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Abstract

Adaptation in spatially extended populations entails the propagation of evolutionary novelties across habitat ranges. Driven
by natural selection, beneficial mutations sweep through the population in a ‘‘wave of advance’’. The standard model for
these traveling waves, due to R. Fisher and A. Kolmogorov, plays an important role in many scientific areas besides
evolution, such as ecology, epidemiology, chemical kinetics, and recently even in particle physics. Here, we extend the
Fisher–Kolmogorov model to account for mutations that confer an increase in the density of the population, for instance as
a result of an improved metabolic efficiency. We show that these mutations invade by the action of random genetic drift,
even if the mutations are slightly deleterious. The ensuing class of noise-driven waves are characterized by a wave speed
that decreases with increasing population sizes, contrary to conventional Fisher–Kolmogorov waves. When a trade-off exists
between density and growth rate, an evolutionary optimal population density can be predicted. Our simulations and
analytical results show that genetic drift in conjunction with spatial structure promotes the economical use of limited
resources. The simplicity of our model, which lacks any complex interactions between individuals, suggests that noise-
induced pattern formation may arise in many complex biological systems including evolution.
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Introduction

The fact that survival and reproduction are sometimes a matter

of luck rather than fitness, has arguably left many traces in the

history of evolution [1–3]. Random accidents in the reproductive

process lead to sampling errors in the chain of generations. When

accumulated over time, these sampling errors can cause significant

changes in the abundance of genetic variants. This phenomenon,

called random genetic drift, can represent a significant hurdle for

adaptation [2]. For instance, newly arising beneficial mutations are

usually lost by chance and need to occur many times, until they

succeed in reaching fixation [4]. More generally, random sampling

errors tend to reduce diversity by eliminating rare variants from

the gene pool. Spatially extended populations are thereby

fragmented into patches in which different genetic variants (alleles)

dominate [5]. Allele frequency gradients between patches are

maintained by a balance of genetic drift and dispersal [4].

Such spatial structure has important consequences for the process

of adaptation. In a spatial setting, novel beneficial mutations occur

in one place and need to spread across the habitat to reach fixation

[6]. These mutant invasions proceed in the form of waves, first

described by R.A. Fisher and A. Kolmogorov et al. in 1937 [7,8].

Their deterministic analysis of the combined effects of selection and

diffusion reveals a characteristic wave speed, which depends on

migration and growth rates. Subsequently, it was found that Fisher-

Kolmogorov waves appear in most complex systems and control the

speed of numerous important dynamical processes, such as chemical

reactions [9], bacterial colony growth [10] or epidemic outbreaks

[11,12]. As a result, Fisher-Kolmogorov waves have been

investigated not only in biology, but also in chemistry and physics

[13–15].

An entirely deterministic analysis of traveling waves is

incomplete as it neglects genetic drift, which is inevitable in finite

systems. Already R.A. Fisher noticed that random fluctuations

play an important role in selecting a unique wave speed. The

sensitivity of traveling waves to genetic drift started to become fully

appreciated when stochastic computer simulations became feasible

[16]. This spurred intensive research efforts, in particular in the

statistical physics community, to augment the deterministic

analysis by random sampling noise [17]. The ensuing stochastic

Fisher–Kolmogorov waves are characterized by fluctuating wave

fronts and strongly reduced wave speeds. Noise acts as a drag force

in these nonlinear systems, with the result that the deterministic

wave speed is a threshold that is only approached slowly as

population sizes tend to infinity [18–20].

Here, we show that random sampling errors can also drive

traveling waves. We analyze the stochastic mechanism underlying

these noise-driven waves and quantify the conditions under which

they emerge in complex biological or physical systems. In the

context of evolution, noise-driven waves ensue from the compe-

tition for a single limited resource in a spatially extended habitat.

Importantly, this phenomenon promotes the evolution of the

economical use of a limited resource, which has been hypothesized

as one of the earliest forms of altruism, already present at the level

of microbial biofilms.

Capturing the phenomenon of noise-driven waves requires a

fundamental extension of the Fisher-Kolmogorov model for the

invasion of mutants. This standard model (and its variants)

exclusively deals with mutations that change the growth rate while

having no effect on the growth ‘‘yield’’ – that is the biomass

produced per unit of resource. The spread of such growth rate

mutations is slowed down by noise, as described above. However,
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a change in growth rate is expected to involve a change in growth

yield as well, as several recent studies have advocated on the basis

of thermodynamic principles [21,22]. To account for such a trade-

off between growth and yield, we extend the Fisher-Kolmogorov

model in a minimal way to be able to describe mutations that

change both rate and yield. The resulting model supports noise-

driven waves because in the presence of number fluctuations,

nearby individuals are related, and all gain from an increase in

local density. Noise driven waves, hence, arise from a form of kin

selection (a version of group selection), which we quantify using

simulations and a novel analytical approach.

