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1 Université Pierre et Marie Curie-Paris 6, Paris, France, 2 INSERM, Paris, France, 3 Assistance Publique - Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France

Abstract

Realistic, individual-based models based on detailed census data are increasingly used to study disease transmission.
Whether the rich structure of such models improves predictions is debated. This is studied here for the spread of varicella, a
childhood disease, in a realistic population of children where infection occurs in the household, at school, or in the
community at large. A methodology is first presented for simulating households with births and aging. Transmission
probabilities were fitted for schools and community, which reproduced the overall cumulative incidence of varicella over
the age range of 0–11 years old. Moreover, the individual-based model structure allowed us to reproduce several
observed features of VZV epidemiology which were not included as hypotheses in the model: the age at varicella in first-
born children was older than in other children, in accordance with observation; the same was true for children residing in
rural areas. Model predicted incidence was comparable to observed incidence over time. These results show that models
based on detailed census data on a small scale provide valid small scale prediction. By simulating several scenarios, we
evaluate how varicella epidemiology is shaped by policies, such as age at first school enrolment, and school eviction. This
supports the use of such models for investigating outcomes of public health measures.

Citation: Silhol R, Boëlle P-Y (2011) Modelling the Effects of Population Structure on Childhood Disease: The Case of Varicella. PLoS Comput Biol 7(7): e1002105.
doi:10.1371/journal.pcbi.1002105

Editor: Neil M. Ferguson, Imperial College London, United Kingdom

Received September 22, 2010; Accepted May 13, 2011; Published July 21, 2011
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Introduction

Varicella is endemic in most Western countries where vaccina-

tion has not been implemented [1,2]. More than 90% people are

infected with varicella-zoster-virus (VZV) before 12 years of age, but

the age-specific seroprevalence of VZV shows large variability

between countries [3]. For example, the median age at infection

ranges between 2 years in The Netherlands and 6 years in Italy [3].

The explanation of such differences is likely to be found in

factors shaping the possibilities of infection in children, such as

household structure [4], schools and social behaviours. For

example, the median age at varicella infection is smaller in

countries where more children attend pre-school (Figure 1). It has

also been shown that summer holidays are synchronous with large

troughs in varicella incidence in France [5], as children have fewer

contacts during these periods. Other characteristics may also

shape the epidemiology of the disease, albeit the effect may be

more subtle. For example, the age at varicella infection was found

to decrease in successively born children of the same household,

and an increase in risk followed after school enrolment of the first-

born child [6]; the risk of varicella was smaller in less densely

populated areas, in agreement with other studies [7]. The

effectiveness of interventions, for example vaccination or school

exclusion, could be changed by such differences. Using models

describing the population and its structure in sufficient detail is the

only way to capture this heterogeneity and improve predictions.

Indeed, computational models of disease spread have increas-

ingly tried to more accurately describe places where population

mix and infection occur, using detailed demographic data (see for

example [8–12]). As for now, these models have largely been

motivated by studying pandemic influenza or bioterrorist attacks,

and none incorporated aging of the population or perpetuation of

the disease over several years, because the typical timescale of the

epidemics lasted only a few months. Including a realistic

demographic process in such models has been described as a

challenge[13], and only rarely considered in practice[14].

Indeed, census data typically provide a cross-sectional view of the

population, yielding the current distribution of household sizes and

age of members. Using such data, it is possible to simulate

populations in which household structure and age structure conform

with the census (see [15]). However, including births and aging in

such a population leads to some difficulties. For example, households

where only one child is reported at the time of census contain a mix

of single-child households where no other child will be borne, and

households in which the younger siblings have not yet been born. To

properly account for the demographic process, new births must

occur in the latter; but this changes the overall size distribution of

households, in turn producing characteristics of the simulated

population that may no longer compare to the observed population.

Here, the simulation of a realistic population of children over

several years is described, using detailed census data. The spread

of varicella is explored in this population, where infection can be

transmitted in several locations (household, school and munici-

pality). Model predictions are compared with data formerly

obtained from the Corsican children population in 2008 [6], and

the impact of some socio-behavioural changes are considered.
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Methods

A spatially explicit, stochastic, agent-based model was devel-

oped using detailed demographic data from the island of Corsica.

