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Abstract

In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The
‘phosphocreatine shuttle’ hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-
energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in
ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of
high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of
isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the
whole heart level. Using ‘sloppy modeling’ ensemble simulations, we derived confidence intervals for predictions of the
contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our
calculations indicate that only 1568% (mean6SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr
shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of
ATP hydrolysis (3750 mM*s21) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial
ATP synthesis pulsation from 215623 to 566631 mM*s21, while amplitudes of oscillations in cytosolic ADP concentration
double from 77611 to 14661 mM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy
buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the
contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers
cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.
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Introduction

It is well established that creatine kinase (CK) catalyzes the

reversible transfer of phosphate from ATP to creatine (Cr):

ATPzCr / ?
CK

ADPzPCr ð1Þ

However, how this biochemical function plays a role in cell

functioning has been the subject of intense controversy [1]. It is

remarkable that two distinct isoforms of CK are expressed in

muscle cells, one in the mitochondrial inner membrane space

(IMS) and one in the cytosol where the contractile elements are

located. This led to the idea of the ‘phosphocreatine shuttle’,

proposed by Bessman and Geiger [2]: PCr formation from

adenine nucleotide and creatine in the IMS is catalyzed by the

mitochondrial isoform of CK, Mi-CK, located in the IMS. PCr

may then proceed to the cytosol, which constitutes a mechanism of

facilitated diffusion of high-energy phosphate (HEP) groups.

Retransfer of HEP to adenine nucleotide to energize myofibrillar

contraction is done by the muscular isoform of CK, MM-CK,

located in the cytosol (see Figure 1). Transfer of HEP was argued

to be accomplished either by direct diffusion of ATP through the

mitochondrial outer membrane (MOM) and cytosol or indirectly

via the ‘phosphocreatine shuttle’. The phosphocreatine shuttle

hypothesis has led to extensive scientific debates on the role of CK,

e.g. [1,3,4].

Besides the energy transfer function, the creatine kinase system

was thought to be responsible for (i) temporal energy buffering by

maintaining an adequate ATP/ADP ratio during interruption of

energy supply [5] or during changing energy demand [3,6] and (ii)

for regulation of oxidative phosphorylation [7]. The CK system,

transporting creatine instead of ADP from the cytosol to the

mitochondria, is a potential key regulator of oxidative phosphor-

ylation. CK inhibition experiments on rabbit hearts [8,9] and CK

knockout experiments in mice [10] suggest that the creatine kinase

system affects the dynamic adaptation of oxidative phosphoryla-

tion to energy demand.

Mathematical modeling has proven helpful to understand the

CK system: several existing models account for a compartmen-

talized energy metabolism system in myocytes under various

conditions [6,11–16]. The main differences between the model

analyzed here and other models described in the literature are

addressed in the Discussion. We build on a previously published

computational model for the dynamic adaptation of oxidative

phosphorylation to changing workloads which captures the key

elements responsible for buffering and transport of HEP between
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IMS and cytosol [17,18]. The model incorporates synthesis of

ATP from ADP by oxidative phosphorylation in the mitochondria

and ATP consumption in the cytosol, the reversible transfer of

phosphate groups from ATP to creatine by CK enzyme reactions

and metabolite diffusion between IMS and cytosol through the

MOM (see Figure 1). The model’s dynamic behavior is affected by

22 free parameters for enzyme kinetics and membrane perme-

ability, which had been determined experimentally and were

collected from the scientific literature.

In recent work we investigated the sensitivity of the predictions

of this CK model with respect to possible error in the parameters

using a simplified ensemble approach and found that even a

modest error on each model parameter results in a broad range of

possible predictions [19]. However, models containing many

molecular kinetic parameters, all known with little accuracy, can

yield useful predictions as long as the correlation of these

inaccuracies is taken into account. Brown et al. showed, using a

computational model of nerve growth factor signaling, that viable

model predictions can be achieved in spite of a high degree of

uncertainty in all kinetic parameters [20,21]. The approach

identifies so-called ‘sloppy’ combinations of parameters, which,

when jointly altered, do not significantly change the outcome of a

model simulation, meaning that multiple combinations of

parameters describe experimental data equally well. Gutenkunst

et al. investigated a variety of metabolic and signaling networks

and found these spectra of correlated parameter sensitivities to be

universal in Systems Biology models [22]. To use the information

from these hidden correlations between parameters, a Bayesian

ensemble of distinct parameter sets which agree with experimental

data, can be sampled with Markov-Chain Monte Carlo (MCMC)

