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Abstract

Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART), we present a stochastic model
of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be
explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips
(clinically-observed short periods of detectable viral load) represent large deviations from the mean. We model the system
as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a
novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent
reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-
life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the
duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude
blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-
outcome variability that cannot be found from deterministic models.
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Introduction

HIV infection can be effectively controlled by anti-retroviral

drug therapy (ART) [1,2]. Different ART drugs inhibit different

steps of HIV replication, and therefore truly effective therapy

should halt viral production altogether. However, while plasma

viral load is greatly decreased in patients on ART, it remains non-

zero [3–5]. The sources of residual viremia remain under debate.

One common argument is that the drugs may not be 100%

effective, implying that the low-level viral load is associated with

some residual viral replication. Older papers (pre-2004) present

considerable evidence for this hypothesis [6–8]; for example,

Havlir et al. [8] noted that, in patients on long-term suppressive

therapy, the introduction of an improved drug into their regimen

decreased the level of residual viremia.

However, the efficacy of ART drugs has improved substantially

since their inception and the likelihood of substantial ongoing viral

replication has correspondingly diminished. A recent phylogenetic

study of virus before treatment and during structured treatment

interruptions found that the viral samples were too closely related

for there to have been significant ongoing replication [9]. Other

studies measured residual viremia in patients on ART before and

after treatment intensification, and found no change in residual

viremia [10,11] (although the latter paper intriguingly discovered

signs of replication in certain patients even though their plasma

viral load was maintained at extremely low levels). Together, these

works indicate that there are important sources of virus in treated

patients and these sources are largely independent of ongoing viral

replication.

The latent reservoir during HIV infection
There are many locations in the body from which viruses could

re-emerge during drug treatment; for a review, see [6]. Here, we

will focus on the important possibility that viruses may emerge

from a reservoir of latently infected cells. Usually when HIV

infects target cells (such as CD4+ T cells and macrophages) the

result is rapid virus production and cell death. However, a fraction

of infected cells are known to enter a state of latent infection [12]

where virus has integrated into the host cell DNA, but there is

little, if any, viral gene expression. While cells are in this state, they

are unaffected by ART and viral cytopathicity, and are effectively

invisible to the host immune response [13]. However, upon re-

activation, latent cells begin the normal processes of viral

replication and production, and become immune targets [14]. A

large fraction of the latent reservoir consists of resting memory

CD4+ cells [15] and therefore, reactivation could occur as part of

the normal immune response to a secondary pathogen [16].

However, we do not completely understand the reasons for

activation of latently infected cells and it is likely that there is a

pathogen-independent component as well. Indeed, the mecha-

nisms for latency are generally poorly understood; there are

differing opinions, but no consensus to date [12,17–19].

The population of latently infected cells is established as early as

10 days after symptoms of seroconversion, within a few weeks of

initial infection [14]. Estimates of reservoir size differ but

consistently show that latently infected cells constitute only a

small fraction of the total number of T-cells [12,20]. Unfortu-

nately, and in spite of its small relative size, the decline of this

population is slow and it is estimated that it can persist for up to 70
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years [21]. This long lifetime probably arises from the intrinsic

stability of resting memory CD4+ cells which is an important part

of immune memory [22]. Recent evidence also indicates that

latently infected cells can undergo cell division [15], potentially

increasing the lifetime of the reservoir. These factors, in

combination with long lifetime of the reservoir, indicate that

latently infected cells are an important factor that must be

addressed in the search for therapies to eradicate HIV infection

[23].

Viral blips during anti-retroviral treatment
While on successful anti-retroviral treatment (ART) for HIV, an

infected individual’s viral load remains non-zero [3], though it is

very low and usually undetectable using standard assays that have

a detection limit of 50 copies/mL in plasma. Occasionally,

however, regular blood tests show viral blips: periods of detectable

viral load, preceded and followed by undetectable loads. At one

time there was a concern that blips might signal imminent drug

failure [24], including the emergence of new, drug-resistant

variants of virus [25]. However, there is a substantial body of

evidence dating from the early 2000s, indicating that most blips

are not associated with virological failure [26–28]. With that said,

a recent large-scale study of 3530 Canadian patients refined these

results by showing a two-fold increase in the risk of drug failure

following viral blips that exceeded 500 copies/mL, but impor-

tantly, smaller blips were not associated with drug failure [29]. In

this study, blips were detected at a frequency of about 0.1/patient/

year. This rate is compatible with data taken from the UK during

2006–2007 [30] and is lower than the rate estimated from earlier

data [31]. The reduction in blip frequency over the last decade is

likely a result of improved drug efficacy.

The underlying cause of viral blips remains controversial. There

is some evidence that immune activation, through secondary

infection or vaccination, may be correlated with viral blips,

[32,33]. However, there have been observations of blips not

associated with clinical or demographic variables. In an intensive

90-day study of 10 patients, Nettles et al. found that blips were

fairly common, smaller in amplitude (mean 79 copies/mL) and

short in duration (median less than 3 days), and that blip frequency

was unrelated to illness, vaccination, or drug concentrations [34].

Finally, we must acknowledge that accurate detection of small-

amplitude blips is bedevilled by assay variability and sensitivity

[30,34].

Previous modeling work
There has been extensive modeling work done to characterize

viral load and pathogen-immune system interaction in HIV-

infected individuals. However, standard viral dynamics models do

not capture residual viremia in treated patients and various

modeling approaches have been applied.

Residual viremia can be captured by adding a latent cell

reservoir to the standard model. Perelson et al. (1997) proposed

the first model that included latent cell activation, in order to

better understand decay characteristics of HIV-1-infected com-

partments during combination therapy [35]. This model was

expanded to include a varying decay rate in the latent reservoir,

and bystander proliferation in the latent reservoir, with the finding

that a constant long-term activation rate for the latent reservoir,

maintained through cell division, could explain residual viremia in

treated patients [36]. We will use these elements in the

development of our model of the latent reservoir.