The study population is limited to children with an age of less than

12 years old (y.o.), as varicella is infrequent in older subjects

[3,16,17]. The model is designed to reflect the main mixing places

for children: households, schools, and communities at large.

Basic components for generating realistic households
Creating households directly from census data, as described

above and in [15], does not easily allow maintaining the

population structure as aging is introduced into the simulation.

For instance, no simple rule allows deciding in which households

new children should be borne. For example, Ajelli allocated

newborns to new or existing households on the basis of

probabilities calculated from current household size and age of

children [14], requiring computations at almost each new birth.

To circumvent this difficulty, we estimated first the final household

size (FHS) distribution from census data, i.e. the number of

children in households where no other children will be borne, as

well as the age difference (AD) distribution of the time lag between

successive siblings in the same household. An estimate of the FHS

distribution (see Figure 2A) was obtained by computing the total

number of children in households where the oldest child was

between 13 and 17 years old, assuming that no additional births

were possible in these households. The observed AD was fitted by

a gamma distribution (see Figure 2B) and was assumed

independent of the birth order within the household.

Population & school data
The Corsican population (300.000 inhabitants, comprising

35.000 children aged under 12 y.o.) was split over municipalities

(n = 360, mean area: 24 km2), according to current number of

households comprising of at least one children less than 12 years

old. Schools (n = 268) were created using data from the French

ministry of national education at the corresponding locations. The

school capacity (number of children during the school year), and

type of school (schools for children with ages from 3 to 7 y.o, for

children with ages from 8 to 11 y.o, for all children with ages from

3 to 11 y.o) was also taken into account. Information on

commuting and data from the ministry of education were used

to allocate children to schools (Figure 2E): The probability of going

to school in municipality j when residing in municipality i was

estimated as mij~
nijX

j

nij

where nij were the observed commuting

flows for children. Allocation to a school in the municipality was

proportional to the expected size of each school, and according to

type of school.

Demographic simulation
The unit of simulation time was the day.

Initialisation. The size of a household was sampled in the

HFS distribution, and the age of the first born child a1 was chosen

at random. The age ai of the ith children in the household was

calculated as ai = ai21 2 d, with d sampled in the AD distribution.

With this approach, some children may have a negative age at the

first day of the simulation and do not participate in the simulation

until their age is larger than 0. This step was repeated until the

desired number of households with at least one child less than 12

years old was obtained in each municipality.

Aging, births & renewal. At each time step, the age of

household members was updated. Children whose age became

positive entered the simulation. New households were created (as

above) at a rate inversely proportional to the average sojourn time

of households in the simulation, and introduced in each

municipality according to municipality size so that the number

of households was approximately constant over time. The age of

the oldest children in newly created households was set to 0.

Schooling. Once a year during simulation time (in September),

all children who had their 3rd birthday were allocated to a school in a

municipality according to the commuting probabilities and school

capacity as reported by the ministry of education. Older children

changed schools as required according to age. The school calendar,

defining days without school (weekends, small holidays and summer

holidays) was recreated as in the year 2007.

Epidemic simulation
The natural history of varicella was described by an M/S/E/I/

R compartmental model [18–21]. All children were born

susceptible to varicella infection. After birth, they entered

compartment M with decreasing protection from infection until

6 months of age [22], then compartment S where they were

susceptible to infection. In case of infection, the child was first

Author Summary

Individual-based models of disease transmission have
increasingly included detailed demographic data to more
accurately describe places where population mix and
infection occur. These models may help to understand in
more detail heterogeneities in transmission and improve
public health decisions. Here, the spread of varicella, a
childhood disease, is studied in such a model where spatial
and population structures are explicitly modelled. The
model focuses on children, organized in households,
schools and municipalities, in agreement with census
data. The detailed structure of the population used in the
model allows for reproducing several observed differences
in the epidemiology of varicella, for example, variation in
age according to birth rank and place of residence. These
results support using detailed models with the eventual
aim of improving decisions in public health.

