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Abstract

Biological networks are powerful tools for predicting undocumented relationships between molecules. The underlying
principle is that existing interactions between molecules can be used to predict new interactions. Here we use this principle
to suggest new protein-chemical interactions via the network derived from three-dimensional structures. For pairs of
proteins sharing a common ligand, we use protein and chemical superimpositions combined with fast structural
compatibility screens to predict whether additional compounds bound by one protein would bind the other. The method
reproduces 84% of complexes in a benchmark, and we make many predictions that would not be possible using
conventional modeling techniques. Within 19,578 novel predicted interactions are 7,793 involving 718 drugs, including
filaminast, coumarin, alitretonin and erlotinib. The growth rate of confident predictions is twice that of experimental
complexes, meaning that a complete structural drug-protein repertoire will be available at least ten years earlier than by X-
ray and NMR techniques alone.
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Introduction

Large biological networks have been used previously to suggest

protein-protein interactions [1], phosphorylation events [2] and

most recently drug-protein interactions. New drug-protein rela-

tionships have been proposed from the analysis of shared side-

effects [3], by comparing sets of protein targets according to drug

pairs [4], or sets of targets for particular drugs [5,6]. Though not

always considered as such, the database of protein three-

dimensional (3D) structures is also a large network, where links

are physical associations between molecules within structurally

determined complexes. The network contains many thousands of

protein-protein and protein-chemical interactions, of which several

hundred involve drugs. In this paper we explored this large

network systematically to predict new potential protein-chemical

interactions.

We exploited the basic premise that if two proteins in the

network share one bound chemical they are likely to share others.

Considering protein-chemical interactions alone would lead to

many thousands of predictions including mostly false positives.

However, we profit here from the use of 3D structures, where we

can use physicochemical criteria to remove false predictions. A

single prediction candidate (Figure 1) involves combining three

protein-chemical complex structures, two of which involve two

distinct proteins (P1 and P2) binding a common ligand (La) and a

third where one protein (P1) binds another ligand (Lb). By

superimpositions based on the common protein and the common

ligand, we obtain an additional putative complex (P2 with Lb). We

then used several criteria to decide whether or not these new

complexes were structurally viable and evaluated the statistical

significance using a p-value (see Methods). From 10,842 complexes

forming the network of known structures, we identified 907,827

potential interactions, of which 20,067 (including 19,578 novel

structures and 489 complexes with a previously determined

structure) were significant (p#0.05). Note that we ignored trivial

candidates where the two proteins (P1 and P2) shared $80%

identity (i.e. where ligand transference would be very likely due to

orthology). The predictions include enzyme/substrate, enzyme/

product, target/inhibitor and target/activator structures (Table S1

in Text S1).

Results

Benchmarking
For the benchmark, we selected those protein-chemical

complexes of known structure that could, in principle, be predicted

by superimpositions of chemicals and proteins in a non-obvious

fashion. Specifically, we considered only pairs of proteins with less

than 80% sequence identity; and non-identical chemicals.

Predictions made with identical (or very similar) chemicals or

proteins are less interesting as they represent cases where

transference is more obvious: for instance testing a chemical

inhibitor of a human protein in a mouse orthologue, or inferring

that a slightly modified chemical compound might have a similar

activity. The number of these complexes is small relative to the

total number of predictions owing to these requirements. That is, it

is currently relatively unlikely that these combinations exist given

the frequency of chemicals solved in complex with multiple distinct
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protein structures. There were thus only 376 complexes of known

structure that were also predicted significant (p#0.05) by our

method using different protein-chemical complexes in the

network. For 270 (72%) of them, the ligand in the predicted

complex had an RMSD ,2 Å when compared to the known

structure, which matches standards acceptable for docking

solutions (e.g. [7]).