Careful modelling of viral blips has been fruitful in analyzing

different mechanisms of blip generation. The focus of previous

models has been on blips associated with immune system

activation due secondary infection or vaccination. One successful

approach has been to consider short periods of sustained viral

replication driven by stochastic activation of CD4+ and CD8+ T

cells [37–39]. A further series of models including T cell expansion

due to vaccination and secondary infection showed episodes of

detectable viremia of long duration (2–3 months), with amplitudes

in the range of several hundred copies/mL [40,41]. Viral blips can

also result from production of virus following immune activation

and clonal expansion of latently infected cells [33]; latent cell

activation caused by sporadic immune activation has also been

modeled as a source of viral blip generation. Indeed, antigen-

induced latent cell activation has been modeled and shown to be a

plausible source of viral blips [42]. Most recently, Rong and

Perelson (2009) proposed a model with antigen-induced asym-

metric activation and division of latently infected cells [43]. Blips

produced by this model are of short duration, directly related to

the length of stimulation, and of variable amplitude, consistent

with observations. These models produce blips of larger (100

copies/mL) amplitude, with variable durations, and frequency

depending directly on user-controlled periods of immune system

activation in the model. The base mechanism in these models of

the production of blips is immune system activation.

A stochastic model of latent cell reactivation and viral
load during ART

As noted above, there have been observations of small-

amplitude blips not associated with clinical or demographic

variables [34]. Such blips can be imagined as random biological or

statistical variation around a mean undetectable viral load. In

order to capture this kind of stochastic effect, continuous

(differential equation based) models are inadequate.

Here, we propose a continuous-time branching process model

of within-host viral dynamics for a patient undergoing successful

treatment. We use this formulation to derive probability

distribution functions for viral load as a function of time and

examine the contribution of varying latent cell activation and

proliferation to viral load. Using this methodology we first consider

extinction times for the latent reservoir and examine the role of

limited ongoing viral replication in replenishing the reservoir. We

Author Summary

While on successful drug treatment, routine testing does
not usually detect virus in the blood of an HIV patient.
However, more sensitive techniques can detect extremely
low levels of virus. Occasionally, routine blood tests show
‘‘viral blips’’: short periods of elevated, detectable viral
load. We explore the hypothesis that residual low-level
viral load can be largely explained by re-activation of cells
that were infected before the initiation of treatment, and
that viral blips can be viewed as occasional statistical
events. To do this, we propose a mathematical model of
latently-infected cells, activated cells, and virus. The model
captures random fluctuations of the system as well as the
mean behaviour. We estimate the time it takes for all the
latently-infected cells to be eradicated. Eradication of these
cells is considered a major hurdle in eliminating infection.
We predict a wide range of eradication times, highlighting
the importance of studying latently-infected cells. We also
estimate the frequency and duration of viral blips, and find
qualitative agreement with clinical studies. By refining our
models, we hope to find guidelines that can be used in
practise to distinguish between clinically insignificant
statistical blips, and instances of drug failure.

A Stochastic Model of Treated HIV

PLoS Computational Biology | www.ploscompbiol.org 2 April 2011 | Volume 7 | Issue 4 | e1002033



then examine the hypothesis that stochastic activation of latently

infected cells can maintain low-level plasma viremia and generate

small intermittent viral blips. Finally, via Gillespie simulation of

the branching process, we calculate viral blip durations.

Methods

Viral dynamics in treated patients
We consider a simple model of latent cell reactivation, presented

schematically in Figure 1. Our model has three compartments: the

number of latently infected cells L, which can replicate at rate r,
die at rate m, and activate at rate a to become productively infected

cells; the number of productively infected cells T � , which die at

rate d; and the number of virions V , produced by productively

infected cells at rate p, which can die at a rate c. We allow for

infection of new cells at rate k, of which a fraction f become

latently infected. The efficacy of ART is given by . We will

assume that this efficacy is very high, and that therefore the

number of uninfected T-cells remains approximately constant and

equal to TS . Clinical findings on viral blips show differing

amplitudes [34,44,45]; though the small-amplitude blips were

shown to be unassociated with clinical variables [34], it is possible

that the larger-amplitude blips may be due to an immune

response, increasing the activation rate a for a period of time. We

will initially restrict ourselves to constant activation rate, but we

consider variable a in a later section.

The mean behaviour of the system shown in Figure 1 is given by

the linear system of ordinary differential equations

M
0
L(t)~(r{a{m)ML(t)zf (1{ )kTSMV (t)

M
0
T (t)~aML(t){dMT (t)z(1{f )(1{ )kTSMV (t)

M
0
V (t)~pMT (t){(cz(1{ )kTS)MV (t),

ð1Þ

where ML(t),MT (t), and MV (t) represent the mean numbers of

latently infected cells, productively infected cells, and virions

respectively.

Probability distribution calculations
Our goal is to obtain probability distributions for the viral load

and the size of the latent reservoir at time t. We assume that the

events in the model can be described by a multi-type continuous

time branching process with the rates given in Figure 1. Importantly,

the model does not scale up and so any computations we perform

must be over the total number of L,T� and V in the patient.

The transition probabilities for each process in the model are statio-

nary in time. We therefore know that our desired probability distri-

butions depend only on the time since the initial state, and consider

P~‘‘,~nn,~vv;‘,n,v(t)~P(L(t)~‘,T � (t)~n,V (t)~vjL(0)~~‘‘,T � (0)~~nn,V (0)~~vv),

the conditional probability that there are ‘ latently infected cells L at

time t, n productively infected cells T� at time t, and v virions V at

time t given that there were initially ~‘‘,~nn, and ~vv of each species res-

pectively. Then, given a joint initial distribution on these species

p~‘‘,~nn,~vv(0), we can compute the joint probability distribution on each of

these

p‘,n,v(t)~
X?
~‘‘~0

X?
~nn~0

X?
~vv~0

P~‘‘,~nn,~vv;‘,n,v(t)p~‘‘,~nn,~vv(0):

Note that, as the latent reservoir must be of finite size, P~‘‘,~nn,~vv;‘,n,v(t)?0

and p~‘‘,~nn,~vv(0)?0 as ~‘‘,~nn,~vv??.