Figure 1. Median age varicella at infection according to pre-
school attendance before age 3. Data from OECD and median age
at varicella infection in European countries [3,16].
doi:10.1371/journal.pcbi.1002105.g001

Individual-Based Model of Varicella
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latent (stage E, infected not infectious), then infectious and

asymptomatic (stage Ia) followed by infectious and symptomatic

when the skin rash finally appears (stage Is). Eventually, all

children recovered (stage R). In stage M, protection by maternal

antibodies was 95% until month 1, then 75% until week 9, 50%

until week 14, 25% until week 20, and 5% until month 6 [22]. The

duration of the latent period (stage E) was sampled in a discretized

normal distribution with mean = 14 days and standard deviation

2.5 days [23], the infectious asymptomatic period in a discretized

gamma distribution with mean = 1.7 days and standard deviation

0.2 days [1,2] and the subsequent symptomatic period in a

discretized normal distribution with mean = 5 days and standard

deviation 1 day [1,2].

Disease transmission. The daily probability of infection P

was calculated according to exposure in the household, the

school and the community at large as in [10]: P~1{((1{
ph)Ih (1{ps)

Ias (1{pm)Iam (1{pi)) where ph, ps, pm were the daily

probabilities of infection by an infectious sibling, an infectious

schoolmate, or a child in the municipality. We also included an

external probability of infection (pi) assumed to be small [24]. In

the equation above, Ih was the number of infectious siblings in the

household, Ias was the number of infectious but asymptomatic

children in a random sample of contacts in the school, and Iam was

the number of asymptomatic infectious in a random sample of

contacts in the municipality. The number of daily contacts in the

school was set to the average school class size (25 children, or less

in smaller schools) [25], and to 5 in the municipality. Contacts in

the municipality represent local contacts which are neither

household nor school based. As soon as children were

symptomatic, they were removed from the school and the

community until recovery, but could still infect their siblings. All

simulations started with infection of 5 random individuals. The

model was run for 100 years, discarding the 20 first years to avoid

transient effects.

Summary epidemiological outputs from the model
From model simulations, we calculated the following quantities

(averaged over 80 successive years):

N Cumulated incidence of varicella according to age (p (a),
0,a,12). The percentage of children at each age who have

had varicella was determined each September (simulation

time). The cumulated incidence of varicella in first-born

children and in others, and in rural and urban settings were

also calculated: we used census data to define ‘‘urban children’’

and ‘‘rural children’’ as children living in a municipality from

the 1st quartile and 4th quartile of municipality population

respectively [6].

N Weekly incidence of varicella.

N Place where infection occurred. Each time a child was infected,

the source of infection was calculated proportionally to the

terms in P. For example, at the end of the day, the probability

that a new case was infected in his household was:

1{(1{ph)Ih

(1{(1{ph)Ih )z(1{(1{ps)
Ias )z(1{(1{pm)Iam )z(1{(1{pi))

Estimating parameter values
The parameters ph, ps, pm and pi required to run a simulation are

not precisely known for varicella. The household secondary attack

rate (HSAR), which approximates the pairwise probability of

transmission in the household, is approximately 70% for varicella

[6,26]. As this is little changed by household size (69% in households

with 2 children, 76% in households with 3 children [6]), we assumed

constant pairwise transmission irrespective of household size.

Solving the theoretical pairwise transmission probability in the

household for this value (1{
X

i

1{phð Þipi~70% where pi is the

probability distribution of the infectious period duration distribu-

tion) led to ph = 20%.

The other terms were determined using maximum likelihood.

More precisely, we computed the likelihood of the model based on

the cumulative incidence according to age as L(ph,ps,pm,pi)

~ P
11

a~0
p(a)na 1{p(a)ð ÞNa{na

, where p(a) is the model predicted

cumulated incidence by age a, and na the number of children who

have had varicella before age a out of a total of Na in a sample of

Corsican children [6].

Exploration of the likelihood was done using Latin hypercube

sampling [27]. Parameter ph was fixed at 0.2, pi was sampled in the

range 0–1024 and the two other were sampled between 0 and 1. The

Akaike Information Criterion was used to compare models [28].

