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Abstract

We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-
opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship
between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data,
structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on
protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher
aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins
are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover
proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological
ageing, will primarily affect the aggregation of short-living proteins.
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Introduction

Biological networks are fine-tuned to respond to narrow

changes in protein concentration. The ability of a cell to maintain

metabolic and signal transduction fluxes is therefore highly

dependent on a tight regulation of its proteostatic network [1].

The capacity of the protein quality control system to regulate

protein folding and degradation erodes with age, resulting in

increased protein aggregation and aggregation-associated diseases

[2,3]. Which proteins first fall prey to misfolding is most likely a

stochastic process that is modulated by both tissue-specific

expression levels and environmental factors [4]. However,

sensitivity to protein aggregation is also determined by intrinsic

protein parameters such as the efficiency of the folding process [5],

thermodynamic stability [6,7], the aggregation propensity of the

protein sequence [8,9] and its ability to be recognized by the

protein quality control system [10]. We previously showed that

evolutionary forces shape protein sequences in order to minimize

their aggregation propensity, by strategically placing aggregation-

opposing gatekeeper residues along the sequence [11,12].

Although this insight has been confirmed by independent studies

[13,14,15,16], the extent to which selective pressures mould

protein sequences is most likely not uniform, but determined by

the biological context in which the protein functions [17]. For

instance, it has been shown that proteins with high expression

levels on average have a lower aggregation propensity than

proteins with lower expression levels [18]. We reasoned that

proteins with high turnover rate and thus short lifetime will have,

on average, lower risk of misfolding than long-living proteins.

Their respective sequences should therefore also experience

different selective pressures against protein aggregation. Such

evolutionary pressure might have resulted in different affinities

towards molecular chaperones and different implications towards

aggregation-related diseases.

In order to determine the relationship between protein lifetime

and protein aggregation we here combine experimental lifetime

measured for 611 proteins [19] with the corresponding gene

expression data in 532 healthy individuals. We also correlated

experimental chaperone interaction data and structural informa-

tion of these proteins to their aggregation propensity using

TANGO [20], an algorithm that accurately predicts the intrinsic

aggregation propensity of protein sequences. This analysis resulted

in two major observations: i) short-living proteins on average are

predicted to have longer and more severe aggregating regions than

long-living proteins, and ii) the evolutionary enrichment of

aggregation breaking gatekeeper residues is less pronounced in

short-living proteins, suggesting that they experience milder

selective pressure to minimize aggregation. Further, we also found

significantly less interactions between short-living proteins and

molecular chaperones in the IntAct database [21]. Our results
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suggest that under normal circumstances, protein aggregation of

short-living proteins is not problematic, and thus there is little

evolutionary pressure to reduce the intrinsic aggregation propen-

sity or optimize chaperone interaction. This would turn such

proteins into the Achilles’ heel of the proteome in conditions

where proteasomal function is significantly reduced, such as is

reported for normal human ageing [22,23,24,25]. In support of

this hypothesis, we found that all but one of the proteins with

experimentally determined turnover rates that are involved in a

protein deposition disease belong to the fastest turnover rate

group.

Materials and Methods

Scope and limitation of protein aggregation prediction
The current study focuses on short-stretch mediated protein

aggregation, where specific segments of a polypeptide chain

assemble into an intermolecular beta-sheet and thus nucleate

aggregation. Since current knowledge in the field suggests that the

short-stretch mediated protein aggregation covers the majority of

disease-associated protein deposition, and no reliable prediction

methods exist for alternative protein aggregation mechanisms, we

feel justified to ignore alternative aggregation mechanisms such as

3D domain swapping and native protein aggregation. Like all

current protein aggregation prediction algorithms, TANGO

calculates intrinsic aggregation propensity of an input polypeptide

sequence and returns short stretches predicted to have a high

propensity to nucleate protein aggregation through the formation of

intermolecular beta-sheets. These regions constitute the intrinsic

aggregation propensity of the sequence in the absence of globular

structure. Since these aggregation prone regions are nearly always

part of the hydrophobic core when the protein resides in its native

conformation, the aggregating stretches identified computationally

need to become exposed by (partial) unfolding of the protein before

they can actually nucleate protein aggregation. So, although three

dimensional relationships that existed in the folded state are no

longer relevant during assembly into an intermolecular beta-sheet,

they are highly relevant to determine if a particular region is likely to

become exposed in the first place. In order to estimate the likelihood

that a given short polypeptide segment may become exposed by

(partial) protein unfolding, we employ the FoldX force field, which

calculates the contribution of each amino acid to the thermody-

namic stability of the three dimensional structure of the protein, thus

allowing to determine if an aggregation prone region is in a stable or

less stable part of the structure.