Model
Our computer model, illustrated in figure 1, provides the setting

for the competition of two types, mutants and wild type, in a

spatially extended population. It consists of a linear array of sub-

populations, called demes. Individuals have a chance 2D per

generation to jump to one of the neighboring demes. The growth

of mutants (0) and wild type (1) within a deme from generation t to

tz1 is simulated by the following rule

Dn0~ 1{
N

K

� �
n0z

sn1

N
n0zsampling noise ð1Þ

Dn1~ 1{
N

K

� �
n1{

sn0

N
n1zsampling noise, ð2Þ

where n0 and n1 are the numbers of wild type and mutants in

generation t, respectively, and N~n0zn1 is the total population

size of the deme. The first term on each of the right hand sides

describes the logistic growth of the deme population N: The

growth rate declines linearly with increasing population size and

vanishes at certain maximal occupancy K . This ‘‘carrying

capacity’’ K is the equilibrium population size per deme at which

resource production and consumption just balance. It represents

the population density that the environment can sustain, given the

available necessities. The second term on the right hand side of

each of the equations (1) and (2) accounts for a small difference

sw0 in the growth rate of mutants and wild type. This implements

natural selection against the mutant type in a standard way. Notice

that we have chosen selection to act on the ratios of both types but

not directly on the total deme population N: The s-dependent

terms in equations (1) and (2) add up to zero. Finally, genetic drift

arises in our model from the sampling noise in equations (1, 2),

which we generate using standard Wright-Fisher sampling [4].

With constant carrying capacity K , the above model simply

represents a discretized version of the standard Fisher-Kolmo-

gorov model. For sw0, the wild type sweeps through the

population in the form of a traveling wave, thereby displacing

the mutant type. However, as we demonstrate below, the

assumption of a constant carrying capacity has to be relaxed to

account for mutations that change the organism’s growth yield

(biomass produced per unit resource). Therefore, we go beyond

the Fisher-Kolmogorov setting and allow for the possibility that

the carrying capacity depends on the local composition of the

population. Specifically, we assume that a population entirely

consisting of mutants has a carrying capacity K(1zE) as opposed

to K in a purely wild-type population, see Fig. 1a, b. The (small)

parameter E quantifies the strength of the mutation. In a mixed

population with mutant frequency p, the carrying capacity is

assumed to be given by K(p)~K(1zEp).

Biologically, such a frequency dependent carrying capacity

arises whenever the mutant type consumes less resource per

generation than the wild type (equivalently, whenever mutants

produce more biomass per unit of resource). Such yield-mutants

will leave more of the limited resource to its immediate neighbors,

notwithstanding their identity, with the net-result of an increased

carrying capacity. Natural realisations of this scenario are provided

by many microbial species that can boost their growth rates by

(partially) shifting catabolic substrate flow into less-energy-

conserving branches, resulting in lower biomass yields [23]. For

instance, yeasts can switch their metabolism from respiration to

fermentation plus respiration [24,25]. Respiration results in higher

yield but slower substrate turnover and growth rate. Using

fermentation in addition to respiration results in lower yield but

higher substrate turnover and growth rate. Mutations with

immediate effect on carrying capacity also occur when bacteria

compete for space rather than nutrients, as in a tightly packed

biofilm [22]. A mutation that reduces slightly the space

requirements of a mutant cell will effectively increase the local

carrying capacity: A population containing a fraction of mutants

will be able to reach higher cell densities than an all wild type

population.

As these microbial examples show, a frequency dependent

carrying capacity is an important biological alternative when

different types compete for the same limited resource (nutrients,

water, sunlight, space, etc.). To highlight the novel effects

associated with such a frequency dependent carrying capacity,

which lies outside the scope of traditional wave models, we begin

our analysis by assuming that the growth rates of mutants and wild

type are identical. In the second part of the analysis, however, we

will assign a growth rate cost (sw0) to the mutants because it is

quite unlikely that an increase in population density comes without

any cost. Indeed, in the case of microbes competing for the same

nutrient source, it is predicted that an increase in metabolic

efficiency is usually associated with a decreased growth rate

[21,22,24]. This case of a trade-off [21] between growth rate and

yield has received particular attention in the recent literature, and

will be discussed in the second part of the analysis.