Comparison to realistic age-structured (RAS) model
A realistic age-structured model has been implemented as

described in [29]. In this simpler model, the Corsican youth

population was divided in 14 age groups (0–0.5 years, 0.5–1 year,

1–2 years, 2–3 years,… 11–12 years, 12 years and above). The 0–

0.5 year olds were assumed to be immune to infection. We used

the POLYMOD data (from the UK) for the contact matrix.

Finally, the model was fit to the Corsican cumulated incidence

data by maximum likelihood[29].

Results

The population structure created in the simulation was stable

over time (number of households, number of children), and the age

distribution of children and current household size matched that of

the census data (Figure 2C and 2D).

We explored four versions of the model, allowing different

locations for mixing in each version. Each time, we selected the

parameter set leading to the best fit in terms of likelihood (Figure 3

and Table 1). Using this set of parameters, we predicted the

cumulated incidence in first-born and other children, as well as in

rural and urban areas. The corresponding curves were compared

with those obtained in the actual population.

Cumulative incidence with age and sources of mixing
Using the RAS model, it was possible to simulate cumulative

incidence data close of what was observed in Corsica. However,

the fit of this model, as measured by the likelihood, was worse than

that derived in the best fitting individual-based models (Figure 3 &

Table 1).

In the individual-based model, when the probabilities of being

infected with varicella in the municipality and in the school were

Figure 2. Simulation of a realistic children population in Corsica. (A) Distribution of household final number of children. (B) Observed (white)
and simulated (grey) distribution of time lag between successive siblings (in years). (C) Observed (white) and simulated (grey) number of children in
Corsica according to age. (D) Observed (white) and simulated (grey) number of children aged less than 12 years old per household. (E) Commuting to
school outside the municipality of residence.
doi:10.1371/journal.pcbi.1002105.g002

Individual-Based Model of Varicella
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set to 0 (model HE), it was not possible to obtain a good fit with the

cumulated incidence profile with age. In the best fitting

combination, even when large external transmission was allowed,

the cumulated incidence (CI) at age 12 was 48%, short of the 90%

observed (Figure 3). In this model, 65% of infections occurred

outside households (see Table 1).

We then included transmission in the municipality, but not in

schools (model HME). The fit improved, with cumulative

incidence of varicella reaching 90% by 12 years of age. The

percentage of infections occurring outside households and the

municipality was 8% (Table 1). However, in this model, the

cumulated incidence increased too quickly with age as compared

to the observed data. Indeed, the CI was 32% at 2 years old and

54% at 4 years old, compared with 21% and 48%.

The model with transmission in schools, but not in the

municipality (model HSE), provided a better global fit as judged

by the AIC. However, this time, the CI increased too slowly in

children aged less than 3 years old, reaching 18% compared with

20% in the real data. Moreover, the CI at 12 years old was 92%,

more than the observed 89%.

Finally, the model allowing transmission in both schools and

municipalities (model HSME) provided the best fit (i.e. smallest

AIC, see Table 1). The simulated cumulated incidence of varicella

was almost undistinguishable from the observed data. The range

of parameter values leading to small differences in AIC (,2) was

narrow, between 0.114 and 0.122 for pm, between 0.128 and 0.134

for ps and between 1.961025 and 2.161025 for pi. The proportion

of infections due to external exposure was reduced at 5.5%

(Table 1).

Comparing detailed model predictions with observed
data

Using the best fitting model (HSME), the cumulative incidence

of varicella was predicted in two special cases: in first-born and in

other children; and in rural and urban settings. Figure 4 show that

the model predicting cumulative incidence with age matched the

characteristics of the observed data. Indeed, the age difference at

varicella observed among siblings of the same family was present

(Figure 4A), with an increase in incidence after 3 years of age in

first-born children; the difference between rural and urban settings

was also present with varicella occurring at a later age in children

living in more rural settings.

When all levels of mixing were not allowed, the model failed to

reproduce these quantities. For example, when the municipality

was not included, although the simulated overall cumulated

incidence was close to that observed in Corsican children, the

cumulated incidence in first-born children was largely underesti-

mated at three years old: 8% at 3 years old (not shown), compared

with 22% in the observed data.