There are several revealing instances where interactions already

of known structure are predicted correctly via complex paths. For

instance, we accurately predicted the complex of Pneumocystis carinii

dihydrofolate reductase (DHFR) with trimethoprim. This predic-

tion was made since both this DHFR and a remote homolog (36%

identity) from Mycobacterium tuberculosis have known structures in

complex with methotrexate, and the latter has been solved with

trimethoprim (Figure 2A). We also made accurate predictions

using radically different proteins that nevertheless share a common

ligand. For example, we successfully reconstruct the complex of

the endoplasmic reticulum paralog of the chaperone Hsp90

(GRP94) with its high-affinity inhibitor radicicol, by exploiting the

known complexes of pyruvate dehydrogenase kinase (PDK3) with

radicicol and both proteins with ATP (Figure 2B). This prediction

is remarkable in that neither the protein sequences nor the

chemicals involved are detectably similar (though PDK3 is a

remote homologue of GRP94, detectable only via structure

comparison).

The difficulty in establishing false-positive rates in molecular

interaction studies is well established (e.g. ref [8,9]), and is

principally due to a lack of known negatives: pairs of molecules

known not to interact. We suffer from the same situation here, as

there is currently no standardized set of protein-chemical

interactions known not to interact. We can, however, get a set

of such interactions from screening studies, where it is at least

known that the chemicals and the proteins did not interact under

the conditions used. Extracting these from PubChem gives

63,218,098 potential negative interactions, of which only 172

overlap with the predictions made here. The low number is due to

the fact that very few of the screens in PubChem can be

unambiguously assigned to a single protein structure, and that

chemicals both in screens and known structures are very often

unique. We obtained positive predictions for just 17 of these giving

a false positive rate of 9.9%.

A natural question is how conformational flexibility impacts on

our predictions. We do not attempt to explore alternative

conformations, instead letting the structural integrity filter

implicitly test for this – predictions will only be made when the

conformation from the original structure fits into the new. In

practice, the method tends to predict best in situations where

ligands are similar in size to that in the original structure and/or

conformationally rigid.

Comparison with protein-chemical interaction databases
There are many well-established protein-chemical interactions

lacking a 3D structure in databases including STITCH [10],

DrugBank [11], BindingDB [12] and ChEMBL [13]. The nature

of the chemicals and proteins contained in these databases differs

greatly from those in our set, being mostly dedicated to drugs and

Figure 1. Schematic outlining the method used to predict protein-chemical interactions (left), and summary of how prediction
candidates survive the clash filter and how many have statistically significant scores (right).
doi:10.1371/journal.pcbi.1002043.g001

Author Summary

Predicting drug-target interactions is a hot topic, and
many efforts have been undertaken to do this, many using
large interaction networks. We take a novel approach
using protein-chemical interactions derived from 3D
structures. The basic premise is that two proteins sharing
a common bound chemical will likely share others. We use
protein and chemical superimpositions and physical tests
of chemical-protein compatibility to identify the most
likely candidates among the nearly one million potential
interactions. We show for a benchmark that known
protein-chemical structures are reconstructed with good
accuracy and sometimes via very different proteins and
chemicals. We make thousands of confident predictions,
including structures for known protein-drug interactions
lacking a structure (e.g. topoisomerase-2/radicicol) and
many new interactions. The number of confident predic-
tions grows faster than the number of known structures,
suggesting that this approach will play a key role in
completing the protein-chemical interaction repertoire.

Protein-Chemical Complexes Reveal New Drug Targets
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Figure 2. Examples from the benchmark dataset of high-quality predictions. (A): High-identity subset: the complex of dihydrofolate
reductase from Pneumocystis carinii with trimethoprim predicted using complexes with dihydrofolate reductase from Mycobacterium tuberculosis
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mammalian proteins, and including many membrane proteins,

thus leading to a potential overlap of at most a few hundreds of

drug/target pairs. Nevertheless, 222 of 312 predictions (71%) have

a p-value#0.05 for STITCH, 131 of 185 (71%) for DrugBank, 52

of 71 (73%) for BindingDB, and 573 of 975 (59%) for ChEMBL.

The numbers improve considerably, when we adopt a more

lenient p-value#0.2 (86%, 85%, 94%, and 85% predictions,

respectively) suggesting that the p-value threshold #0.05 might be

too stringent and thus miss some true positives. Overall, majority

of predicted structures overlapping with these databases are

significant, providing further support for our approach. As the

number of solved structures grows, we expect the overlap with the

potential complexes to grow accordingly. Both known structures

and predictions are biased against proteins that are difficult to

solve, most notably membrane proteins. This is in sharp contrast

with the representation of certain protein classes, such as GPCRs

or Ion channels, among the drug targets [14] (Table S2, Figure S1

in Text S1). However, new innovations in the solution of

membrane proteins will likely make this disparity diminish over

time.