Datasets
Protein selection. Trans-membrane (TM) and extracellular

proteins in the experimental dataset were excluded from the analysis.

As hydrophobic trans-membrane regions of the TM proteins are not

under selective pressure against aggregation they should not be

considered for the analysis of the relation between protein lifetime

and aggregation tendency. Since this study analyses the relation

between proteasomal degradation and aggregation, extracellular

proteins that are degraded by lysosomes are also deleted. We selected

these proteins using the keywords ‘‘Membrane’’ (KW-472) and

‘‘Extracellular matrix’’ (KW-0272). This resulted in a dataset of 191

short-living (PSI # 2) and 420 long-living (PSI $ 5) proteins.

Lifetime of proteins. Yen et al. developed a global stability

analysis, a high throughput approach for proteome-scale protein-

turnover analysis, resulting in a protein stability index (PSI) for

8000 human proteins [19]. PSI scores ranges from 1 to 7, with

higher value indicating higher protein stability. Using a low and

high cut-off value to eliminate proteins with intermediate lifetime,

the dataset is split in two groups of short (PSI # 2) versus long-

living (PSI $ 5) proteins.

Determination of aggregating sequences and flanking
gatekeeper residues

The statistical mechanics algorithm TANGO [20] was used to

determine the aggregation-prone regions in the human proteins.

This resulted in an aggregation propensity (0–100%) for each

residue, whereby an aggregating segment is defined as a

continuous stretch of at least five consecutive residues, each with

a TANGO score higher than 5%. The five positions before and

after aggregation-prone regions are considered as ‘‘gatekeeping

flanks’’, with each P, R, K, E or D counting as gatekeepers [17].

No distinction was made between gatekeepers at the N or C

terminus of the aggregating stretch.

Gene expression analysis
Our dataset was composed of 532 HG-U133_Plus_2 type

microarray experiments extracted from GEO (Gene Expression

Omnibus) [26]. Queries were carried out using GEOmetadb

module from R [27]. The dataset is composed of cancer healthy

control samples only. HG-U133_Plus_2 microarrays contains

probe sets of 54675 human genes per chip. All 532 chips were

preprocessed in one single block using robust multichip average

(RMA). RMA processing consists of three steps: background

adjustment, quantile normalization and finally summarization. A

list of common housekeeping genes (EIF4G2, RPL9, SFR9,

GUK1, H3F3A, RHOA, ACTB) was used to confirm that the

expression levels remain constant for the whole dataset. The

dataset was divided into two subsets according to long-living and

short-living proteins. Conversion of Affymetrix to Uniprot

identifiers was done using Babelomics4 id converter [28,29].

FoldX modeling
Structures were selected according to the following criteria: (1)

100% sequence identity with the sequence of interest, (2) crystal

Author Summary

In order to carry out their biological function, proteins
need to fold into well-defined three-dimensional struc-
tures. Protein aggregation is a process whereby proteins
misfold into inactive and often toxic higher order
structures, which is implied in about 30 human diseases
such as Alzheimer’s disease, Parkinson’s disease and
systemic amyloidosis. In earlier work it has been shown
that although protein aggregation is an intrinsic property
of polypeptide chains that cannot be entirely avoided,
evolution has optimized protein sequences to minimize
the risk of aggregation in a proteome. Here we show that
this pressure is not uniform, but that proteins with a short
lifetime have on average a higher aggregation propensity
than long-living proteins. In addition, we show that high
turnover proteins also make fewer interactions with
chaperones. Taken together, these observations suggest
that under normal physiological conditions the aggrega-
tion propensity of short-lived proteins does not represent
a significant treat for the biochemistry of the cell.
Presumably the strong dependence of these proteins on
proteasomal degradation is sufficient to preclude the
accumulation of aggregates. As proteasomal activity
declines with age this would also explain why we observe
a higher association of high turnover proteins with age-
dependent aggregation-related diseases.