By considering each process in Figure 1 in turn, we can derive

the backwards Chapman-Kolmogorov differential equation for

P~‘‘,~nn,~vv;‘,n,v(t) [46]:

dP~‘‘,~nn,~vv;‘,n,v(t)

dt
~a~‘‘ P~‘‘{1,~nnz1,~vv;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �
zm~‘‘ P~‘‘{1,~nn,~vv;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �

zr~‘‘ P~‘‘z1,~nn,~vv;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �
zd~nn P~‘‘,~nn{1,~vv;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �

zp~nn P~‘‘,~nn,~vvz1;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �
zc~vv P~‘‘,~nn,~vv{1;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �

zf (1{ )kTS~vv P~‘‘z1,~nn,~vv{1;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �

z(1{f )(1{ )kTS~vv P~‘‘,~nnz1,~vv{1;‘,n,v{P~‘‘,~nn,~vv;‘,n,v

� �
,

ð2Þ

with initial condition P~‘‘,~nn,~vv;‘,n,v(0)~d‘~‘‘dn~nndv~vv (djk is the Kronecker

delta function). Multiplying through by x‘ynzv and re-indexing

yields an infinite-dimensional system of nonlinear ordinary differ-

ential equations for the conditional probability generating function

G~‘‘~nn~vv(x,y,z; t)~E½xL(t)yT�(t)zV (t)jL(0)~~‘‘,

T � (0)~~nn,V (0)~~vv�~
X?
‘~0

X?
n~0

X?
v~0

P~‘‘,~nn,~vv;‘,n,v(t)x‘ynzv:

We reduce the infinite dimensional system to a system of three

equations by exploiting the branching property G~‘‘,~nn,~vv~(G100)
~‘‘

(G010)~nn(G001)~vv [46],

dG100(t)

dt
~a G010{G100ð Þzm 1{G100ð Þzr G2

100{G100

� �

dG010(t)

dt
~d 1{G010ð Þzp G010G001{G010ð Þ

Figure 1. Model schematic. Latently infected cells (L) divide, die, and
become activated with rates r,m and a respectively. Productively
infected cells (T*) die at rate d and produce virus (V) continuously, at
rate p. Free virions are cleared at rate c and infect healthy cells at rate
k|TS , reduced by drug treatment of efficacy . A fraction f of newly
infected cells become latently infected cells and the rest become
productively infected cells.
doi:10.1371/journal.pcbi.1002033.g001
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dG001(t)

dt
~c 1{G001ð Þzf (1{ )kTS G100{G001ð Þz

(1{f )(1{ )kTS G010{G001ð Þ

with initial conditions G100(0)~x,G010(0)~y and G001(0)~z.

To our knowledge we cannot solve this nonlinear system

analytically. Therefore to calculate G~‘‘~nn~vv, we solve numerically using

a standard differential equation integrator. Once G100(t),
G010(t) and G001(t) are calculated we can compute the full

probability generating function, accounting for the initial

distributions

G(x,y,z; t)~E½xL(t)yT�(t)zV (t)�

~
X?
~‘‘~0

X?
~nn~0

X?
~vv~0

p~‘‘,~nn,~vv(0)(G100)
~‘‘(G010)~nn(G001)~vv:

Our goal is to recover the probability distributions of latently

infected cells, productively infected cells, and virions at times t.

These can be recovered from the probability generating function

G~‘‘,~nn,~vv by taking derivatives. For example, the probability that there

are v virions at time t is given by

P(V~v,t)~
1

v!

dvG

dzv

����
x~y~1,z~0

:

Because the distributions do not scale, we must perform computa-

tions over the total number of virions V . Given a mean viral load of

25 copies/ml (henceforth abbreviated as 5 c/mL) within 5L of total

blood volume, we must compute 125000 derivatives to get

P(V~25c=mL,t)! Direct numerical differentiation would be

difficult, so we exploit the Cauchy-Euler formula:

dnf

dxn

����
x~a

~
n!

2pi

þ
c

f (w)

(w{a)nz1
dw,

where C is a closed curve in complex space which contains a, and

f is analytic on a simply connected domain containing C.

The probability generating function G(x,y,z; t) is a polynomial in

x,y , and z and therefore satisfies the analyticity requirement. We

want to evaluate integrals at
z~0, so our contour C must contain the origin and it is simplest to

use the unit circle, w~eih, 0ƒhƒ2p: Then

P(V~v,t)~
1

v!

v!

2pi

þ
c

G(1,1,w)

wvz1
dw

� �

~
1

2p

ð2p

0

G(1,1,eih)e{ivhdh

~
1

p
Re

ðp

0

G(1,1,eih)e{ivh dh

	 


where we have used the fact that G(1,1,ei(2p{h))~G~‘‘,~nn,~vv(1,1,eih)�,
where � indicates complex conjugate. By this method we can

calculate our probabilities via straightforward and reliable numerical

integration. The same approach can be used to compute joint

probability distributions.
We can also use this formulation to directly calculate cumulative

probabilities. As P(VƒN,t)~
PN

v~0 P(V~v,t), we can write

P(VƒN,t)~
1

p
Re

ðp

0

G(1,1,eih)
1{e{i(Nz1)h

1{e{ih
dh

	 


by interchanging the order of integration and summation. This

final formula will be useful in calculating blip probabilities at a

time t, P(Vw50; t)~1{P(Vƒ50,t).

To our knowledge this is a novel method for computing

probability distributions from single- or multi-type continuous time

branching processes. We thoroughly tested our method and its

implementation; see Figure S1 for comparisons with Gillespie

simulations.

Extinction probabilities
We also wish to calculate the distribution of times to extinction

for the latent reservoir. We choose parameters so that the

probability of extinction of the latent reservoir is 1 as t??.

However, as clearing the latent reservoir is considered a major

hurdle in clearing HIV, the distribution of times to this inevitable

extinction is of interest. We obtain the cumulative probability of

latent reservoir extinction directly from the probability generating

function. Since G(x,y,z; t)~
P?

‘~0

P?
n~0

P?
v~0 p‘,n,v(t)x‘ynzv,

Pext(t)~P(L~0,t)~G(0,1,1; t):

Note that the marginal probability P(L~‘,t)~G(x,1,1; t). We

then find the probability distribution of extinction times by

differentiating,

pext(t)~
d

dt
Pext(t):

If we assume that no newly infected cells become latently infected

(f ~0) or that treatment is completely effective ( ~1), we can obtain

the extinction probability analytically. In this case, the latent cell

dynamics decouples from the rest of the model and can be

represented as a pure birth-and-death process with master equation

L
0
‘~(azm) (‘z1)L‘z1{‘L‘ð Þzr (‘{1)L‘{1{‘L‘ð Þ, ð3Þ

where L‘(t) is the probability that at time t there are ‘ latently in-

fected cells. This probability has the conditional probability generating

function

G~‘‘(x; t)~
X?
‘~0

L‘(t)x
‘~

(azm)(1{x)ze{(r{a{m)t(rx{(azm))

r(1{x)ze{(r{a{m)t(rx{(azm))

	 
~‘‘

where ~‘‘ is the initial reservoir size. The cumulative distribution is

Pext(t)jL(0)~~‘‘~G~‘‘(0; t) and thus we obtain

pext(t)jL(0)~~‘‘~
~‘‘e(r{a{m)t(r{a{m)2

(azm)(e(r{a{m)t{1)(r=(azm)e(r{a{m){1)

e(r{a{m)t{1

r=(azm)e(r{a{m)t{1

	 
~‘‘

:

ð4Þ

Then given the initial distribution on the latent reservoir p~‘‘(0) we

have can compute the extinction probability pext(t)~
P?