A natural question is whether or not our approach can tell

anything about the relative or absolute affinity of protein-chemical

interactions predicted. Here we are limited by the fact that the

protein databank contains protein-chemical interactions at a broad

range of affinities: from millimolar to picomolar, and affinities for

all protein-chemical structures are not systematically available. We

thus believe that we are predicting essentially whether a crystal

structure of a protein/chemical interaction is possible, which

means we expect our predictions to have a similar range of

affinities. This has some potential impact on our attempts to

predict selectivity (see below).

Among predictions involving drugs are several established

relationships that lack an experimental structure. For example, we

predicted complexes between DNA topoisomerase 2 and radicicol

[15] (Figure 3A), and between pentoxifyline and human

chitotriosidase, a recently established and surprising finding for

this and several other methylxanthine drugs [16]. Here again

predictions could be made using disparate routes, for instance the

prediction of the known interaction [17] between flurbiprofen and

aldo-keto reductase C3 (3-alpha-hydroxysteroid dehydrogenase)

was made via the non-homologous protein prostaglandin G/H

synthase 2 and the very dissimilar chemical indomethacin.

New targets for known chemicals
There are 19,578 new predicted interactions, including 7806

involving known drugs. Of the total, 4738 were made using

intermediate proteins sharing $30% identity to the target protein

or one in the same Pfam [18] family. These predictions can be

considered easier, since the protein sequences can be readily

aligned, and the resulting structure could be obtained by

conventional modeling techniques. Similarly there were 3,782

predictions made using chemicals that were $90% identical to the

intermediate, which could also be made by simple chemical

similarity searching and superimposition. Lastly, 1,200 novel

predictions involved solvents and common buffer components.

Ignoring these three cases left 10,668 non-trivial predicted

complexes, of which 4,240 involved drugs. We interrogated this

list for interactions supported by literature or other evidence,

though for the majority the relative obscurity of the chemicals

means that no evidence could be found. The full list of predictions

is given in Table S1 in Text S1; we discuss several highlights

below.

Several predictions are made using what appear to be

convergently evolved binding pockets. That is, the proteins

sharing the common ligand share no sequence or structural

similarity, and we exploit the common ligand (and thus the two

binding pockets) to predict a new ligand for one of the proteins.

More exactly, there are 112,546 total protein pairs from the

potential predictions that share ,30% sequence identity and for

which a SCOP [19] fold assignment is available, of which 14,931

(13%) are significant. Of these 94,955 (10,883, 11%, significant)

pairs do not share any SCOP fold assignment. There are, thus,

more predictions made using weakly homologous proteins, but

nevertheless convergences still play an important role. This is

perhaps not surprising considering the number of compounds,

such as ATP analogs, that are known to bind distinct ATP binding

folds.

We predict a complex between the heart-specific fatty acid

binding protein (FABP3) and alitretinoin, using structures of

FABP3 with stearic acid and of mouse RXRa with strearic acid

and alitretinoin. There is only indirect evidence in support of this

interaction: proteins in the wider superfamily of lipid binding

proteins show some ligand promiscuity [20]. However, the

structural fit of the alitretinoin into FABP3 is striking (Figure 3B).

Elsewhere, we predicted a complex between orphan retinoic acid

receptor (ROR) b and a-linolenate made by virtue of a complex

between this protein and stearic acid, which also binds to maize

non-specific lipid-transfer protein, which in turn binds to

linolenate (Figure 3C). The natural ligand of RORb is not known;

stearate was observed in complex fortuitously owing to the

expression of the protein in E. coli [21]. In contrast to RORa, the

expression of RORb is highly restricted to parts of the brain, the

retina, and pineal gland [22]. a-linolenate is an essential fatty acid

and in humans is a precursor for eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA), and deficiencies in dietary a-

linolenate result in various problems, including learning [23] or

vision [24]. Although these observations could be coincidental,

they support the possibility of an interaction between linolenate

and RORb.