Protein Turnover and Protein Aggregation
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structure, (3) resolution at least 3 Ä. All modeling was performed

using the FoldX 2.8 force field and tool suite [30,31]. All structures

were repaired using the RepairPDB command and homology

models were constructed using the BuildModel command. The

stability of the aggregation nucleating regions was extracted using

the SequenceDetail command.

Statistics
Comparison of the distributions for each parameter tested in the

analysis of short versus long-living proteins was performed using

Mann-Whitney and Kolmogorov-Smirnov tests.

Results

Determination of the aggregation propensity
Yen et al. developed a global stability analysis, a high

throughput approach for proteome-scale protein-turnover analy-

sis, resulting in a protein stability index (PSI) for 8000 human

proteins [19]. PSI scores ranges from 1 to 7, with higher values

indicating higher biological protein stability and thus slower

protein turnover. To simplify the analysis, we used a low and a

high cut-off value to eliminate proteins with intermediate lifetime,

so that the data were split in two groups of short (PSI # 2) versus

long-living (PSI $ 5) proteins (Text S1). A number of chara-

cteristics of the aggregation propensity of these 611 proteins were

determined using the TANGO algorithm [20]: i) the average

aggregation propensity of the protein (total TANGO score

normalized by protein length), ii) the number of aggregating

segments in the protein, iii) the length of aggregating segments,

and iv) the aggregation propensity of each aggregating segment.

The correlation with the experimentally determined biological

lifetime of the protein was tested for each individual parameter

and significant differences were found (Text S1): Short-living

proteins display a higher average aggregation propensity

(Figure 1A), which is not caused by an increase in the average

number of aggregating segments (Figure 1B), but by an significant

increase in their length (Figure 1C) and aggregation propensity

(Figure 1D). As previous studies have shown that long proteins on

average have less effective aggregation-promoting regions than

shorter proteins [32] and the average length of short and long-

living proteins is respectively 263 and 357 amino acids, the

aforementioned observations could also be due to the longer mean

length of long-living proteins. In order to exclude this possibility,

we repeated the analysis after the exclusion of proteins longer than

300 amino acids, and found that the difference in aggregation

tendency between the two lifetime categories remains significant

(p,0.001), showing that the observed difference in aggregation

tendency is linked to the disparity in lifetime, and is independent of

the difference in mean length of the proteins. This conclusion is

confirmed by plotting the average aggregation tendency in

function of the protein length for each lifetime category

(Figure 2A). In view of the idea introduced by Vendrusculo and

co-workers that protein expression levels are tuned to the solubility

limit of the protein [18], we need to exclude that the difference in

aggregation load in our data is simply due to a lower expression

Figure 1. Short-living proteins display stronger aggregation
propensity than long-living proteins. (A) Cumulative frequency of
the length normalized TANGO scores for the short-living (PSI # 2) and

long-living proteins (PSI $ 5). The occurrence of stronger aggregating
sequences (higher TANGO score) is higher in short-living proteins. (B)
Cumulative frequency of the number of aggregating segments for the
short-living (PSI # 2) and long-living proteins (PSI $ 5). (C) Frequency of
the length of the aggregating segments in short-living (PSI # 2) and
long-living proteins (PSI $ 5). (D) Cumulative frequency of the
aggregation propensity of each aggregating segments for short-living
(PSI # 2) and long-living proteins (PSI $ 5).
doi:10.1371/journal.pcbi.1002090.g001

Protein Turnover and Protein Aggregation
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level for the fast turnover proteins. To address this, we employed

publically available microarray data from the Gene Expression

Omnibus (GEO) [33], corresponding to 532 healthy individuals

from 62 studies to compare expression levels of the proteins in our

lifetime dataset. The density plot of the normalized expression

levels for all proteins from the short lifetime and long lifetime

groups reveals indeed a different composition of both groups in

terms of expression levels (Figure 2B). However, when we plot the

length normalized aggregation score of the short and long-living

proteins grouped per expression level (Figure 2C), we see that the

expression level is not the determining factor in the difference in

aggregation propensity between fast and slow turnover proteins.