At first, however, we will investigate the above model assuming

s~0 in order to answer the question whether mutations with ew0
will prevail despite the fact that they lack a direct fitness difference.

To this end, we stage a ‘‘tug of war’’ between both types. That is,

Author Summary

Mutations that increase an organism’s fitness are the fuel
for biological evolution. When such beneficial mutations
enter a spatially extended population, they spread through
the population in a ‘‘wave of advance’’, first described by
R. Fisher and A. Kolmogorov. The force driving these
traveling waves is Darwinian selection, which favors
individuals with higher fitness. Here, we describe a new
type of traveling mutant wave that is driven by non-
selective forces instead-- namely by random genetic drift,
which refers to the randomness in the reproduction
process. These noise-driven waves promote the econom-
ical use of a limited resource because they occur whenever
a mutation increases the growth yield, which refers to the
biomass produced per unit of resource. Since a change in
growth yield and growth rate often occur together and
with opposite signs, we argue that both types of
mechanisms will jointly decide over the fate of a novel
mutation. We predict that the population evolves towards
an evolutionary optimal carrying capacity, at which
selective and non-selective forces just balance.
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Figure 1. Noise can drive traveling waves. A computer model is used to simulate the competition for a common resource between two species,
mutants (blue) and wild type (green). Mutants are assumed to use resources more economically than the wild-type. As a consequence, higher
population densities can be sustained in the mutant regions. Yet, mutants are unable to invade the wild-type population unless the randomness in
the reproduction process (genetic drift) is implemented in the computer model. a) The spatially extended population is represented by a linear array
of local populations, called demes. Individuals migrate between neighboring demes at a rate D per generation. The population size of the demes
ranges from K for demes that are occupied by wild-type only to K(1zE) for mutant only demes. Due to the diffusive mixing of both types, the
transition from MT to WT occurs in general over more than one deme. b) For very low migration rates, demes are either fixed for the wild-type (WT) or
the mutant type (MT), and the transition between both regions is step-like. c) Representative results of stochastic (left) and deterministic (right)
simulations with parameters K~30, D~0:05 and E~0:1. Horizontal and vertical axes represent space and time, respectively. The color shading
intermediate between blue (100% mutants) and green (100% wild-type) indicates the mixture between both types at a given deme. Note that i)
mutants invade the wild-type population only in the stochastic simulations, ii) the transition region between mutants and wild type remains stable in
the stochastic case but gradually blurs in the deterministic simulations.
doi:10.1371/journal.pcbi.1002005.g001
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we assume that, initially, all individuals in one half space (xv0)

are mutants and the entire population in the other half-space

(xw0) is wild-type. As individuals migrate and reproduce, this

initially step-like transition between both types evolves into a more

or less smooth interface. Shape and motion of this mixing zone

determine whether the mutant invasion will succeed or fail.

Results

We find that, in any finite population, mutants can invade (only)

with the help of local number fluctuations. That is, the interface

between mutants and wild-type gradually shifts towards the wild-

type region, as in the simulation Fig. 1c (left). The importance of

sampling noise can be verified in purely deterministic simulations

that neglect genetic drift, see Fig. 1c (right). Note that the

transition region between mutants and wild-type remains at a fixed

position and merely broadens diffusively over time. To quantify

how strongly mutants dominate over wild-type in finite popula-

tions, we measured the invasion speed as a function of the model

parameters. The simulation results, summarized in Fig. 2, suggest

that the invasion dynamics is controlled by a single parameter

k~KDE=c, combining carrying capacity K , diffusivity D, relative

increase E of the carrying capacity of mutants, and the variance c
in the offspring number of individuals. The parameter k compares

the effect of diffusion with the strength of stochastic fluctuations.

For large k&1, the wave front extends over many demes, and

moves slowly with weak front diffusion. For small k%1, on the

other hand, wave fronts are step-like and exhibit strong diffusion.

The simulation results in Fig. 2 suggest that the wave speed v in

both regimes can be summarized as

v

2DE
*

1{
p

2 ln k

� �2
� �

=
ffiffiffi
k
p

, k??