methods. The likelihood of a parameter combination being

included in the ensemble is proportional to the parameter

combination’s likelihood to predict the experimental input data

set. Starting point for the walk through parameter space is the

parameter set obtained from a least-squares parameter fit to

experimental data. The resulting ensemble of parameter sets,

constrained by the experimental data, allows a quantification of

uncertainty not only of parameter values, but also delineates the

uncertainty of model predictions for new experimental interven-

tions. Below we demonstrate that combining molecular kinetic

data, organellar data and whole organ response data with a sloppy

modeling approach is feasible and fruitful.

We assembled a set of prior knowledge data on kinetic

parameters of the CK enzymes and made use of measurements

on the oxidative capacity and kinetics of isolated mitochondria and

on metabolite transport across membranes and cytosol. These data

at the molecular and organellar level were combined with

experimental data on the response of the whole heart: for jumps

to multiple heart rate levels the response time of the increase in

oxygen uptake in the heart was measured. Based on model analysis

of the oxygen transport system, the response time of oxygen uptake

at the level of the mitochondria could be calculated from the whole

heart level uptake [9]. These response times for wild type CK

levels and during CK inhibition played an important role as input

data for the MCMC analysis. Based on these data from multiple

levels in the system, we predict the contribution of PCr to HEP

transport and the buffering capacity of the system toward the high-

frequency high-amplitude pulsations of ATP hydrolysis during the

cardiac cycle. As a consequence, we determined that the

functional role of the CK system in energy transport is limited

and that high pulses in ATP hydrolysis are buffered by CK at

order 100 millisecond time scales; both functions are presently not

directly accessible to experimental measurement. Surprisingly, we

also find that the mitochondrial CK isoform plays a role in

regulating the cytosolic inorganic phosphate level.

Results

We employed experimental data from three scales: molecular

kinetic parameters, organellar capacity parameters and whole

organ dynamic response data. A priori experimental information

about kinetic parameters was extracted from the literature (see

Table 1). For nine of the 22 model parameters, standard

measurement errors were reported. In order to constrain these

parameters by their measurement errors, we added this molecular

and organellar information as terms to a least-squares cost-

function which also contained dynamic response times measured

at the whole heart level (see Methods). In this way experimental

data from the molecular, organellar and whole system level are

treated in a unified way. For the MOM permeability to adenine

nucleotides (PSmom,AdN), a key parameter affecting the system’s

energy transport and buffering behavior, values in literature were

contradictory [18]. The parameter PSmom,AdN was therefore not

constrained. The cost function determines the probability that a

parameter set is compatible with the observed data (see Methods).

Using Markov Chain Monte Carlo, a distribution of parameter

sets with high probability of agreement with the data is sampled.

The resulting ensemble of parameter sets is therefore a

multivariate posterior distribution, shaped by the cost function,

which reflects the probability of individual parameter sets in a

Bayesian sense [21].

Data on the response times of the whole system level were taken

from a study by Harrison et al., where electrically paced perfused

rabbit hearts were exposed to a step increase in heart rate [9].