These results suggest that proteins with a short biological lifetime

undergo less evolutionary pressure to minimize the burden of

aggregation.

The influence of thermodynamic stability of the protein
An alternative explanation for the lower sensitivity of fast

turnover proteins to the evolutionary pressure against protein

aggregation could be that these proteins possess native structures

with inherently superior thermodynamic stability to those of

proteins from the long lifetime group. Given the significant

structural coverage of our dataset, i.e. there are high resolution

crystallographic structures available for 127 proteins in our dataset

of 611 (Text S1), we can address this question using a modeling

approach. To do so we employed the FoldX force field [31] to

calculate the thermodynamic stability of the aggregation nucleat-

ing regions predicted by TANGO in the corresponding crystal

structures. We then plotted the average thermodynamic stability of

the aggregating nucleating regions per bin of aggregation

propensity according to TANGO (Figure 3A). In this plot, we

observe a clear correlation between the aggregation propensity of

a polypeptide stretch and thermodynamic stability of the same

region in the context of its native three-dimensional structure, so

that sequences with the highest aggregation propensity form the

most stable parts of the protein structure under native conditions,

which is in accordance with previous observations [5]. Impor-

tantly, Figure 3A reveals no significant differences between

proteins with a long or a short lifetime, showing that the difference

in aggregation propensity between these groups is not due to

fundamental differences in protein architecture or thermodynamic

stability.

Occurrence of gatekeeper residues to oppose protein
aggregation

It has been well established that evolutionary pressure against

protein aggregation has resulted in the enrichment at the flanks of

aggregation prone segments of gatekeeper residues, a term used to

indicate amino acids that counteract aggregation [12,15,34]. This

disruption of the aggregation prone stretches is achieved by a) the

repulsive effect of charge (arginine, aspartate, glutamate), b) the

entropic penalty for burial (arginine and lysine) or c) incompat-

ibility with beta-structure conformation (proline) [34]. We

analyzed the frequency of occurrence of gatekeeper residues in

our short- and long-living protein datasets and found that the

frequency of occurrence of gatekeeper residues shows a small but

significant reduction in short-living proteins (Figure 3B), which

indicates that the introduction of gatekeepers as an evolutionary

mechanism, to minimize aggregation is less pronounced in this set.

This is consistent with the observation of longer aggregating

stretches since they are less frequently interrupted by aggregation

breaking residues, resulting also in a higher aggregation propensity

of the stretches.

Figure 2. The effect of other factors that are known to
modulate aggregation propensity. (A) Average aggregation
propensity in function of the protein length for short-living (PSI # 2)
and long-living (PSI $ 5) proteins. (B) Density plot of the normalized
expression level of the proteins from our short-living and long-living
groups recorded from microarray data from 532 healthy human
individuals. (C) Difference in aggregation load between fast and slow
turnover proteins separated by expression level.
doi:10.1371/journal.pcbi.1002090.g002
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Relation between protein stability and chaperone
binding

A major component of the protein quality control system that

evolved in all forms of cellular life to deal with the unavoidable

burden of protein misfolding and aggregation is formed by the

diverse families of molecular chaperones, which are a class of

proteins that assist other proteins in (re)folding and disaggregation

and eventually shuttle substrates to the degradation machinery

[35]. In order to address the question if protein turnover rates

influence the requirement of chaperone assistance of a protein, we

searched the protein interaction database IntAct [21] (release

March 19, 2010) for experimentally recorded interactions between

proteins from our dataset and an extensive list of known human

molecular chaperones (listed in Text S1). A total of 237

chaperone-binding proteins were identified, but experimentally

determined protein stability was available for only 114 proteins.