1, k?0

8<
: ð3Þ

How can one rationalise the stochastic mechanism underlying

these noise driven waves? An intuitive argument can be given for

the regime k%1, which occurs when the migration rates or local

population sizes are small. Then, the flux of migrants is so small

compared to the fixation time within a deme, that the transition

from wild-type to mutants occurs between two neighboring demes.

Hence, the situation usually looks as in Fig. 1b with a step-like

interface between wild-type and mutant regions. Under these

conditions, the transition region shifts one deme into the wild-type

region if a mutant migrates into the first wild-type deme and

reaches fixation there. Such events occur at rate D(1zE) because

Figure 2. Speed of noise driven mutant invasions. The wave speed v was measured in units of 2DE and plotted as a function of the parameter
combination k~KDE=c. Data sets with different migration rates D were used to generate this scaling plot, as indicated in the legend box. The effect E
of the mutations was set to 0:1 (black symbols) or 0:05 (blue symbols); the variance in offspring number was chosen to be c~1. Note that the
different data sets collapse onto a single curve. For small k, this ‘‘master’’ curve saturates at 1 corresponding to a wave speed v*2DE. On the double
logarithmic scale (inset), the data approaches a straight dashed line for large k, consistent with the predicted asymptotic power law dependence
v*k{1=2 .
doi:10.1371/journal.pcbi.1002005.g002
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mutant migrants appear in the wild-type region at a rate

DK(1zE), and fix with probability 1=K . Conversely, the

transition region may shift towards the mutant domain if a wild-

type becomes established in the first mutant deme. The

corresponding transition rate is given by the product of the rate

at which wild-type migrants appear in the first mutant deme, DK ,

and the fixation probability of a wild-type in mutant demes,

1=(K(1zE)). The back and forth stepping of the transition region

results in a net speed of

v~DK(1zE) 1
K

{DK 1
K(1zE)&2DE, ð4Þ

in agreement with the small k limit of our simulation results. This

simple argument shows that the invasion of mutants is made

possible by the fact that i) mutants more often attempt to invade

wild-type demes than the other way around and ii) that invasion

attempts have a higher success probability. Both effects are the

result of the larger carrying capacity of mutant demes, and

contribute the same amount DE to the average invasion speed.

The situation becomes more complicated when the mixing zone

between both types extends over many demes (kw1), and the

wave front is smeared out. Nevertheless, the general case can be

treated analytically (see Methods). This is made possible by a

nonlinear variable transformation due to E. Hopf and J.D. Cole

[26,27], which converts our model of noise driven waves onto the

conventional Fisher–Kolmogorov model with parameters that

depend on the noise strength. This exact mapping shows that the

combination of migration and stochasticity confers an effective

growth rate advantage of Ec=K to the mutants. The results for the

wave speed in Eq. (3) then follow from the known asymptotic

results for noisy Fisher–Kolmogorov waves [19,28,29].

Due to the noise-induced growth rate advantage, mutants will

always out-compete the wild-type population provided both types

have equal intrinsic growth rate, or fitness. However, as we

discussed earlier, the mutants’ ability to increase population

densities will usually be associated with growth rate determinant.

For heterotrophic organisms, in fact, such a correlation follows

from basic thermodynamic principles of ATP production

[21,22,24]. To account for this trade-off between growth rate

and yield [21], we have studied our model for a selective

disadvantage s of the mutants. We find both in simulations (Fig. 3)

and theory (Methods) that the noise induced excess growth rate

(Ec=K ) must be larger than the fitness cost (s) to ensure invasion of

the mutants. As a consequence of this ‘‘force’’ balance, we can

determine an optimal carrying capacity K?, at which mutations

are unable to invade. To this end, we assume that relative change E
in carrying capacity is linearly related to the relative change s in

growth rate s~aE, where the number a characterizes the

evolutionary costs associated with a small change in carrying

capacity. We expect such a linear relation to hold at least for small

E%1. Balancing the evolutionary cost for increasing carrying

capacities (aE) with the noise induced growth rate of mutants

(Ec=K ) yields

K?~c=a , ð5Þ

which is the carrying capacity for which mutations with non-zero E
are unable to invade. In the frame work of evolutionary game

theory [30], the condition in Eq. (5) is called an evolutionary stable

strategy towards which populations are expected to evolve on long

evolutionary time scales.