After applying the challenge, the metabolic delay time tmito was

calculated from dynamic O2 consumption measurements to

estimate the generalized time constant of the ATP production

time course. From a baseline level of 135 beats/min (bpm), heart

rate was increased to 160, 190 and 220 bpm, respectively. Hearts

were either exposed to iodoacetic acid (IAA) to block glycolysis or

to iodacetamide (IA) to inhibit both glycolysis and CK activity,

yielding in total 6 data points on the response time of oxidative

Author Summary

Creatine kinase (CK) has several functions in cellular energy
metabolism. It catalyzes the reversible transfer of high-
energy phosphate from ATP to creatine, facilitating
storage of energy in the form of phosphocreatine. In
muscle cells, this extra energy buffer plays a pivotal role in
maintaining ATP homeostasis. Another proposed function
of CK is the transport of energy from ATP producing to
ATP consuming sites via a shuttle mechanism involving a
mitochondrial and a myofibrillar isoform of CK. The extent
to which this ‘phosphocreatine shuttle’ mechanism is used
in muscle and other tissues is hotly debated. We use a
computational model of the CK system which can predict
energy transport and buffering of high demand peaks to
estimate the relative importance of both roles in heart
muscle. We validate the model with multiscale data on the
level of enzyme kinetic constants and with dynamic
oxygen consumption measurements in rabbit hearts. Since
model predictions can be strongly affected by changes in
parameter values, we employ ‘sloppy’ ensemble modeling
which allows to set confidence regions for predictions. Our
results indicate that the main function of CK in heart
muscle lies more in temporal energy buffering of high
peaks in ATP consumption during cardiac contraction than
in energy transportation.

Functions of Creatine Kinase
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phosphorylation, shown in Figure 2. Details on model, experi-

mental data, cost function and the ensemble modeling approach

can be found in the Methods section.

Parameter estimation
Model parameters were estimated simultaneously to fit the tmito

values for all conditions using a least-squares optimization

procedure. Different optimization algorithms (downhill simplex

algorithm, Powell’s method, Levenberg-Marquardt) gave similar

quality of the fit. Initial and optimized parameter values can be

found in Table 1. Figure 2 shows all tmito values predicted by the

model before and after parameter optimization for all conditions.

After fitting, the model correctly predicts a quicker energy supply-

demand signaling when CK is inhibited by 98%, causing weaker

ADP/ATP buffering by CK. In the optimization procedure, the

maximum velocities of the Mi-CK and the MM-CK enzyme were

decreased by 12 and 36%, respectively, from their initial literature

values. These literature enzyme activities for MM-CK and Mi-CK

had been taken from the same experimental model, but without

inhibition of glycolysis by IAA [8]. The experimental data used in

the present analysis was measured in the presence of IAA which

was found to impede CK activity by 20% [9]. The drop in

estimated CK activity is therefore plausible. Other parameters

which are altered significantly by the optimization are the

apparent Michaelis constant for inorganic phosphate in the

mitochondrion, Kpi, which drops from 800 to 347 mM, and the

apparent KM for ADP, Kadp, which increases from 25 to 36 mM.

Both parameters occur in the model equation determining the rate

of oxidative phosphorylation, which may explain the inverse

variation. There exist in vitro measurements of Kpi that are lower

than the initial value used in this analysis [18]: Stoner & Sirak for

instance measured Kpi to be 360 mM [23] which is close to our

optimized value. Likewise, reported values for Kadp vary between

20 and 30 mM [24,25], corroborating the values obtained by the

fit.

Monte Carlo sampling of parameter sets
Starting from the optimized parameter set (see Table 1), we

sampled the parameter space to generate an ensemble of 658

independent parameter sets using the Metropolis-Hastings algo-

rithm. The parameter set yielding the lowest cost in the complete

ensemble was this optimized parameter set. The distributions of all

parameters in the ensemble are shown in Figure 3. The nine

kinetic parameters which had known error values (see Table 1)

show a mean value in the ensemble close to the measured value

and a standard deviation close to their reported measurement

error from the literature, which was to be expected given the prior

information in the cost function. However, the parameters for

which there was no standard error value available from the

literature in general gave a standard deviation in the ensemble

which was smaller than the default assigned large standard error

(see Table 1). We tested the effect of different assumptions on the

default prior standard deviations on posterior parameter distribu-

tions and ensemble predictions, reported in Text S1 which shows

Figure 1. Scheme of model of the compartmentalized creatine kinase system. Main elements are ATP hydrolysis by ATPase, ATP synthesis
by mitochondria and creatine kinase (CK) isoforms in the mitochondrial intermembrane space (Mi-CK) and cytosol (MM-CK). Oxidative
phosphorylation (OxPhos) takes place in the mitochondrial matrix and responds to ADP and inorganic phosphate (Pi) levels in the mitochondrial
intermembrane space. The concentrations of phosphocreatine (PCr), creatine (Cr), ADP, ATP and Pi are dependent on the rates of the enzyme
reactions and transport. The figure was generated with CellDesigner [57].
doi:10.1371/journal.pcbi.1002130.g001
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that the conclusions reported here are not changed by larger or

smaller values on the default prior.

