshold of 1 Å. (Top) Stereoview of the most populated
clusters. The radius of the spheres is proportional to the natural logarithm of the corresponding cluster population. (Bottom) Ligand unbinding
network colored according to the distance between BUT and FKBP. Nodes and links are the clustered conformations and direct transitions,
respectively [11]. The size of each node is proportional to the natural logarithm of its statistical weight. Only the 4184 nodes with distance between
the centers of mass of the ligand and FKBP active site smaller than 15 Å were taken into account; of these, only the 2918 nodes with at least two MD
snapshots are shown to avoid overcrowding. Nodes of the bound state, i.e., those in Fig. 2, bottom, are all included in the dense region of red nodes
on the left.
doi:10.1371/journal.pcbi.1002002.g004
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the active site and/or its rim (see also subsection Unbinding

transition state and Hammond effect). Despite the multiple

pathways of unbinding, the cumulative distribution of the

unbinding time shows single-exponential behavior (Fig. 5). Given

that equilibration within the bound state is much faster than

unbinding (the time series in Fig. 2 top, left shows that multiple

interconversions between bound state subbasins take place before

unbinding), the single-exponential kinetics suggests that different

pathways of dissociation have similar barrier height. Note that the

multiple interconversions within the bound state, multiple

pathways of dissociation, and single-exponential time dependence

of the unbinding kinetics are observed for all six ligands (see Figs.

S1, S16–S19 in Text S1).

The observation that the unbinding barrier is much higher than

the barriers between subbasins suggests that, at least for small and

low-affinity ligands, the starting pose does not influence the

unbinding simulation results. To provide additional evidence to

this observation, 10 conformations in the bound state of DMSO

were randomly chosen from the 50 MD simulations, and 10 runs

at 310 K with different initial velocities were started for each of

them. In another test, 50 runs with different initial velocities were

started for each of five randomly oriented poses of DMSO in the

active site of FKBP. The 250 simulations of the second test were

carried out at 350 K to speed up the sampling. The unbinding

times (tfit
MD values) derived from simulations using different starting

conformations of DMSO are very similar among each other (see

Figs. S20 and S21 in Text S1).

The unbinding network and cut-based FEP at 350 K are

qualitatively similar to those extracted from simulations at 310 K

and reveal multiple binding modes. The main difference is that

the dissociation kinetics are faster as the unbinding barriers are

lower at 350 K than 310 K (See Fig. S3 in Text S1), which is

consistent with the mainly enthalpic nature of the dissociation

barrier.

Unbinding transition state and Hammond effect
The probability to unbind can be defined analogously to the

probability of folding [59,60]. For each ligand, the TSE is

determined along the 50 MD trajectories by a procedure based on

the probability to unbind within a certain commitment time

[22,43]. Values of 0.45 to 0.55 for the probability to unbind and

commitment time of 0.8 ns are used, and the robustness of the

TSE on these choices is documented in Table S1 in Text S1. The

unbinding TSE consists of a broad variety of positions and

orientations of the ligand in the FKBP active site and/or at its rim

(Fig. 6,top). The heterogeneity of the TSE, and in particular the

broad distribution of TSE structures over the whole surface of the

active site, is consistent with the multiple unbinding pathways

detected by the network analysis.

For ligands with different values of the dissociation rate (and

affinity) it is interesting to compare the position of the TSE along

the reaction coordinate of unbinding. The distance between the

centers of mass of ligand and FKBP active site can be used for this

analysis as it is an intuitive geometric coordinate and a good

predictor of the mfpt to the most populated node (Pearson

correlation coefficient higher than 0.90 up to distances of 30 Å).

Despite the relatively small difference in affinity for FKBP of only

a factor of about 100, the TSE of DMSO is shifted with respect to

the one of THI along the center of mass distance towards the state

that is destabilized, i.e., the bound state (Fig. 6). The TSE

conformations of THI is located mainly at the rim of the active site

which might be due in part to its additional van der Waals

interactions with FKBP as THI has two more carbon atoms than

DMSO. An intermediate shift is observed for BUT (Fig. 6,bottom)

and the other four ligands (Table S1 in Text S1) which is

consistent with their values of the dissociation constant being

between those of THI and DMSO. Note that the shift is not due to

the different sizes and number of atoms of the ligands because

there is no correlation between TSE shift and size (Table S1 in

Text S1). The TSE shift is a manifestation of the Hammond effect,

which was described 55 years ago for chemical reactions: As the

substrate (here the ligand-bound state) becomes more unstable, the

transition state approaches it in structure [61]. A shift of the

protein folding TSE in the direction of the destabilized state has

been observed previously upon single-point mutations in small,

single-domain proteins [62]. On the other hand, Hammond

behavior has not been reported for ligand (un)binding.