‘~0

pext(t)jL(0)~~‘‘p~‘‘(0). We use the analytic expression to compute latent

A Stochastic Model of Treated HIV
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reservoir extinction time distributions for f ~0 or ~1. Otherwise, we

work numerically.

Parameter estimation
The parameters used for simulation results presented below are

given in Table 1. In our simulations the parameters m, and TS

are chosen based on estimates from [36] and k based on estimates

from [47]. The decay rate of the latent reservoir is chosen so that

its half-life is t1=2~60months, as measured in patients exhibiting

viral blips [21]. For d, the death rate of productively infected cells,

and c the virion clearance rate we set to estimates from [48]

(d~1day{1) and [49] (c~23day{1), respectively. The in vivo viral

production rate p is not well established and therefore we will

consider a range for this parameter. The fraction f of new viral

infections that result in latency is also hard to estimate, but given

the small size of the latent reservoir, it is likely to be rather small.

For simplicity, we choose a baseline value of f ~0. We choose the

initial mean latent reservoir size L0 consistent with the

experimental estimates [21,50].

The activation rate a and replication rate r of latently infected

cells remain unknown. We calculate values from the mean

behaviour equations (1), taking f ~0. Since the dynamics of

the productively infected cells and virus are more rapid than

those of the latent reservoir, we can make a quasi-steady

approximation to find T�0^(cz(1{ )kTs)V0=p. Then for an

initial latent reservoir size of L0, a^(dT�0 {(1{ )kTsV0)=L0). To

calculate r, we choose the mean decay rate so that the half-life of

the latent reservoir is t1=2~60months. Thus we can set

r~({ log (2)=t1=2)zazm. The resulting (a,r) values for each

production rate p and mean viral loads of 25c=mL or 35c=mL are

given in Tables 2 and 3 respectively.

As noted above, we must perform calculations over the entire

blood volume, which we take to be 5L. When presenting results

below we report viral loads in copies per mL, as this is the standard

measurement, but they are always obtained by re-scaling the axes

for results over the entire blood volume.

Initial distributions
In order to correctly simulate viral blips and latent reservoir

extinction in patients with established treated infection, we should

carefully choose the initial joint distribution p~‘‘,~nn,~vv so that it is close

to the (moving) equilibrium of the ongoing dynamics. Otherwise,

transient effects will pollute our results. In the mean, the dynamics

of the latent reservoir are very slow compared to those of the

productively infected cells or virions. We therefore focus on getting

the initial latent reservoir distribution correct since errors in the

other two compartments will resolve themselves quickly. Indeed,

for a constant latent reservoir size, and our parameters, the

distributions on V and T� converge to stationary distributions in

less than a month (results not shown).

In order to calculate a reasonable initial latent reservoir

distribution we isolate its dynamics and consider the marginal

probability distribution only, as in equation (3). We choose the

marginal latent reservoir probability distribution at time t such

that the variance is maximized. We reason that transient dynamics

on the latent reservoir are dominated by the spreading of the

distribution about the decaying mean, and that at maximum

variance the probabilities are sufficiently spread for our purposes.

For birth-and-death processes maximum variance occurs at the

half life t1=2. Therefore, in order to create the initial distribution on

the latent reservoir p0
~‘‘
, we solve (3) out to t1=2~60months, starting

Table 1. Baseline parameter values for latent cell activation
model.

Parameter Description Estimate

m Death rate of latently
infected cells

0:01day{1

p Virion production rate for a
productively infected cell

5000, 10000, 20000 day{1

d Death rate of productively
infected cells

1day{1

c Clearance rate of free virions 23day{1

k Mass-action infectivity
of free virions

2:4|10{5mLcopy{1day{1

TS Target cells 595mL{1

Drug efficacy 0.93

f Fraction of new infections
that result in latency

0

t1=2 Half life of latent reservoir 60 months

L0 Initial number of
latently infected cells

1 per 106 target cells

doi:10.1371/journal.pcbi.1002033.t001

Figure 2. Initial probability distribution on latent reservoir size.
We take an initial mean viral load of 25 c/mL and parameters given in
Tables 1 and 2. Production rates p have units day{1. Initial distributions
assuming initial mean viral load of 35 c/mL (Table 3) are qualitatively
similar (not shown).
doi:10.1371/journal.pcbi.1002033.g002

Table 2. Calculated activation and replication rates for initial
mean viral load of 25 c/mL.

Production rate p Activation rate a Replication rate r

5000 day{1 0.1513 day{1 0.1609 day{1

10000 day{1 0.0546 day{1 0.0643 day{1

20000 day{1 0.0063 day{1 0.0159 day{1

We calculate the activation rates a for an initial mean viral load of 25 c/mL,
given the virion production rate p. The replication rate r is then chosen so that
the half-life of the latent reservoir is 60 months.
doi:10.1371/journal.pcbi.1002033.t002
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with 2L0 latently infected cells, where L0 is the desired mean latent

reservoir size. The resulting distributions for different parameter

sets are shown in Figure 2. Notice that results based on a virus

production rate p~5000day{1 have larger standard deviation.

This is because lower production rates are associated with higher

activation rates a (cf. Tables 2 and 3). The higher activation rate

speeds the dynamics of the latent reservoir, increasing the spread

of its probability distribution function. Finally, we combine the

computed initial latent cell distribution with single initial numbers

of productively infected cells and virus, to obtain the whole initial

joint probability distribution:

p‘,n,v(t)~
X
~‘‘~0

~p0
~‘‘
dn~nndv~vv:

Results

Latent reservoir extinction
The reservoir of latently infected cells is considered a major

obstacle to clearing HIV infection [19]. Within our model, when

the reservoir goes extinct, viral load quickly goes to zero, since

ongoing viral replication is too small to sustain the virus

population. We are therefore interested in examining the reservoir

lifetime after the onset of ART. To do this, we extend our

approach to find the probability of reservoir extinction over time.

We examine the reservoir lifetime using baseline parameters

(f ~0), and then allowing for the possibility of latent reservoir

replenishment (f=0). Furthermore, since anti-retroviral treat-

ments have improved substantially over the last 15 years, we also

examine how the reservoir lifetime behaves as drug efficacy

improves ( ?1).