Based on Yen et al., we divided this set of proteins into four

categories according to their PSI turnover scores: short half-life

(PSI , 2), medium half-life (2 # PSI,3), long half-life (3 #

PSI,4) and extra-long half-life (PSI $ 4) [19]. For each category

we calculated the enrichment of chaperone-binding proteins,

where enrichment is defined as PSIN/PSIT – SUMN/SUMT. PSIx is

the number of proteins in a given set x, belonging to a given PSI

category and SUMx the total number of proteins in a given set x.

X points to the total set (T) or the (non-) chaperone-binding

proteins (N). Comparison of the chaperone enrichment in short-

living versus long-living proteins shows that in our limited dataset,

proteins that interact with molecular chaperones are significantly

enriched in the group of long-living proteins (Figure 3C). Given we

observed no fundamental differences in the thermodynamic

stability or protein architecture between these groups (see FoldX

analysis above), this suggests that short-living proteins on average

require less chaperone intervention than long-living proteins,

consistent with the notion that their fast degradation rate is

sufficient to protect against misfolding and aggregation.

Relation between disease-associated mutations and
lifetime

We investigated which of the proteins in our dataset are

involved in a human disease associated with protein deposition

and found 16 proteins with known PSI score (Text S1).

Interestingly, all but one of these proteins belong to the category

of short (PSI , 2) or medium (2 # PSI , 3) half-life. Although this

analysis is not exhaustive, the data does suggest that the lack of

evolutionary pressure to reduce aggregation in short-living

proteins can backfire in circumstances were their turnover is

altered.

Discussion

Protein aggregation is triggered by short polypeptide stretches

within a protein sequence that assemble into intermolecular beta-

sheets when they become exposed to the solvent [8,36,37] (Figure 4).

These aggregation nucleating regions can be predicted with good

accuracy with biocomputational tools [20,38,39,40,41,42,43,44,45,

46,47,48,49,50,51] and earlier work has shown that their occurr-

ence is an inevitable consequence of the structural requirements of

protein structure [52]. Globular protein architecture requires the

tertiary packing of hydrophobic secondary structure elements to

form a stable hydrophobic core. Unfortunately, these physicochem-

ical parameters are also associated to a high probability for self-

assembly of such secondary structure elements into b-aggregates

[53,54]. Indeed, less than 10% of globular protein domains are

devoid of aggregation propensity [12]. As a consequence of these

Figure 3. The effect of cellular and evolutionary mechanisms
that counteract protein aggregation. (A) A plot of the average
thermodynamic stability of aggregation nucleating regions in the
context of a native folded protein in function of the aggregation
propensity shows that the most strongly aggregating segments are on
average buried in the most stable regions of the protein and that this
trend is similar for the long and short-living proteins in our set. The
correlation values on the raw unaveraged data are 0.43 and 0.30 for
short and long-living protein respectively, which rise to 0.79 and 0.91 in
the bin-average plot shown here. (B) Frequency of the gatekeepers
(residues P, R, K, D, E) for the short-living (PSI # 2) and long-living
proteins (PSI $ 5). (C) Enrichment of the chaperone-binding and non-
chaperone-binding proteins for the different lifetime categories.
doi:10.1371/journal.pcbi.1002090.g003
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overlapping but opposing forces that govern protein folding and

aggregation, protein folding is generally a very inefficient process

[55,56]. Moreover, aggregation is detrimental for the cell as

misfolded proteins are inactive [57] and can acquire toxic gain-of-

function [58]. Protein homeostasis is therefore tightly regulated by

the protein quality control machinery of the cell.

Given the high burden of protein aggregation on the proteome,

and even if aggregation propensity cannot be avoided altogether,

selective pressure to minimize the aggregation propensity of

protein sequences is still to be expected. Indeed, it was found that

aggregation-opposing residues are enriched at specific sites along

the sequence of proteins [12,59]. These so-called aggregation-

gatekeepers residues, consisting of prolines and charged amino

acids, are systematically found at the flanks of aggregation-prone

sequences stretches within proteins. Due to their b-breaking nature

or charge they efficiently lower the aggregation propensity of

hydrophobic stretches while at the same time preserving

hydrophobic cores by their peripheral placement (Figure 4).

Removal of gatekeepers increases aggregation and as a result

gatekeeper mutations are three times more frequent in human

disease mutants than in human polymorphisms [17,60].