The mean value of PSmom,AdN in the ensemble is 31.7 s21,

which is larger than the optimized value of 13.3 s21 found

previously [18]. The distribution of PSmom,AdN shows substantial

skewing with a minimum value of 7.4 s21, and a rather sharp

exclusion of small values which give slow response times of the

system. Based on experiments in isolated permeabilized cardio-

myocytes, Sepp et al. ([26]) estimated a value for MOM

permeability to adenine nucleotides of 1833 nmol/min/mg

protein per mM concentration difference. Converting this value

expressed per mg tissue protein, assuming 150 mg protein per

gram wet weight, this corresponds to PSmom,AdN = 7.4561.89

s21. This is virtually the same as the minimum estimated in our

ensemble analysis.

Predicting the contribution of PCr and ATP to energy
transport

The contribution of PCr to intracellular HEP transfer, Rdiff,PCr,

is quantified by the ratio of PCr diffusion (Jdiff,PCr) to the total

phosphate group diffusion through the MOM:

Rdiff ,PCr~
Jdiff ,PCr

Jdiff ,PCrzJdiff ,ATP

ð2Þ

An ensemble of simulations based on the parameter ensemble

described above allows evaluation of the confidence region for the

model prediction. In the ensemble, Rdiff,PCr is on average

0.1760.09 (mean6SD) at heart rate 160 bpm and 0.1560.08 at

220 bpm in the case of active CK. Figure 4 shows the 95%

Table 1. Parameters of the CK model.

Name Description Value Unit Reference
Optimized
value Prior sln(h)

Ensemble
mean±SD Posterior sln(h)

Keq,CK Equilibrium constant for Mi-CK
and MM-CK

152.064.0 [58] 151.95 0.026 152.3263.82 0.025

Parameters for the mitochondrial creatine kinase reaction

Vmax,Mi,f Maximum velocity Mi-CK
(PCr production)

882.0 mM/s [18] 775.05 0.336a 760.056264.39 0.333

Kia,Mi Binary dissociation constant ATP 750.0660.0 mM [28] 751.32 0.081 754.79662.61 0.083

Kib,Mi Binary dissociation constant Cr 2880068450 mM [28] 28733.44 0.336 29742610117 0.332

Kic,Mi Binary dissociation constant ADP 204.0 mM [11] 201.73 0.336a 221.03679.15 0.337

Kid,Mi Binary dissociation constant PCr 1600.06200.0 mM [28] 1597.69 0.128 1597.046190.54 0.118

Kb,Mi Ternary dissociation constant Cr 5200.06300.0 mM [28] 5209.08 0.058 5196.366302.73 0.058

Kd,Mi Ternary dissociation constant PCr 500.0620.0 mM [11,59] 499.51 0.040 502.19620.64 0.041

Parameters for the myofibrillar creatine kinase reaction

Vmax,MM,f Maximum velocity MM-CK
(ATP production)

11441.78 mM/s [18] 7373.07 0.336a 7769.7762591.30 0.308

Kia,MM Binary dissociation constant ATP 900.0 mM [11] 1026.24 0.336a 1033.596351.91 0.336

Kib,MM Binary dissociation constant Cr 34900 mM [11] 34504.19 0.336a 36772612695 0.330

Kic,MM Binary dissociation constant ADP 222.4 mM [11] 212.26 0.336a 225.49678.53 0.338

Kid,MM Binary dissociation constant PCr 4730.0 mM [11] 4516.55 0.336a 4955.0561692.93 0.329

Kb,MM Ternary dissociation constant Cr 1550062500 mM [11,59] 16744.44 0.167 1686962940 0.177

Kd,MM Ternary dissociation constant PCr 1670640 mM [11,59] 1669.76 0.024 1670.91638.38 0.023

Parameters for mitochondrial ATP production

Vmax,syn Maximum ATP synthesis velocity 1503.746152.65 mM/s [60] 1332.64 0.103 1320.536113.50 0.085

Kadp Apparent Km mitochondria for ADP 25.0 mM [18,24] 35.88 0.336a 34.6167.80 0.228