Latent reservoir extinction in the absence of re-

seeding. To begin, we use the baseline parameters (Tables 1

and 2). Since f ~0, we can use an analytic expression (4).

Probability distribution functions for latent reservoir extinction are

shown in Figure 3 for each of p~5000,10000 and 20000day{1.

Note that although the production rate p is not explicitly included

in (4), the choice of p affects the activation and replication rates a

and r (see Table 2 and the Methods). Figure 3 shows that the

resulting distributions are asymmetric and leaning towards longer

lifetimes, which is a characteristic of subcritical birth-and-death

processes. We also observe that as the production rate p increases

(so the activation rate a decreases), the distributions shift to the

right, with increasing mean and variance. Exact means and

variances can be calculating by integrating (4) over time: for

p~5000day{1 our model predicts a mean reservoir lifetime of

18.7 years with a standard deviation of 8.9 years; for

p~20000day{1, it predicts a mean reservoir lifetime of 34.8

years with a standard deviation of 9.2 years.

At first these results seem surprising: since the reservoir half-life and

size are identical in all three calculations, how can the time-to-

extinction distributions differ so dramatically? Usually, in a determin-

istic framework, one would calculate the mean time to extinction

assuming exponential decay with extinction when the mean falls below

a small threshold. Taking this threshold to be a single cell, it is easy to

calculate textinct~t1=2 log(L0)=log(2)^58years. However, the addi-

tion of activation and replication events complicates the picture and

significantly changes the dynamics once the reservoir gets small. More

specifically, the time to extinction decreases as the activation rate a

increases, and a is inversely correlated with production rate p in our

model.

However, beyond model- and parameter-specific results, we

find an interesting insight: if we wish to predict the timescale for

latent reservoir extinction, we must refine our understanding of

latent reservoir dynamics beyond half-life estimates to include

accurate estimates of birth, death and division, across the various

populations that make up the latent reservoir.

Latent reservoir extinction with latent cell re-seeding. So

far we have assumed that the fraction f of new infections resulting in

latency is zero. Under that assumption, the decay of latent cells is

independent of the rest of the model, and in particular, of drug

efficacy. However, intensification of drug treatment has been

reported to speed latent reservoir decay [51]. To examine this effect,

we now consider non-zero f so that latent reservoir replenishment is

now in part through infection of new cells (Figure 1). As discussed in

the Methods, the overall decay rate of the latent reservoir is kept the

same via small corrections (less than two percent) in the replication

rate r.

With improving drug efficacy (as ?1) we predict that the mean

latent reservoir lifetime decreases, as shown in Figure 4A for the

parameters associated with p~20000day{1. Results for other

values of p are very similar (not shown). The decrease is less than

1% for f ~5|10{5 but more dramatic for f ~5|10{3, at almost

25%. This reduction is as expected from the model: f controls the

contribution of newly infected cells back to the latent reservoir. But

as the drug efficacy is improved, reservoir replenishment is

decreased, and the latent reservoir goes extinct more quickly.

When f is larger, the contribution of newly infected cells to latent

Figure 3. Latent reservoir extinction probability over time.
Parameters given in Tables 1 and 2. Production rates p have units
day{1 .
doi:10.1371/journal.pcbi.1002033.g003

Table 3. Calculated activation and replication rates for initial
mean viral load of 35 c/mL.

Production rate p Activation rate a Replication rate r

5000 day{1 0.2118 day{1 0.2214 day{1

10000 day{1 0.0765 day{1 0.0861 day{1

20000 day{1 0.0088 day{1 0.0185 day{1

We calculate the activation rates a for an initial mean viral load of 35 c/mL,
given the virion production rate p. The replication rate r is then chosen so that
the half-life of the latent reservoir is 60months.
doi:10.1371/journal.pcbi.1002033.t003
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reservoir replenishment is larger. Therefore cutting off this supply

results in a more significant reduction in reservoir lifetime.

Furthermore, as the drug efficacy increases ( ?1), the latent

reservoir extinction time distributions narrow, so that the variance

decreases and the asymmetric tail shrinks. This effect is illustrated

for p~20000day{1 in Figure 4B–D (results for other values of p

are qualitatively similar, not shown). This is not unexpected: with

improving drug efficacy, reservoir replenishment/birth is dimin-

ished, which is the source of the asymmetric tail of the distribution.

Assuming our model is correct, this is a moderately encouraging

result: with improving drug efficacy the range of possible lifetimes

is reduced. Nonetheless, in our model we still find latent cell

clearance only after decades of drug treatment.

Transient loss of free virus. As described above, the

timescale of true viral clearance in our model is set by the

decline of the latent reservoir. However, it is possible to transiently

achieve V~0 before the latent reservoir has disappeared

altogether. In Figure 5 we plot the cumulative distribution

function for the first occurrence of this event. Latent reservoir

extinction lags transient viral clearance by approximately 6 years,

with a mean time of 32 years, for these parameters.

Viral load distributions in treated patients
We now focus on the time evolution of viral load and the

likelihood of small-amplitude viral blips. We interpret viral load

above the threshold of detection of 50 c/mL as a viral blip. Note

that unless otherwise specified, the following calculations and

computations assume the fraction f of newly infected cells that

become latently infected is 0. In Figures 6 and 7, we plot full viral

load distributions over time, assuming initial mean viral loads of

25 c/mL and 35 c/ml. As time advances, the mean viral load

decreases as expected in all cases but the viral load distributions

widen more significantly when p is smaller (e.g. distributions in

Figure 6A are widest, those in Figure 6C are narrowest). This is

because the lower values of p are associated with higher values of a
and r, and the resulting dynamics on the latent reservoir cause the

latent reservoir size probability distribution (not shown) to be

wider. As a consequence the associated viral load distributions are

wider, and this also causes higher blip amplitudes. This effect is

more clearly understood by examining the insets in Figures 6 and

7, which represents a magnified view of the given probability

distribution curves above the blip threshold (50 c/mL), using a log

scale to more clearly distinguish the curves. We observe that viral

Figure 4. Reductions in latent reservoir lifetime with improving drug efficacy. (A) Percent mean reduction in latent reservoir lifetime with
improving drug efficacy . (B–D) Corresponding latent reservoir extinction distributions with improving drug efficacy for fraction f of newly infected
cells becoming latently infected (B) f ~5|10{5 , (C) f ~5|10{4 , (D) f ~5|10{3 . Parameters: Tables 1 and 2 with p~20000day{1 .
doi:10.1371/journal.pcbi.1002033.g004
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blips occur with very small probability regardless of the production

rate p. The blip amplitudes vary between parameter sets but

remain approximately within the range of blips unassociated with

clinical variables shown in [34], i.e. 50–100 c/ml. Over three

years, the range of reasonably likely detectable viral loads decays

slowly, but small blips remain possible throughout that time

(Figure 6).