The average weekly incidence agreed with those reported by the

Sentinelles network system [30]. The simulated incidence time

series showed a reduction in incidence that was associated with

holidays, with a pronounced trough during the summer period

(Figure 4C). However, the observed data was not entirely

reproduced, as the model predicting incidence was the highest

Figure 3. Observed and simulated cumulated incidence of
varicella. Observed cumulated incidence of varicella (red), simulated
by the RAS model (green), and simulated allowing Households only
(dashed dotted dark), Households and Municipalities (dashed dark),
Households and Schools (dotted dark), Households and Schools and
municipality (plain dark). Hatches correspond to the 95% CI of the
‘‘Households and Schools and Municipality’’ model.
doi:10.1371/journal.pcbi.1002105.g003

Table 1. Model parameters values and goodness of fit based on cumulated incidence of varicella.

Mixing levels allowed
in the model

Homogeneous
iage-structured mixing

Household;
External

Household; Municipality;
External

Household;
School; External

Household; School;
iMunicipality; External

(Model name) (RAS) (HE) (HME) (HSE) (HSME)

ph (fixed) 0:20 0:20 0:20 0:20

ps 0 0 0:15 0:13

pm 0 0:29 0 0:12

pi 1|10{4 4:4|10{5 9:6|10{5 2|10{5

Log-Likelihood {5974 {9650 {6053 {5959 {5941

AIC 19302 12102 11924 11890

Source of infection

Household 35% 22% 51% 40%

School 0% 0% 17% 11%

Municipality 0% 69% 0% 44%

External 65% 8% 32% 5%

doi:10.1371/journal.pcbi.1002105.t001

Individual-Based Model of Varicella

PLoS Computational Biology | www.ploscompbiol.org 5 July 2011 | Volume 7 | Issue 7 | e1002105



after summer holidays and decreased during the school year, when

the observed data suggested that it was the reverse.

Exploring the effect of changes in behaviour
In France, infected children are excluded from school as soon as

varicella symptoms are recognized. We explored how this public

health measure impacted the spread of varicella. Simulations were

run assuming that infected children remained present in the

community and school until they were cured, with the same level

of infectivity as during the asymptomatic stage. As a consequence,

age at varicella decreased in the whole population, with median

age at infection shifting from 4.7 to 2.6 years old (Figure 5A). This

would also lead to almost all children being infected with varicella

before age 12, compared with approximately 90% in the field data

[6]. Next, we explored how age at schooling may explain the

variability in varicella age-seroprevalence between countries where

vaccination is not implemented. We simulated scenarios in which

age at first school enrolment was set at 2, 4, 5 and 6 years old. The

effect of this change is presented in Figure 5B. The median age at

infection increased by about 8 months for each one-year increase

in age at school enrolment.

Discussion

In this paper, we have shown that including detailed population

structure in models of varicella transmission allowed us to

reproduce the cumulated incidence of varicella according to age.

A better fit was obtained than with a realistic age structured

model, even using mixing matrices based on real contacts.

Importantly, specific features observed in varicella epidemiology

Figure 4. Best fitted model predictions: cumulated incidences and weekly incidence. (A) Cumulated incidence in first-borns (observed:
plain, simulated: grey zone) and others (observed: dashed, simulated: hatched zone). (B) Cumulated incidence in urban (observed: plain, simulated:
grey zone) and rural municipalities (observed: dashed, simulated: hatched zone). (C) Observed weekly incidence (plain) and simulated (grey zone)
starting from the first week of September to the end of August. Hatches correspond to school holidays. In all simulations, the maximum and
minimum from over 100 years of simulation are reported.
doi:10.1371/journal.pcbi.1002105.g004

Individual-Based Model of Varicella
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were reproduced owing to the detailed structure of the model. This

included, for example, differences in age at varicella according to

birth rank and place of residence, indicating that the rich structure

built into epidemiologic models using census data leads to

improved models regarding disease spread.

Modelling varicella, or other childhood diseases, requires simulat-

ing populations over several years. Indeed, seroprevalence studies

show that most infections occur during the first 12 years of life

[3,16,17]. It is therefore required to simulate realistic children

populations over several years. Here we showed that it could be

achieved by knowing only the number of households in each

municipality, the household final size distribution and the age

difference distribution between successive siblings. Throughout the

entire simulation, the simulated population agreed with census data

regarding age of children, household sizes, and movement flows (see

Figure 2). To determine the household final size distribution, we

focused on households where the oldest child was between 13 and 17.