Discussion

The emergence of an optimal carrying capacity is intriguing

because, even though using resources more efficiently seems to be

good for the group, it is not clear how resource efficiency could

evolve if it implies a fitness cost. The resulting evolutionary

dilemma is analogous to the ‘‘tragedy of the commons’’, a

metaphor widely used to describe evolution towards the inefficient

use of a common resource [31]. This puzzle is particularly striking

in microbial populations that exhibit a wide spectrum of

phenotypes between fast growing strains with low efficiency in

ATP production and slow growing high efficiency strains [22,24].

It has been argued that the economical utilisation of resources may

be one of the earliest form of altruism, since it is wide-spread

already at the level of microbial systems [22]. The emergence of

this basic form of cooperation in spatially extended habitats has

been observed in individual-based simulations [21,22,32], but (to

our knowledge) no theoretical account could yet quantify the

effect. On the contrary, attempts to describe the spread of

mutations using the classical Fisher-Kolmogorov approach, which

is based on deterministic reaction diffusion equations, came to the

conclusion that density increasing mutations are unable to invade

[33,34].

Our analytical results show that stochasticity is the key

difference between the individual based simulations and the

deterministic theory. Random genetic drift favors mutations that

increase the carrying capacity. It thereby promotes the economical

use of a limited resource even if this implies a small growth rate

detriment. The strength of this effect crucially depends on the

parameter a, characterizing the trade-off between growth rate and

yield. If, for instance, we consider microbes competing for the

same nutrient source, we expect that a mutant type that consumes

less nutrients will suffer from a comparable reduction in growth

rate. In this case, the parameter a will be on the order of 1 with the

consequence that equation (5) predicts a rather small evolutionary

stable carrying capacity K?. The opposite situation may arise, for

instance, when bacteria are competing for space in a dense

biofilm. Then, mutant cells would occupy smaller volumes, which

could be neutral (or even beneficial) in terms of growth rates. This

would imply a%1 and, because noise would be strong compared

to selection, a rather large evolutionary stable carrying capacity

K?. Thus, in systems where the density changing mutations have

little effect on relative fitness but large effect on density, the

carrying capacity might indeed result from the balance of noise

and selection, as predicted by equation (5).

Our study thus provides a predictive null model for the joint

evolution of growth rate and yield, which shows that intricate

interactions between individuals are not required for the evolution

of resource efficiency in spatially extended populations. All that is

required is (inevitable) genetic drift in conjunction with spatial

structure, which is particularly strong in microbial biofilms. Real

biofilms are often characterized by heterogeneous resource

distributions, environmental fluctuations, intrinsic instabilities

(e.g., finger or sector formation in biofilms), or self-organisation

(Touring mechanism), which are beyond our simple null-model.

Such spatio-temporal heterogeneities are expected to further

increase the levels of genetic drift. Our predictions for the

evolutionary optimal carrying capacity should therefore be

interpreted as lower bounds for real systems.

The mechanism underlying noise-driven waves can be under-

stood in several ways. Within the theory of ‘‘kin selection’’ [35],

which is a special case of group selection [36], one tries to

rationalise the advantage of cooperative mutants in terms of an

increased relatedness, which makes it more likely that the altruistic

Noise Driven Evolutionary Waves
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benefits are received by conspecifics rather than wild type. From

this point of view, genetic drift generates increased relatedness in

our model and allows mutants to invade despite a growth rate

detriment.

A more direct way of rationalizing the role of noise in our model is

provided by our discussion of the regime of low migration rates in the

Results section. There, we showed that mutants enjoy a higher

diffusion flux into the wild type demes and a higher probability of

becoming fixed there. Crucially, these advantages require frequency

gradients. If mutants were homogeneously distributed in the habitat,

diffusion fluxes and fixation probabilities would be identical for all

individuals, independent of their identity. This entirely mixed state,

lacking any frequency gradients, is in fact the equilibrium state of our

model in the deterministic limit of infinite population sizes (Methods).

Consequently, the wave speed of noise-driven waves declines as

population sizes tends to infinity. For any finite population size,

however, frequency gradients are continually generated by the action

of genetic drift. In the scenario of our model, these (random)

frequency gradients turn into an advantage for the mutants.