Probability of detectable viremia declines exponentially

as a function of time. Figures 6D and 7D show the probability

that an individual on ART has a detectable viral load at some

given time t, P(Vw50; t). For all parameter sets, the probability of

a blip declines exponentially over time. From the equations for

mean viral load and latent reservoir size (1) we see that both are

decaying exponentially with half life set by t1=2~60months.

However, blip probabilities decay much more quickly (with half-

lives on the range of 6–18 months) than would be predicted from

studying the mean behaviour of the system. This underlines the

importance of taking a stochastic approach to predicting rare

stochastic events.

As expected, in both cases the parameter set associated with the

largest latent cell activation rate (p~5000day{1) yields the highest

Figure 6. Viral load probability distributions for initial mean viral load of 25 c/ml. (A–C) Distribution functions are plotted at 6 month
intervals for parameters given in Tables 1 and 2, and (A) p~5000day{1 , (B) p~10000day{1 , (C) p~20000day{1 . Insets: enlargement of probability
distribution curves above the detection level, v~50c=mL; a log scale is used to better distinguish the curves. As time advances the distributions
move from right to left. (D) Blip probability plotted against time. The curves in (D) are computed by integrating the probability density functions from
(A–C) over viral loads exceeding 50 c/mL.
doi:10.1371/journal.pcbi.1002033.g006

Figure 5. Transient and permanent viral extinction. We plot the
probabilities that the viral load is zero (transient viral extinction) and
that the latent reservoir is zero (permanent viral extinction) as a
function of time. Parameters: Tables 1 and 2, with p~20000day{1 .
doi:10.1371/journal.pcbi.1002033.g005
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blip probability. Predictably, the likelihood of viral blips is

substantially higher when the mean viral load is higher, and this

is in agreement with a decline in blip detection as drug treatment

has improved and reduced setpoint viral load. Our finding that

blip probability declines over time disagrees with the report of Di

Mascio et al. [31], where a constant rate of blips was observed. We

attribute this difference to the fact that many of the blips

considered by Di Mascio et al. were of large amplitude rather than

the small blips we are examining here. Our basic modeling

assumption is that small viral blips under consideration here

represent large deviations from a small mean viral load, but that

mechanisms for larger viral blips - not fully captured within our

model - depend on external factors. Examples of these factors

include target cell increase due to immune system activation in

response to an unrelated infection, or treatment non-adherence;

the frequency of such events is unlikely to change over time, which

would result in a constant rate of viral blips over time.

Impact of increasing drug efficacy. With our baseline

parameters, predicted viral loads are in the range of those

measured in [3] but 3–5 times higher than viral loads measured

recently [10,11]. Further, recent clinical observations reveal that

blips are now very rare. We can reproduce such observations in

our model with improving drug efficacy . We used a lower drug

efficacy of ~0:93 to reflect drug efficacy at a time when viral blips

were observed. However as ?1, reflecting modern improvements

in drug efficacy, we note that both the mean viral load and the

variance decrease dramatically. For 1{ ~10{3{10{5,

reasonable for current drug regimens [52], we compute (with

baseline parameters, Tables 1 and 2) a mean initial viral load of 3–

4 c/mL rather than 25 c/mL, and find blip probabilities to be

smaller than we can calculate. This implies that, with excellent

drug treatment and perfect adherence, any viral blips are almost

certainly not due to stochastic reactivation of latent cells.

Viral blips driven by secondary infection. Nonetheless,

blips continue to be observed in treated patients. One argument

for their existence is poor compliance with the drug regimen,

effectively reducing the drug efficacy averaged over time. A second

possibility is that immune system activation due, for example, to

transient secondary infection, can cause episodes of increased

viremia. Specifically, during infection, the number of CD4 cells

increases to fight infection; more target cells means more infected

cells, producing more virus, increasing the viral load to a

Figure 7. Viral load probability distributions for initial mean viral load of 35 c/ml. (A–C) Distribution functions are plotted at 6 month
intervals for parameters given in Tables 1 and 3, and (A) p~5000day{1 , (B) p~10000day{1 , (C) p~20000day{1 . Insets: enlargement of probability
distribution curves above the detection level, v~50c=mL; a log scale is used to better distinguish the curves. As time advances the distributions
move from right to left. (D) Blip probability plotted against time. The curves in (D) are computed by integrating the probability density functions from
(A–C) over viral loads exceeding 50 c/mL.
doi:10.1371/journal.pcbi.1002033.g007
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detectable level [38,41]. Furthermore, memory T cells make up a

part of the latent reservoir and infection may therefore induce an

increased activation rate [19].

We experimented with adjusting our model to simulate a

transient secondary infection. At initiation, we increase the

activation rate a for 3 days and then return to the background

value. We also increase the number of target cells Th for 7 days,

starting after 2 days. These parameter changes must be step-

function-like because our method for solving the backwards

equation only admits constant rates. Figure 8A shows the mean of

maximum viral load for different activation rate and target cell

number multipliers, using parameters p~20000day{1,

f ~5|10{3 and ~0:999. We observe that the increase in target

cells has the dominant effect on maximum viral load, although the

increased activation rate does provide a boost. Figures 8B and C

show the mean of maximum viral load + one standard deviation,

as a function of activation rate multiplier (for target cell multiplier

fixed at 100) and as a function of target cell multiplier (for

activation rate multiplier fixed at 5), respectively. The variance is

very small. These incomplete results show that for blips associated

with immune system activation, the latent reservoir plays only a

small role.

Viral blip durations
In this section we consider the following question: given a blip,

defined as a detectable viral load measurement, how long should

we expect the viral load to remain above the threshold of

detection? This question is of clinical interest, since a repeat

measurement following a measurable viral load should be

performed after enough time that a second positive result might

have clinical significance, such as suggesting drug failure.

Different from the previous sections, all results in this section are

computed via 10000 direct simulations of the branching process

using the Gillespie algorithm, beginning with an initial ‘‘blip’’

condition. The initial conditions are chosen as follows: we set the

latent reservoir size L(0)~L0 and viral load V (0)~V0w50c=mL.

Since dynamics on the viral load V are so much faster than on the

productively infected cells T� (cf. Table 1), we then use a quasi-

steady approximation to set the initial number of productively

infected cells T � (0)~(cz(1{ )kTs)V0=p.