Several predictions involve anti-viral compounds in complex

with the E. coli transporter Tsx, mostly based on structures of

herpes virus thymidine kinase with thymidine, which also binds to

Tsx. The kinase has been solved in complex with 12 anti-viral

compounds, of which eight fit well into the Tsx structure (e.g.,

HBPG, Figure 3D). The structure of E. coli Tsx was proposed

[25] to be a possible model for drug transport via the eukaryotic

equilibrative nucleoside transporters [26]. Our predictions

support this possibility, though obviously additional structures

of eukaryotic equivalents in complex with model compounds are

needed.

There are also hundreds of predictions involving drugs that

apparently lack supporting evidence from the literature. These

include the phosphodiesterase inhibitor filaminast binding to

59-AMP-activated protein kinase, zanamivir binding to mamma-

lian sialoadhesin, and coumarin binding to dipeptidyl peptidase 4

(see Table S1 in Text S1).

(with trimethoprim, PDB code 1DG5) and methotrexate (with dihydrofolate reductase from Pneumocystis carinii, 1DF7, with dihydrofolate reductase
from Mycobacterium tuberculosis, PDB code 3CD2). RMSD from a known 3D structure (PDB code 1DYR) is 0.82 Å. (B): Low-identity or non-homology
subset: the complex of endoplasmin GRP94 with radicicol using complexes with pyruvate dehydrogenase kinase isoform 3 (PDK3) (with radicicol, PDB
code 2Q8I) and ATP (with PDK3, PDB 1Y8O, with CRP94, PDB 1TC6). RMSD from a known 3D structure (PDB 1QY8) is 0.87 Å.
doi:10.1371/journal.pcbi.1002043.g002
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Inhibitor selectivity
Protein-drug selectivity is an important issue, since non-selective

drugs can have undesired side-effects. The problem is particularly

acute for drugs designed to target one member of a large

homologous family of proteins, such as GPCRs or protein kinases.

We predicted many protein-kinase inhibitor complexes (12% of

confident predictions). They offered an opportunity to test whether

our approach could say anything about inhibitor selectivity. There

are currently 766 unique human protein kinase-inhibitor crystal

structures (284 kinases and 627 inhibitors). We compared our

predictions with systematic screens for 127 human kinases and 33

inhibitors. The overlap of kinase/compound pairs in the screens

(i.e. whether interacting or not) and the known or predicted

structures is low: only 21 complexes overlap with our set of

potential structures, and we get significant predictions for six of

these (see Supplementary information). Despite the low overlap,

we saw a correlation between the tendency for an inhibitor to be

predicted to bind many kinases and the tendency to interact with

many kinases in the screens, even if the particular kinases differ

(see Table S3 in Text S1). For example, known promiscuous

inhibitors, such as staurosporine are both predicted and observed

to bind dozens of kinases, in contrast to imatinib where despite 70

potential predictions, none are significant. This set also contains

numerous predictions of kinase-inhibitor complexes that have not,

to our knowledge, been tested, for instance binding of nilotinib to

KIT and LCK, or of erlotinib to SRC, HCK or PKR.

Data related to the predictions presented here are available as

an online resource at http://pcidb.russelllab.org/.

Discussion

We have demonstrated that using protein and chemical

superimpositions and structural compatibility screens can repro-

duce known protein-chemical interactions, and suggest many

novel relationships. The prospect of using databases or networks of

known biomolecular interactions to predict additional relation-

ships is not new (e.g. [3,5]) though to our knowledge this is the first

attempt to use 3D structures in the network context in this way to

link disparate chemicals and targets. Like other methods based on

large experimentally determined networks, the approach here has

the advantage that it will improve in terms of coverage and

accuracy as the number of interactions grows. The number of

protein-chemical interactions of known 3D structure has been

growing exponentially since the late 1980s, and with the increasing

number grows the potential to infer new relationships.