Figure 5. Single-exponential kinetics of unbinding. The plot shows the cumulative distribution f (t) of the unbinding times; f (t)~
Ð?

t
p(t)dt,

where p is the probability distribution of the unbinding time. An unbinding event is defined by a separation between the centers of mass of the FKBP
active site and the ligand larger than 15 Å. The stars represent the 40 unbinding events observed in the 50 MD runs of BUT. The single-exponential fit
(solid line) yields t

fit
MD~8:3 ns.

doi:10.1371/journal.pcbi.1002002.g005
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Discussion

Five main results emerge from the network and cut-based FEP

analyses of the MD simulations of unbinding of six small ligands

from the active site of FKBP. First, fully atomistic simulations of

spontaneous ligand unbinding from the active site of an enzyme

are computationally feasible. The MD trajectories can be used to

characterize the free energy surface of the bound state and the

unbinding kinetics. Second, both the network analysis and cut-

based FEP method reveal that each ligand has multiple poses

(characterized by distinct intermolecular hydrogen bonds) in the

bound state. Moreover, unbinding proceeds through multiple

pathways. A similar free energy landscape with multiple pathways

was previously observed in equilibrium simulations of the

reversible folding of structured peptides [21,23] and small proteins

[27,63,64]. Third, the kinetics of small ligand dissociation from

FKBP are simple and their time dependence can be fitted by a

single-exponential function despite the presence of multiple

binding modes and multiple exit pathways. The rate-limiting step

of unbinding is characterized by a free energy barrier that is much

higher than the barriers between subbasins (i.e., binding modes) in

the bound state. Fourth, the unbinding TSE consists of a broad

variety of ligand poses which lead to multiple dissociation

pathways. Finally, a comparative analysis of the TSE of the six

ligands shows that the smaller the stability of the bound state the

closer are the TSE poses to the bound structure which is a new

example of Hammond behavior, i.e., shift of the TSE towards the

destabilized state.

Figure 6. Unbinding TSE and Hammond behavior. The structures belonging to the TSE were identified along the MD trajectories by a
procedure based on the probability to unbind within a commitment time [22,43]. A commitment time of 0.8 ns was used for all ligands, and
individual conformations were assigned to the TSE if their unbinding probability was in the 0.45 to 0.55 range. (Top) The surface of FKBP is shown in
gold while the positions of the centers of mass of the ligands at the TSE are shown by spheres. (Bottom) Distribution of distance between centers of
mass of ligand and FKBP active site at the TSE. Note that the Hammond behavior, i.e., the shift of the TSE along the unbinding reaction coordinate, is
robust with respect to the choice of the commitment time (Table S1 in Text S1).
doi:10.1371/journal.pcbi.1002002.g006
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It is likely that some of the conclusions of this work are valid

also for drug-like compounds, which are larger (20 to 50 non-

hydrogen atoms) and more potent (mM to nM affinity) than the

six ligands investigated here. In particular, multiple (un)binding

pathways are likely to exist also for high-affinity ligands, even if

they usually have a single binding mode. Using network analysis

and the cut-based FEP method it might become possible in the

future to investigate ligands of nM affinity, which will require

about one to two orders of magnitude longer simulations. This

estimation is based on the aforementioned linear fitting of natural

logarithm of unbinding times of the six ligands of FKBP to their

experimentally measured binding energy values (See Fig. S3 in

Text S1), which yields an extrapolated unbinding time of about

200 ns for a 200 nM ligand. In this context, it is important to

note that small fragments used in the early phase of drug

discovery bind usually in the mM to mM range. Another

interesting application could be the analysis of the free energy

landscape of binding of small molecules with very similar

chemical structure but significantly different binding affinity,

e.g., a series of protein kinase inhibitors that differ by only one to

two heavy atoms and whose affinity ranges from micromolar to

single-digit nanomolar [65].

Supporting Information

Text S1

This file contains the supporting figures and table for
this article.

Figure S1: Time series of DRMS from the X-ray structure for 20 of

the 50 runs of BUT at 310 K. The y axis is DRMS in Å and x axis is

time in ns. Figure S2: Time series of distance between centers of mass

of BUT and FKBP active site in 20 of the 50 runs at 310 K. The y axis

is distance in Å and x axis is time in ns. The green or red line indicates

distance at 15 or 10 Å. Figure S3: Scatter plot of experimental

binding energies versus natural logarithm of the unbinding times

extracted from MD at 310 and 350 K. The Pearson correlation

coefficient is 20.84 and 20.83 for 310 and 350 K MD runs,

respectively. The unbinding time and error for each ligand are

evaluated by single-exponential fitting of the cumulative distribution

function of unbinding times using 25 randomly selected MD runs out

of 50, and calculating the average error for the remaining 25 MD runs

not used for the fitting, i.e., the difference between the value predicted

by the fitting curve and the unbinding time measured along the MD

trajectory. This procedure is repeated 100 times for each ligand, and

average values of unbinding time and cross-validated error are shown.