Blip duration dependence on initial viral load

measurement. We begin by calculating blip durations as a

function of a detectable viral load measurement at time zero.

Figure 9A shows the mean blip duration +1 standard deviation,

over different values of the production rate p, with the latent

reservoir size set to be 1 cell per 106. As the initial measured blip

amplitude increases, so do the mean and standard deviation of the

blip duration. This is because the more productively infected cells

there are, the longer it takes for enough of them to die and

therefore reduce the viral load. Also, since mean duration is longer

for larger blips we also expect a larger standard deviation, since

there is more opportunity for variability. The mean duration

increases with increasing production rate, since for higher p more

virions are produced, and have the opportunity to infect healthy

cells, before the productively infected cells die. Duration

distributions for different initial detectable viral load

measurements are shown in Figure 9B for p~20000day{1.

From this figure we see that the standard deviation alone does not

fully determine blip duration variability. For smaller blip

amplitudes the distribution is more asymmetric, with a relatively

larger probability of longer blips (positive skew). As initial blip

amplitude increases, the distribution becomes more symmetric.

This observation is explained by noting that as the initial blip size

is increased, we are moving the initial condition farther and farther

from equilibrium. Therefore, the stochastic dynamics are

increasingly driven by decay of T� and V towards the

equilibrium, and it becomes increasingly unlikely for the viral

load to increase after the initial measurement. Direct observation

of viral load evolution in different realizations of master equation

simulations support this argument, as shown in Figures 10A and B.

For example, after an initial measurement of amplitude 60 c/mL

(Figure 10A), the viral load does not decay as rapidly as it does for

a measurement of 80 c/mL (Figure 10B).

Figure 8. Maximum viral load under immune system activation. (A) Maximum mean viral load for different multiplicative increases in target
cell populations TS and activation rates a. Dashed lines indicate target cell multiplier 100 (vertical) and activation rate multiplier 5 (horizontal). (B)
Maximum mean viral load (symbols) + one standard deviation (shaded area) depending on activation rate multiplier, for target cell multiplier 100
(along vertical line in (A)). (C) Maximum mean viral load (symbols) + one standard deviation (shaded area) depending on target cell multiplier, for
activation rate multiplier 5 (along horizontal line in (A)). Parameters: Tables 1 and 2 with f ~5|10{3 , p~20000day{1 and drug efficacy ~0:999.
doi:10.1371/journal.pcbi.1002033.g008
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Effect of latent reservoir size on blip duration. We

expect that larger reservoir sizes should be associated with longer

blips, since a higher reservoir size is associated with a higher quasi-

steady mean viral load. Our results confirm this expectation.

Figure 11A shows the mean and standard deviation of an

amplitude-60 c/mL blip increasing with the reservoir size, for

latent reservoir sizes L0 between 0 and 1.5 cells per 106. As the

reservoir size nears 2 cells per 106 we anticipate that the duration

gets very large: at this level, the associated quasi-steady viral load is

above the detection threshold of 50 c/mL, and we must wait until

the viral load decays naturally to a mean below that threshold.

This is extremely unlikely in our model: the probability that the

latent reservoir size reaches 2 cells per 106 is initially very small

O(10{13) for p~20000day{1 (see Figure 2) and only decreases

over time. Notice also in Figure 11A that, as before, larger

production rates p result in blips with longer durations.

We plot duration distributions across different latent reservoir

sizes in Figure 11B. Interestingly, although the mean duration

increases with reservoir size as shown in Figure 10A, the peak of

the distribution stays in the range of 2–3 days. Therefore our

modeling suggests that regardless of reservoir size, given a viral

load measurement of 60 c/mL, the viral load in most patients

should drop below detection level after 2–3 days. In contrast to the

results with increasing initial blip measurement, we observe that

the asymmetry in blip duration distributions is increasing - the tail

is getting heavier with increasing reservoir size. This is because

larger reservoir sizes are associated with larger associated mean

viral loads (see Figure 11A). For the smaller reservoir sizes, the

initial viral load of 60 c/mL is further away from the associated

mean and viral decline is therefore quicker. Again this is supported

by direct observation of viral load evolution in different

simulations (Figures 10A and C).

Discussion

We have presented a simple but fully stochastic model of HIV

viral dynamics in individuals on antiretroviral treatment, focusing

in particular on the role of the latent reservoir. In our model we

included dynamics of only three compartments: the numbers of

latently infected cells L, productively infected cells T�, and virions

V . We assumed that all rates correspond to exponentially-

distributed transition probabilities and that therefore dynamics

could be described by a continuous-time, multi-type branching

process. We then derived equations for the probability generating

function and using novel numerical techniques we computed the

probability distributions on viral load over time, recovering

features that are hard to study with approaches based on

differential equations or direct simulation.

Our model reproduces interesting features of successfully

treated infection, namely a usually low, undetectable viral load

[3] and brief periods of low-amplitude detectable viral load,

unassociated with clinical or demographic parameters, as

discussed in [34]. This shows that the hypothesis that random

activation of latent cells plays a major role in residual viremia on

treatment, as has has been suggested by clinical evidence (e.g. [9]),

is reasonable and is compatible with reasonable parameter

estimates. We were also able to use our model to look at the

slow decline of the latent reservoir itself.

Latent reservoir extinction
Clinical results on latent reservoir decay (e.g. [21]) make

predictions on latent reservoir lifetimes that are based on purely

exponential decay. Our model results showed that, for the same

mean decay rate, the time distribution - and the mean time to

extinction - is sensitive to dynamics on the latent reservoir.

Further, assuming some reservoir replenishment due to latency in

newly infected cells, our model predicted only limited lifetime

reduction associated with improving drug efficacy. Eradication of

the latent reservoir is considered a major hurdle in eradicating

HIV infection [19,23], and these results demonstrate the

importance of understanding the underlying dynamics on the

latent reservoir: the reservoir half-life is only a small part of the

equation.