The growth in the number of confident predictions is steeper

than that for known structures (Figure S2 in Text S1). This raises

the question as to when we will we be able to predict most protein-

chemical interactions confidently based on available data. For

such an estimate, it is simplest to consider a smaller subset of

interactions, and for this purpose, we considered the set of human

protein-drug interactions. There are currently 4,774 distinct drugs

known (in DrugBank [11]), with 14–44 new drugs appearing each

year (see http://www.vfa.de/en/statistics/innovation/). Range

estimates as to the average number of proteins to which a typical

drug will bind can come from known 3D structures (3 proteins per

compound), or drug-target databases such as SuperTarget/

Matador [27] (4.8) or DrugBank [11] (2.7). As we know these

are either conservative or based on missing data, we also

considered an upper figure of 15 proteins. We thus estimate

between roughly 20,000 and 80,000 protein-chemical interactions

within the human system, a number that would be reached by

2022 according to the extrapolation in Figure 4, or perhaps later if

to the apparent decrease in the growth rate in the last two years

holds. This estimate presumes that protein-chemical structures are

similar in terms of the ease with which they are solved; something

that is obviously false for membrane proteins that make up more

than 40% of drug targets [14]. Thus the estimate is probably over-

optimistic, though we anticipate that additional breakthroughs in

structural biology will also ultimately make membrane protein –

ligand complexes more commonplace.

Regardless of the precise details of this estimate, it is not fanciful

to imagine a time when there will be sufficiently determined 3D

structures to predict accurately most known protein-chemical

interactions using methods like that described here. Twenty years

ago the prospect of having structural information for most globular

protein domains seemed very distant, but today, thanks to

structural genomics and modeling techniques, it is difficult to find

proteins for which structural information is unavailable [28].

Predicted protein-chemical structures will have limitations in the

same way that modeled individual structures are not as accurate as

those experimentally determined, but they will similarly provide a

great deal of useful information. As with all estimates of this sort,

we suspect that advances in structure determination methods will

probably make the time shorter, though it is also likely that the

number of known protein-chemical interactions will also increase

greatly. It is clear that the continued study of the structural

database by approaches like that discussed here will deliver a

growing set of novel and highly relevant protein-chemical

complexes for use in biomedicine, biotechnology and beyond.

Methods

Model construction
Given three complexes, involving two common proteins and

two common ligands as detailed in Figure 1, we superimpose the

two complexes involving P1 using structure superimposition [29].

The resulting transformation produces a superimposition of the

two non-identical ligands La and Lb. We then use ligand La to

superimpose the complexes it makes with P1 and P2, producing a

superimposition of the non-identical proteins. We combine these

two superimpositions by re-centering on the common ligand La,

producing a final superimposed complex, involving all proteins

and ligands, and including the new complex P2:Lb.

Scoring system
We considered seven structural criteria to judge the predicted

complexes: a) the clash volume; b) the number of ligand-protein

contacts; c) the number of potential hydrogen bonds; d) the

number of potential Van der Waals contacts; e) the number of

Figure 3. Examples of new predictions with limited literature evidence. (A): the complex of human topoisomerase 2a with its inhibitor
radicicol, predicted via complexes of topoisomerase 2a with adenosine (PDB code 1ZXN), yeast chaperone HSP82 with adenosine (PDB code 1AMW)
and radicicol (PDB code 1BGQ). (B): the complex of human fatty acid binding protein FABP3 with alitretinoin, built using complexes of FABP3 with
stearic acid (PDB code 1HMR), mouse retinoic acid receptor RXRa with stearic acid (PDB code 1DKF) and alitretinoin (PDB code 1XDK). (C): the
complex of rat nuclear receptor RORb with a-linolenate, predicted using complexes of RORb with stearic acid (PDB code 1K4W), and maize non-
specific lipid-transfer protein with stearic acid (PDB code 1FK4) and with a-linolenate (PDB code 1FK6). (D): the complex of E. coli channel-forming
protein Tsx with anti-viral agent HBPG, predicted via structures of Tsx in complex with thimidine (PDB code 1TLW) and of herpes virus Thimidine
kinase with thimidine (PDB code 1P7C) and HBPG (PDB code 1QHI).
doi:10.1371/journal.pcbi.1002043.g003
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un-satsified ligand hydrogen bond donors and acceptors; f) the