The importance of frequency gradients for noise-driven waves is

clarified mathematically in the Methods section. There, we show

that the local growth rate of the mutant frequency is proportional

to the square of local frequency gradients. These gradients are

generated by genetic drift, leading to an effective growth rate

advantage of mutants. A similar mathematical structure occurs in

certain reaction diffusion models of group selection, which also

exhibit growth rates proportional the square of frequency

gradients [36]. Barton and Clark in Ref. [36] gave an heuristic

explanation of how this mathematical structure could lead to an

effective mean growth rate, considering a balanced polymorphism

in the limit of small genetic drift. Our exact analysis based on the

Cole-Hopf transformation justifies the use of an effective local

growth rate and shows that it is given by Ec=K , which depends on

the carrying capacity K , the relative increase E of the mutant

carrying capacity, and the variance c in offspring numbers. (The

scaling (not the pre-factor) of our local effective growth rate is

consistent with the mean effective growth rate obtained by Barton

and Clark [36].) It is quite remarkable that this effective growth

rate and, consequently, the evolutionary stable strategy in equation

(5) do not depend on either diffusion constant D nor the

dimensionality, even though migration and population structure

are needed for the phenomenon of noise driven waves.

In summary, we have seen that the established Fisher wave

model is unable to account for a trade-off between growth rate and

Figure 3. Balance between natural selection and random sampling noise. The wave speed in units of 2DE is depicted as a function of a
selective disadvantage sv0 of mutants that increase the carrying capacity by a factor 1zE. Under these conditions, sampling noise and natural
selection act in opposite directions - noise favors mutants, natural selection favors wild type. Note that the mutant population expands (vw0)
provided that the selective disadvantage s is less than the ratio of E and the carrying capacity K . The point at which the speed changes sign defines
an evolutionary stable strategy as discussed in the text. The data exhibits a deviation of about 1% from the predicted point of sign change. This
deviation can be lowered by using smaller migration rates (data not shown). Migration rates were set to m~0:01 and different values of k were used,
see the legend box.
doi:10.1371/journal.pcbi.1002005.g003

Noise Driven Evolutionary Waves
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yield. To overcome this limitation, we have generalized the Fisher-

Kolmogorov wave model such that mutations are allowed that

change both the growth rate and the carrying capacity. We found

that the extended model exhibits traveling waves that are driven

by random sampling errors. The ensuing noise driven waves are

described analytically and compared with classical Fisher–

Kolmogorov waves. The most striking difference is that the speed

of noise driven waves decreases (like a power law) as population

sizes tend to infinity, quite in contrast to classical Fisher–

Kolmogorov waves. Comparing the strength of the noise-induced

driving force with natural selection led us to the prediction of an

evolutionary optimal carrying capacity. This implies that random

genetic drift promotes the economical use of a limited resource,

one of the most basic forms of altruism. We suspect that this

mechanism has been acting over long evolutionary times, because

it merely rests on random genetic drift in conjunction with spatial

structure, which must have been present already in the most

ancient microbial systems. In the sense of Wright’s shifting balance

hypothesis [37], our model describes a mechanism of peak shifts

that relies on pure chance rather than selection.

Although our model was formulated with an evolutionary

application in mind, its mathematical structure arises in many

problems that combine diffusion and interaction of discrete

entities. Sampling errors turn into a driving force whenever

reaction rates depend on the magnitude of gradients. This occurs,

for instance, in problems where the diffusivities depend on

population densities [14], or vary among species, which can lead

to Turing patterns [38]. Thus, pattern formation by genetic drift

may be an important mechanism in many complex systems

including biological evolution.

Methods

Noise as a driving force
Here, we give an analytic derivation of our result equation (3)

for the wave speed of noise driven waves in the absence of any

direct selection against the mutant type. Our analysis is based on

nonlinear variable transformation that maps the model of noise

driven waves to classical Fisher-Kolmogorov waves. The following

also discloses the general mathematical conditions, for which noise

can act as a driving force in pattern forming systems.

The main text contained a brief intuitive argument for the wave

speed under conditions of small migration rates, where the

transition between wild-type and mutant demes is step-like, as in

Fig. 1b. This weak migration limit was relatively easy to analyze

because the state of the system frequently returns to a well-defined

initial state (renewal process). Next, we consider the other extreme,

in which the dynamics becomes deterministic. As mentisoned in

the main text, previous studies as well as our simulations [33,34]

indicate the absence of traveling waves in this deterministic limit,

and we would like to explain these observations analytically. The

general (and most interesting) stochastic case with intermediate

migration rates is treated subsequently by adding the appropriate

fluctuations.