From a clinical point of view our results on the latent reservoir

lifetime are quite depressing - in our model we essentially study

perfectly drug-adherent patients, and even with perfect drugs,

decades of drug treatment are needed to clear the latent cell

reservoir. Our model predicts that drug treatments that increase

the activation rate of latently infected cells should reduce the

lifetime of the reservoir. This approach has been tried several

Figure 9. Blip durations depend on initial blip amplitude. (A) Mean blip durations (symbols) +1 standard deviation (shaded area), computed
over 10000 simulations, plotted as a function of the initial viral load measurement (initial blip amplitude). Production rates p have units day{1 . (B)
Frequency plots of time distributions of detectable viral load given initial measurements of 60–90 c/mL, computed over 10000 simulations.
Parameters: Tables 1 and 2; latent reservoir size 1 per 106 cells; p~20000day{1 in (B).
doi:10.1371/journal.pcbi.1002033.g009
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times but so far without real success (reviews in [1,53]). A

candidate drug would need to work on the whole heterogeneous

population of cells seeded during initial infection, and in

particular on the longest-lived subpopulation. We would predict

that early treatment with such a drug, along with aggressive

ART, would be most likely to reduce the size of the latent

reservoir. This is in line with current research in treating HIV

infection earlier, to enhance survival on an individual level [54]

and limit transmission on the population level [55]. Of concern

with earlier treatment is the possibility of emergent drug

resistance (DR). In future work we plan to expand our stochastic

model to examine the likelihood of different mechanisms of

acquired DR in patients on treatment, such as mutation during

ongoing viral replication and activation of a cell latently infected

with a DR strain [56].

Viral blip frequency over time
We also examined the evolution of viral load over time, finding

that as time progresses, the viral load distributions become more

asymmetric, with a long tail towards higher viral loads. This can

be explained by viewing our model as an extended subcritical

birth-and-death process. Such processes produce asymmetric

distributions (see Figures 6 and 7). The asymmetry is more

pronounced for smaller production rates (p~5000virions=day vs

p~20000virions=day), associated with larger activation rates, and

for larger initial viral loads (35c=mL vs 25c=mL). When

examining blip probability we found that our model predicts that

these probabilities decay exponentially over time. This decay is

more dramatic for larger production rates, associated with smaller

activation (‘birth’) rates, and smaller initial mean viral loads. In

only one case is the decay so slow (p~5000virions=day with mean

initial viral load 35c=mL) that our model predictions are broadly

consistent with previous observations that blip probabilities don’t

decay over time [45]. We also observed that blip probabilities

show great sensitivity to model parameters, varying by orders of

magnitude. Given sufficient high-quality data on blips (which does

not currently exist), these would be the ideal results to compare

with data for the purpose of parameter fitting, in order to gain

some insight into latent reservoir dynamics - into the activation

rate a, for example.

Figure 10. Realizations of Gillespie simulations showing viral load evolution. (A–C) show sample viral load evolutions and the associated
histogram of durations until the viral load is below 50, over 10000 simulations, given an initial viral load measurement and latent reservoir size. (A)
Initial viral load measurement of 60 c/mL with latent reservoir size 1 per 106 cells; (B) initial viral load measurement of 80 c/mL with latent reservoir
size 1 per 106 cells; (C) initial viral load measurement of 60 c/mL with latent reservoir size 1.5 per 106 cells. Parameters: Tables 1 and 2, for
p~20000day{1 .
doi:10.1371/journal.pcbi.1002033.g010
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With improving drug efficacy ( ?1) our model predicts a

significant decrease in baseline viral load, down to 3{4c=mL, in

accordance with recent viral load observations [10,11]. From this low

baseline, we found blip probabilities smaller than we can calculate.

However, we found that by increasing the activation rate (roughly

simulating immune system activation due to secondary infection) viral

loads exceeding the threshold of detection were attainable. Therefore,

our model supports the hypothesis that, for patients adhering to

modern ART, viral blips signal an underlying secondary condition.

Duration of viral blips
We examined the duration of viral blips through direct

(Gillespie) simulation of the model. We sought to answer the

question ‘‘Given a patient measurement of X c/mL, how long can

we expect the viral load to remain detectable?’’ We found,

unsurprisingly, that blips of larger initial amplitude have longer

mean duration and larger standard deviation in duration. Perhaps

more interestingly, we found very strong dependence on the

production rate p. Given an initial blip of amplitude 90 c/mL,

doubling the production rate from p~10000virions=day to

p~20000virions=day, and changing other parameters accord-

ingly, more than triples the predicted mean blip duration (for

parameters as in Figure 9). We also considered blip duration as a

function of the latent reservoir size, anticipating longer durations

for larger reservoir sizes, since associated with these is a higher

quasi-steady mean viral load. Our expectations were confirmed by

simulation results (see Figure 11). The sensitivity to production

rate p and associated parameters was also recovered.

Repeat-blip measurements in patients are, predictably, rather rare,

since blips are already quite unusual events. Across all the parameter

sets we examined, we found that detectable viremia should be

expected to vanish within 8–10 days at most. This result is in general

agreement with previous reports [34,45] and indicates that repeat

low-level detectable viremia within 8–10 days could be due to a

statistical fluctuation rather than drug resistance or other pathology.

Stochastic modeling of viral infection
Over the last 15 years, enormous numbers of differential-

equation models have been generated to study different aspects of

various viral infections. We believe that stochastic models of the

kind described here have an important role to play in certain

situations where viral or cell populations are small enough that

random effects still play a role. The obvious settings are during the

first few days of any new infection (see also [57] and, very recently,

[58]), during drug treatment of a chronic infection, and during the

extinction phase of an acute infection. One issue with stochastic

modeling of rare events (such as viral blips in our model) is that

simulation-driven studies can require enormous numbers of

simulations to reliably sample the rare events. The method we

describe here is an alternative to simulation (or methods to capture

rare-events) and provides a direct and relatively straightforward way

to calculate probability distribution functions. We hope to adapt this

method to other situations in viral dynamics in future work.

Supporting Information

Figure S1 Comparison between our probability distribution

function calculations and direct numerical simulations using the Gill-

espie algorithm. Distributions over the number of productively infected

cells are plotted at 1 year, starting with 1 per 106 latently infected cells

only, for parameters given in Tables 1 and 2. (A–C) Frequencies over

105 stochastic simulations are compared to probability distributions

derived using our method, for (A) p~5000day{1, (B)

p~10000day{1 (C) p~20000day{1. (D) Enlargement of tail in

(C), using a log scale for clarity, with frequencies over 106 Gillespie

simulations. Notice that direct calculation of the probability distribution

is clearly preferable to simulation when rare events are studied.
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Figure 11. Blip durations depend on initial latent reservoir size. Mean blip durations (symbols) +1 standard deviation (shaded area), computed
over 10000 simulations, plotted as a function of the initial latent reservoir size. (B) Frequency plots of time distributions of detectable viral load given
initial latent reservoir sizes of 1–1.5 cells per 106. Parameters: Tables 1 and 2; initial viral load measurement of 60 c/mL; p~20000day{1 in (B).
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