A sensitivity analysis indicated that the bottom threshold could be

chosen in the range of 10–16 with little change in the estimated HFS

distribution. The average final size of the household was 1.9, in

agreement with the total fertility rate in women who have had at least

one child [31]. Other demographic processes, such as change in

household structure due to divorce or remarriage, were not modelled;

neither were the opening or closing of schools, which happens

depending on the number of children in small municipalities.

Varicella provided an excellent case study, since it is a common

childhood disease in France (as universal vaccination is not

recommended) and surveillance data is available, however the model

could however easily be applied to other childhood infectious diseases.

The varicella natural history description was standard [18], with an

additional split of the infectious period according to the presence of

symptoms. This allowed to model the prodromic infectious phase,

often reported for varicella, where infectivity increases in the few days

before a rash is present [1,2]. As seen in the simulations, these 1 or 2

days were important for transmission: indeed, the models not

including school and municipality transmission failed to reproduce

the incidence data. Truly asymptomatic varicella was not modelled as

it is rare [32] and presumably less infectious [33].

One issue in the present modelling was how to initialise the

population regarding susceptibility to the disease. Indeed, the

susceptibility of siblings or schoolmates is not independent, since the

disease is transmissible. We used two approaches: (1) start with an

entirely susceptible population or (2) randomly assign a susceptibility

status according to the observed cumulative incidence with age [6].

In either case, after discarding the initial first 20 years of simulation

the results were not sensitive to the actual method of initialisation,

although the simulated cumulated incidence rate with age was more

quickly stabilized with the second method. A second issue was to

quantify and average over stochastic variation. Averaging over at

least 80 years of simulation was required in this respect.

The choice of Corsica to build the model was motivated by the

availability of epidemiological data for comparison, nevertheless

changing the input census data would make it possible to use the

model in other settings. A child contact network was described as

household, school and municipality. The detailed description of

these places structured the possibilities of interaction according to

age and space, in place of mixing matrices used in other models

[29,34,35]. In Table 2, we report how changing the number of

contacts at school or in the municipality changed our results.

There was altogether little effect on the overall fit. Unexpectedly,

the proportion of varicella cases due to school contacts decreased

with increasing contacts at school. However, more contacts in

school led to increased introduction of cases in households and the

municipalities (spatial diffusion), where transmission could start,

and lead to more cases. The school size (median school size = 63

children) further limited its overall influence. Other typical mixing

places for young children may include day care, but this is almost

inexistent in Corsica (less than 200 children overall) and was not

considered here. How transmission depends on household size is a

current matter of debate, and our model assumed a constant

pairwise transmission in household, as suggested by [6]. We found

that this hypothesis was in good agreement with the data: In

households comprising 2 susceptible children before the introduc-

tion of the virus, the observed distribution of the number of cases

was 1 case: 31%, 2 cases: 69%, the simulated distribution was 1

case: 27%, 2 cases: 73% (p.value = 0.93); whereas in households

Figure 5. Varicella CI according to different scenarios. (A)
Varicella CI according to school exclusion (school exclusion - current:
plain, no school exclusion: dashed). (B) Varicella CI according to age at
first-school enrolment: at 3 y.o. (current policy) (bold), at 2 y.o. (dashed),
at 4 y.o. (dotted), at 5 y.o. (dash dotted).
doi:10.1371/journal.pcbi.1002105.g005

Individual-Based Model of Varicella
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comprising 3 susceptible children before the introduction of the

virus, the observed distribution of the number of cases was 1 case:

12%, 2 cases: 23%, 3 cases: 65%, the simulated distribution was 1

case: 8%, 2 cases: 24%, 2 cases: 68% (p.value = 0.99).