Figure S4: Cut-based FEPs of six ligands at 310 K (black). The

distance between centers of mass of ligand and FKBP active site

(green) and the mean first passage time (red) are also shown with y-axis

on the right. Figure S5: Network representation of the bound states

of the six ligands at 310 K. The largest 25 nodes are marked with

numbers and their representatives are shown in Fig. S6–S11 in Text

S1. Figure S6: Representative poses of the largest 25 nodes of

DMSO. Figure S7: Representative poses of the largest 25 nodes of

PENT. Figure S8: Representative poses of the largest 25 nodes of

BUT. Figure S9: Representative poses of the largest 25 nodes of

DAP. Figure S10: Representative poses of the largest 25 nodes of

DSS. Figure S11: Representative poses of the largest 25 nodes of

THI. Figure S12: Cut-based FEPs plotted using as reference node

the most populated node of individual subbasins. These cut-based

FEPs were used to determine the subbasins of the bound state. The

cut-based FEP on the top left corresponds to the one in Figure 2 of the

main text. Figure S13: Simplified network of subbasins in the bound

state of BUT. The nodes are the subbasins identified with the

procedure shown in Fig. S12 in Text S1 except for the black node

which represents the unbound state. The thickness of the links is

proportional to the number of the transitions observed in the 50 MD

runs at 310 K. Figure S14: Network representation of the bound

states of the six ligands at 350 K. Only nodes connected by links of

weight 5 or more are shown to avoid overcrowding. Figure S15: Cut-

based FEPs of six ligands at 350 K. Figure S16: Single-exponential

kinetics of unbinding for 6 ligands at 310 K. The plots show the

cumulative distribution f(t) of the unbinding times observed in the

50 MD runs. Note that the unbinding times obtained by fitting are

slightly different from those in Table 1 of the main text because a

cross-validation procedure was used in the latter. Figure S17: Single-

exponential kinetics of unbinding for 6 ligands at 350 K. The plots

show the cumulative distribution f(t) of the unbinding times for 6

ligands at 350 K. The unbinding times range from 1.6 to 5.6 ns,

which is shorter than the corresponding values at 310 K. Figure S18:

Network representations of the bound state for DMSO (top left),

PENT (top right), BUT (middle left), DAP (middle right), DSS (bottom

left), and THI (bottom right). Nodes are colored from red to green

according to the distance of the centers of mass of ligand and FKBP.

Figure S19: Stereoview of the most populated clusters for 6 ligands -

DMSO, PENT, BUT, DAP, DSS and THI (top to bottom). Nodes are

colored from red to green according to the distance of the centers of

mass of ligand and FKBP. Figure S20: Test at 310 K with DMSO.

Ten bound state conformations were randomly chosen from previous

MD simulations and ten runs of 10 ns each with different initial

velocities were started for each of them. Single-exponential kinetics of

unbinding is observed and the unbinding time derived from the plot is

4.2 ns which is similar to the value derived from the 50 runs started

from the X-ray structure of the complex. Figure S21: Test at 350 K

with DMSO. Fifty 5-ns runs with different velocities were started for

each of five randomly oriented poses of DMSO in the active site of

FKBP. Single-exponential kinetics of unbinding is observed and the

unbinding times derived from the plots range from 1.3 to 1.9 ns,

which is consistent with the value derived from the 50 runs started

from the X-ray structure of the complex (top, left). Figure S22: The

cFEPs for DMSO (left) and PENT (right) were obtained using DRMS

clustering cutoffs of 0.8 Å, 0.9 Å, 1.0 Å, and 1.5 Å from top to

bottom. Figure S23: Diffusivity test for the clustering of DMSO and

THI. The profiles with saving frequency at 4 and 8 ps are similar upon

a vertical shift of ln(
ffiffiffi
2
p

), which is consistent with the diffusive

regime. Table S1: Robustness of TSE definition and Hammond

behavior. Each column lists the average distances between the

centers of mass of the ligand and FKBP active site for the

conformations at the TSE. The numbers of TSE nodes and

snapshots are shown in parentheses. Only TSE nodes with weight

larger than 5 were used for this analysis as nodes with very low

weight increase the noise.

Note: A movie of the MD simulation of spontaneous unbinding of

BUT from FKBP can be found at http://www.biochem-caflisch.

unizh.ch/movie/7/.

(PDF)
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