In the deterministic limit, the migration of individuals between

demes can be approximated by diffusion with diffusivity D. In this

framework, the spatially varying population density is described by

a field c(x,t) that depends on time t and a continuous deme index

x. The dynamics of this field is given by a spatial analog of the

logistic equation,

Ltc(x,t)~DL2
xc(x,t)zr(x,t)c(x,t) ð6Þ

where the local growth rate r(x,t) depends on the ratio between

total population density and local carrying capacity, and reads

r(x,t)~1{
c(x,t)

K(x,t)
ð7Þ

in our units of time. Whereas for small densities c%K , the growth

rate equals the linear birth rate 1 per generation, the growth rate

disappears at carrying capacity c~K , which is a general feature of

logistic growth. As discussed in the main text, the carrying capacity

K(x,t) depends on the local frequency p(x,t) of mutants by virtue

of

K(x,t)~K 1zEp(x,t)½ �: ð8Þ

As mutants and wild-type are subject to the same migration and

growth rates, the evolution equation for the mutant density

c?(x,t):p(x,t)c(x,t) must have the same form as equation (6),

Ltc
?(x,t)~DL2

xc?(x,t)zr(x,t)c?(x,t): ð9Þ

It is convenient to eliminate c?(x,t)~p(x,t)c(x,t) in favor of the

frequency p(x,t) of mutants because p(x,t) appears in the

expression for the carrying capacity, equation (8). After a further

substitution r(x,t)~Ltc(x,t){L2
xc(x,t) from equation (6), we

obtain

Ltp(x,t)~DL2
xp(x,t)z2DfLx ln c(x,t)½ �gLxp(x,t): ð10Þ

We seek a solution of equation (6) and equation (10) for a step

function initial condition, p(x,0)~H({x).

In the Supporting Text S1, we show that the density closely

follows the carrying capacity, provided that the migration rate is

small,

D%1: (quasi-static regime) ð11Þ

The assumption becomes exact in the limit D?0 while

KD~const. In this quasi-static regime, we may substitute

c(x,t)&K½p(x,t)� in equation (10) to arrive at a closed equation

for p(x,t),

Ltp(x,t)~DL2
xp(x,t)z2DE Lxp(x,t)½ �2: ð12Þ

The nonlinearity proportional to p’2 is non-negative everywhere.

Neglecting this term might cause serious errors as its integral over

the whole space could be large or even divergent. In fact, the

nonlinearity !p’2 turns out to be a singular perturbation and,

thus, the crucial point of equation (12).

Fortunately, this nonlinearity can be removed by a variable

transformation due to E. Hopf and J.D. Cole [26,27]. Thereto, we

introduce the new dynamical field

g(x,t):
W (x,t){1

2E
~

exp 2Ep(x,t){1

2E
, ð13Þ

which represents the fraction of mutants to leading order in E,
p(x,t)~g(x,t)zO(E). In terms of this new field, equation (12)
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transforms into a simple diffusion equation

Ltg(x,t)~DL2
xg(x,t): ð14Þ

It is clear that the diffusion equation does not admit traveling

wave solutions. Instead, equation (14) with a step function initial

condition has a solution of the form g(x,t)~g(x=
ffiffiffiffiffiffi
Dt
p

), which

can be easily found analytically. The form x=
ffiffiffiffiffiffi
Dt
p

of the scaling

variable suggests that the solution describes a front that is slowly

broadening due to diffusion. The typical width and position of the

front grows as the characteristic length scale
ffiffiffiffiffiffi
Dt
p

for diffusion.

Even though the mean position of the front moves towards the

wild-type domain, it does so at an ever decreasing speed. Both

observations, front broadening and vanishing front speed, are

consistent with the deterministic simulations reported in the main

text, Fig. 1c (right). There, we had to conclude that mutants are

not able to invade in the deterministic limit.

For KD large but finite, however, we can no longer neglect

sampling errors (genetic drift). The mutant frequency then

becomes a stochastic field that fluctuates due to population

turnover from generation to generation. These sampling errors,

for example generated by Wright-Fisher sampling [4], cause a

noise term in the equations (10,12), which reads [39,40]

Eqs:(10,12)?Eqs:(10,12)zg(x,t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp(x,t)½1{p(x,t)�

K(x,t)

s
, ð15Þ

where c~O(1) is the variance in offspring number and the

stochastic forcing term g(x,t) has white noise correlations,

g(x,t)g(x’,t’)~d(x{x’)d(t{t’): ð16Þ

The square of the amplitude in front of the noise term in equation

(15) represents the expected variance in mutant frequency due to

the sampling from generation to generation.