Selective pressure against aggregation is not homogeneous. We

previously showed that enrichment of gatekeeper residues is more

pronounced at the flanks of strongly aggregating sequences [12]

and it was also shown that aggregation propensity inversely

correlates with gene expression [18]. In this study we employed the

TANGO aggregation prediction tool [20] to compare the

aggregation characteristics of proteins taken from the extremes

of the protein lifetime distribution from the large scale data by Yen

et al [19]. We observe a significantly higher aggregation propensity

in proteins with a short lifetime than in proteins with a long

lifetime. Analysis of gene expression data in 532 healthy

individuals excluded the possibility that the observed difference

in aggregation propensity arises from differences in gene

expression levels between short-living and long-living proteins.

Additionally the FoldX [31] analysis of the structures from both

groups of proteins clearly show that this is not a result from a

superior thermodynamic stability of short lifetime proteins, but

rather from a genuinely higher aggregation propensity of their

protein sequence. The higher aggregation propensity of short-

living proteins does not originate from a higher number of

aggregating regions, but rather from the higher average length and

Figure 4. Schematic representation of the short-stretch hypothesis of protein aggregation. In the unfolded state (top) and partially
folded intermediates, the protein exposes an aggregation nucleating stretch, that becomes buried upon folding into the globular native structure
(bottom left). In a competing reaction, aggregation-prone stretches may align into an intermolecular b-sheet, effectively nucleating the formation of
a protein aggregate (bottom right). The gatekeeper residues indicated in green reduce the rate of the aggregation reaction by interfering with the
beta-sheet structure through steric hindrance and charge repulsion.
doi:10.1371/journal.pcbi.1002090.g004
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aggregation propensity of these regions, which can be traced back

to a reduction in the amount of aggregation breaking gatekeeper

residues. Hence, the reduced placement of gatekeepers in short-

living proteins and the resulting higher average aggregation

propensity, is evidence for the fact that proteins with a fast

turnover rate experience less selective pressure to minimize

aggregation than proteins with a longer biological lifetime.

Moreover, a search of the IntAct database [21] revealed that

there are significantly more recorded chaperone interactions for

long-living proteins than short-living proteins. So, not only do

short-living proteins experience milder selective pressure against

aggregation, but at the same time they also interact less frequently

with molecular chaperones or at least form less stable interactions

of the type that can be recorded by current experimental

techniques. Taken together, these data strongly suggest that the

misfolding of short-living proteins is generally not affecting the

fitness of the cell, as presumably the strong dependence of these

proteins on proteasomal degradation suffices to avoid the

accumulation of protein aggregates.

On the other hand, it is known that the efficiency of the

proteasomal system erodes as a result of physiological ageing

[61,62,63]. Under these changing conditions, proteins with a

higher aggregation propensity and lacking sufficient affinity for

chaperones would form the Achilles’ heel of the proteome and be

among the most susceptible to aggregate. In this respect it is

interesting to see that some of the fast turnover proteins from the

dataset are indeed associated with human diseases with a protein

deposition phenotype.

Supporting Information

Text S1 Supplementary data. Table 1. Comparison
between the aggregation parameters for short-living
and long-living proteins. The analysed population is the group

of short-living protein, the reference population are the long-living

proteins. ++ and 2 indicate that the population has a distribution

significantly (p,0.001) shifted to respectively higher or lower

values than the reference population in the performed statistical

test, idem for + and 2 where p,0.01. Table 2. Lifetime data
for disease-associated proteins. We show the lifetime values

of the proteins from the Yen dataset [19] on protein lifetime that

are associated with protein deposition diseases. Table 3.
Overview of the protein set used. From the Yen dataset

[19] on protein lifetime, we here show the lifetime values for the

611 proteins that fall in the extreme categories (longest and

shortest lifetimes respectively). Where high resolution structural

information is available in the Protein Structure Databank (PDB)

(http://www.pdb.org) [64] we indicate the PDBID. Table 4.
Overview of the chaperone set. This table contains the

chaperones used in the IntAct [21] interaction study, represented

by their accession number, entry name and UniProt comment.

(DOC)
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