number of ligand carbon atoms not involved in Van der Waals

contacts; and g) the number of potential hydrogen donor and

acceptor atoms exposed to the solvent. The raw values were

normalized to ranges from 0 to 1: for a specific value of the

parameter ji for the model i, we calculate the fraction si of values

j,ji, where j represents values of the same parameter in the

negative dataset composed of random complexes (see below). For

a, e, f and g we take the fraction of j.ji, as these terms are

detrimental to binding. We sum si for all the parameters and

obtain a combined score Si that can range from 0 to 7, greater

scores corresponding to better models.

We convert the scores into p-values by considering scores for a

negative dataset of 100,000 random structures (see below). For a

given model score Si we calculate p as p = (#s: s.Si)/#s, where s
are the scores from the negative dataset. Note, that only 24% of

real structures, when scored by this scheme, have p#0.05, which

we believe not to be due to crystal packing or non-specific binding

of buffer components, as a solvent-free subset, and a subset where

promiscuous small molecules (those seen in more than 20

structures) were removed gave similar ratios. Instead, we believe

this to reflect the stringency of our approach; p,0.2 clearly

separates the positive and negative datasets (see below) but

produces many false positives and predicted complexes with poor

RMSDs in the benchmark (Figure S3 in Text S1). When limiting

the set of negatives to structures where the modeled random ligand

has the same number of atoms as the cognate, and/or to modeled

ligands having the same number of hydrogen bond donors and

acceptors, we see little differences in the score distributions

compared to the initial negative set (correlations R = 0.99, p = 0

and R = 0.94, p = 0 respectively).

Dataset construction
We consider all pairwise complexes extracted from the Protein

Data Bank [30] that consists of a protein annotated in Uniprot

[31] and a compound annotated in PubChem [32], as of mid-

2009. Only contacting pairs were considered, i.e. at least two

heavy atoms, one from the proteins and one from the compound,

were required to be closer than 5 Å. There were thus 45,455

protein-small-molecule complexes of known structure as the

positive dataset. If a structure included more than one instance

of either protein chain or chemical, we considered each chain-

small molecule pair as a separate entry. We constructed a negative

dataset of 100,000 complexes by randomly selecting two

complexes from the positive dataset, and substituting their ligands

according to their geometrical centers (without any rotation to

optimize binding). We then removed all complexes involving

either protein-ligand clashes, or those lacking protein-ligand

contacts. This set represents random fits of small molecules into

protein pockets.

For the benchmark dataset and the dataset of potential

complexes, we selected all combinations of three complexes as

Figure 4. Extrapolation of growth rates for complexes of human proteins with drugs, resolved using experimental methods (red)
and amenable to prediction using our method (green) over time. The sum of the two curves is shown in blue. The total number of existing
drug-target complexes is shown in gray and estimated given the average number of targets per drug to be between 3 and 15, the number of targets
to be fixed at 5000 and the number of drugs to be increasing linearly at the rate of between 10 and 50 per year (see text for details).
doi:10.1371/journal.pcbi.1002043.g004
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shown in Figure 1. We excluded instances where the proteins were

$80% identical or the ligands had a Tanimoto score of 1. This set

includes all possible predictions (even those that are wrong) made

using our approach. For 907,827 potential structures, we

reconstructed 194,317 3D predicted complexes, of which 20,067

scored with a p-value#0.05. Within this set, we defined the

benchmark dataset as those 376 significantly predicted complexes

for which a structure for the predicted complex was already of

known structure. For 703 of those we reconstructed a 3D structure

using superimposition. We applied our scoring system to these

complexes and excluded all predictions with a p-value.0.05, thus

yielding 376 significant predictions. We also excluded predictions

where the number of heavy atoms in La and Lb differs more than

two fold.

Supporting Information

Text S1 Includes a more detailed comparison of the predictions

with BindingDB [12] and STITCH [10], including various affinity

cutoffs; rationale for the cutoff choice; analysis of kinase-inhibitor

complexes; and four supplementary figure and three supplemen-

tary tables.

(PDF)
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