The basic reproduction number, corresponding to the number of

secondary cases caused by one case in a totally susceptible

population, (R0) was approximately 4 (average over 500 simulations

with 1 initial random case). This value was in the low end among

European countries [3]. There was large variation depending on

whether the initial children attended school (4.4 secondary cases) or

not (1.3 secondary case). Using the RAS model, this estimate was

close to 14. This shows that the reproduction number is indeed very

dependent on how contact are calculated, as previously noted by

other authors for varicella [29,36]. As seen in Figure 2C, the school

commuting network is essentially based on geography, most

children going to school in their own or a neighbouring

municipality. The difference between contacts at school and in

the municipality is therefore mostly due to the age distribution of

contacts. Even if the main sources of mixing were included, it was

necessary to include an external force of infection. When this was

not allowed, the disease rapidly went extinct especially during the

summer holidays. The persistence of a disease requires sufficient a

community size, as is well-known in the case of measles [37], which

may not be met in Corsica. Introducing an external source of

infection (pi) was necessary to perpetuate varicella. Indeed, persons

previously infected with the varicella virus may start shedding the

virus again, for example during zona episodes, and originate

transmission chains. Indeed, Zona incidence is approximately

constant over time in Corsica (see http://www.sentiweb.org), and

together with case importation, this supports introducing an

external force of infection for varicella in small populations [38].

The model required estimating only 3 parameters correspond-

ing to daily transmission probabilities, and provided a very good fit

to the data. In the best fitting case, the daily probability of pairwise

transmission in the household was approximately 17%, and it was

13% in the school and 12% in the municipality. Interestingly,

these probabilities are consistent with the rate of varicella

transmission (0.00133/minute) derived from models based on

time use data [34]. Indeed, a daily probability of 17% is obtained

for a duration of contact of 140 minutes (calculated as
{1

0:00133
| log (1{0:17)), when the average daily cumulated time

of contact between 2 children aged less than 10 years old is indeed

between 100 and 200 minutes [34]. The model did not reproduce

all features of observed incidence with time. Overall, the observed

incidence of varicella showed an increasing trend during the

school year, with the highest point being before the summer

holidays (see Figure 4C), but the model predicted incidence, while

highly variable, that often showed the opposite trend. To properly

reproduce this feature, transmission in schools, in municipalities or

the ‘‘external transmission’’ should be lower in winter and larger in

the spring: Such seasonality could be the result of impaired

transmission in cold weather [39], or of fluctuations in the

incidence of zona [40].

In conclusion, detailed simulation of realistic children popula-

tions over several years may improve the study of childhood

disease transmission. Further comparisons with compartmental

models using realistic mixing matrices are necessary to identify the

best approaches to help public health decisions.
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31. INSEE (2006) Bilan démographique INSEE. Available: http://www.insee.fr/fr/

themes/document.asp?ref_id = ip1118&reg_id = 0.

32. Ross AH (1962) Modification of chicken pox in family contacts by

administration of gamma globulin. N Engl J Med 267: 369–376.

33. Tsolia M, Skardoutsou A, Tsolas G, Karayanni C, Spyridis P, et al. (1995) Pre-

eruptive neurologic manifestations associated with multiple cerebral infarcts in

varicella. Pediatr Neurol 12: 165–168.

34. Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, et al. (2008) Using

time-use data to parameterize models for the spread of close-contact infectious

diseases. Am J Epidemiol 168: 1082–1090.

35. Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. (2008) Social contacts

and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:

e74.

36. Van Effelterre T, Shkedy Z, Aerts M, Molenberghs G, Van Damme P, et al.

(2009) Contact patterns and their implied basic reproductive numbers: an

illustration for varicella-zoster virus. Epidemiol Infect 137: 48–57.

37. Keeling MJ, Grenfell BT (1997) Disease extinction and community size:

modeling the persistence of measles. Science 275: 65–67.

38. Ferguson NM, Anderson RM, Garnett GP (1996) Mass vaccination to control

chickenpox: the influence of zoster. Proc Natl Acad Sci U S A 93: 7231–7235.

39. Tang JW (2009) The effect of environmental parameters on the survival of

airborne infectious agents. J R Soc Interface 6: S737–S746.

40. Zak-Prelich M, Borkowski JL, Alexander F, Norval M (2002) The role of solar

ultraviolet irradiation in zoster. Epidemiol Infect 129: 593–597.

Individual-Based Model of Varicella

PLoS Computational Biology | www.ploscompbiol.org 9 July 2011 | Volume 7 | Issue 7 | e1002105