Altogether, the noisy dynamics of the mutants’ frequency is

described by

Ltp(x,t)~DL2
xp(x,t)z2DE Lxp(x,t)½ �2

zg(x,t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp(x,t)½1{p(x,t)�

K(x,t)

s
:

ð17Þ

In contrast to the deterministic case, frequency gradients Lxp(x,t)
remain finite in the long time limit as they are continuously

generated by the noise term. It thus seems reasonable that these

fluctuations could turn the gradient squared term into a veritable

growth term. How strong will this stochastic driving force be?

It turns out that this effect becomes manifest when we apply the

above nonlinear variable transformation to the stochastic differ-

ential equation (17). In doing so, one has to appreciate that

stochastic differential equations have peculiar transformation

rules. These so-called Ito transformation rules result from the fact

that, during a short time interval dt, fluctuations have an

amplitude proportional to
ffiffiffiffi
dt
p

(like a random walk) instead of

dt. As a consequence, a non-linear variable transformation

automatically leads to an additional drift term in the transformed

equation, called a ‘‘spurious’’ drift term [41]. The Cole-Hopf

transformation (13) therefore results in equation (14) plus a

spurious drift term and a noise term. The new drift term has the

form of a logistic growth term,

z
cE
K

g(1{g)zO(E2) ð18Þ

favoring the growth of the mutants. The noise term takes the form

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cg(1{g)zO(E2)

K

r
g(x,t) ð19Þ

on the right hand side.

The suppressed terms of order O(E2) turn out to become of

higher order than the displayed terms after the following rescaling

x?j

ffiffiffiffiffiffiffiffi
DK

cE

s
ð20Þ

t?
tK

Ec
: ð21Þ

With these substitutions, the stochastic equation of motion takes

the form

Ltg(j,t)~L2
jgzg(1{g)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(1{g)

p
k1=4

g(j,t)zO(E2=3): ð22Þ

The suppressed terms are now of higher order, O(E2=3), and may

be neglected for small e. The remaining leading order of equation

(22) has the form of a noisy Fisher-Kolmogorov wave equation

[7,8]. The parameter k~KDE=c, introduced in the main text,

represents the effective strength of the noise term. The asymptotic

behavior of the wave speed as a function of k reported in equation

(3) and Fig. 2 now follows from known results [7,8,19,28,29] on

the stochastic Fisher-Kolmogorov equation.

Finally, we note that the square gradient nonlinearity in

equation (12) was the crucial mathematical structure from which

our noise driven waves emerged. It is clear that similar waves arise

in any reaction diffusion system of discrete objects provided that

the reaction terms contain similar gradient square non-linearities.

In these systems, noise turns into a driving force because it

randomly creates and maintains gradients, which are absent in the

deterministic limit.

Trade-off between growth rate and yield
As mentioned earlier, there are general reasons to posit a trade-

off between growth rates and densities, at least in heterotrophic

organisms [21]. This means that mutants that use resources more

efficiently (and therefore allow for higher population densities) may

suffer from a reduced fitness. To account for this possibility, we

have included a selective disadvantage s for the mutants; i.e. we

assume that the growth rate mutants is by a factor 1{s, s%1
smaller than that of the wild-type, which is 1 in the chosen units of

time. This leads to a negative logistic growth term {sp(1{p) in

the equations (10, 12) for the frequency p(x,t) of the mutants. For

E~0, this would trigger a genetic Fisher wave of wild-type

invading the mutants. To study the Ew0 case, observe that the

logistic term is carried through all the steps that lead from
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equation (10) to equation (22). In equation (22), it leads to the

replacement

g(1{g)? 1{
Ks

Ec

� �
g(1{g) in equation (22):

A traveling wave of mutants invading the wild-type population will

occur only if this growth term is positive. In other words, the

stability condition for a trade-off between growth rate and yield is

given by

Ec~Ks: ð23Þ

This criterion was used in the main text to derive the

evolutionary stable strategy in equation (5).

We would like to remark that, in contrast to the wave speed, the

statement in equation (5) is independent of the control parameter k.

Furthermore, all steps of our analysis, including the nonlinear

Cole-Hopf transformation, can be carried out in higher dimen-

sions and result in the same stability criterion as in one dimension.

Therefore, the evolutionary stable strategy formulated in equation

(5) represents a fairly general result for weak selection.

Supporting Information

Text S1 Detailed analysis of the quasi-static assumption,

c(x,t)&K(x,t), which led to the closed stochastic equation (17)

for the mutant frequency.

(PDF)
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