Kpi Apparent Km mitochondria for Pi 800.0 mM [18,24] 346.57 0.336a 378.886118.91 0.296

Permeabilities of the mitochondrial outer membrane

PSmom,AdN Membrane conductance
ATP and ADP

13.3 s21 [18] 23.64 None 31.74616.58 0.500

PSmom,PCr Membrane conductance PCr 162.5 s21 [18] 155.49 0.336a 167.42657.39 0.334

PSmom,Cr Membrane conductance Cr 162.5 s21 [18] 154.20 0.336a 163.06659.68 0.350

PSmom,Pi Membrane conductance Pi 194.0 s21 [18] 195.63 0.336a 199.25668.34 0.324

Shown are all model parameters describing the enzyme kinetics and transport across the mitochondrial outer membrane. The thirds column gives the parameter values
obtained from the literature. If a standard measurement error could be obtained from literature, the value is given. We also give the parameter values after least-squares
optimization to experiment data. We finally give means and standard deviations of the parameter ensemble. Note that the model parameters for maximum backwards

velocity of both CK reactions, Vmax,Mi,b and Vmax,MM,b are not listed because their values are dynamically calculated from other parameter values via the Haldane relation:
Vmax,f

Vmax,b

~
Kia �Kb

Keq � Kic � Kd
asln(h)values which determine the spread of the prior distribution for parameters with standard errors not available from the experimental literature were set to 0.336,
which is the maximum sln(h) value for parameters where the standard error is known from the literature.

doi:10.1371/journal.pcbi.1002130.t001
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confidence interval between upper and lower bound of the

ensemble prediction for Rdiff,PCr for IAA and IA conditions in

steady state at heart rate 220 bpm. The small oscillations during

CK inhibition are due to the 2% residual activity of CK. The

upper bound of the 95% confidence interval remains below 0.44

during the cardiac cycle for all simulated conditions.

Rdiff,PCr decreases during the peaks in ATP hydrolysis and even

becomes negative for the lowest trajectories in the ensemble, which

indicates that PCr diffuses back to the mitochondria at the end of

systole (Figure 4). The simulations show for these cases that ADP

diffuses into the IMS during the peaks of ATP hydrolysis,

stimulating a reversal of the mitochondrial CK reaction to

produce ATP from PCr, exactly as happens in the cytosol. For

these lowest trajectories in the ensemble the CK activity per unit

volume of the intermembrane space is higher than the CK activity

per unit volume of the cytosol, causing the PCr to go down more

steeply in the intermembrane space. This causes the cytosolic PCr

concentration to exceed the PCr concentration in the IMS, and a

negative gradient forces PCr to diffuse back into the IMS.

However, when averaged over the cardiac cycle, Rdiff,PCr is always

positive, indicating net flux of PCr from the mitochondria to the

cytosol, and for the vast majority of the ensemble PCr diffusion

flux never becomes negative during the entire cardiac cycle.

Simulations suggested that the relative importance of the PCr

shuttle becomes less with higher ATP hydrolysis at heart rates of

160, 190 and 220 bpm. We tested this hypothesis by predicting

Rdiff,PCr for a range of heart rates from 60 to 300 bpm. The

ensemble simulations reveal that Rdiff,PCr continuously drops for

increasing heart rates for all sampled parameter combinations (see

Figure 5A). The predicted decline in Rdiff,PCr and increase in Pi

concentration agrees with results of a recent study on perfused rat

hearts [27]. Increased energy demand induces an increased ATP

gradient between both compartments. At 160 bpm, the average

difference between the ATP concentration in IMS and cytosol is

18.6 mmol*l21, at 220 bpm it becomes 22.3 mmol*l21 for the

optimal parameter set. The increased ATP gradient across the

MOM induces direct ATP transport instead of facilitated transport

via PCr.

In order to demonstrate the dependence of shuttle utilization on

the membrane conductance for adenine nucleotides, we predicted

Rdiff,PCr as a function of PSmom,AdN for the ensemble. The

predicted range shown in Figure 5B indicates that only for very

small ATP permeability, PCr contribution becomes high. Even for

the minimum value for PSmom,AdN in the ensemble (7.35 s21), the

entire 95% confidence interval of Rdiff,PCr remains below 0.5. Low

MOM permeability to adenine nucleotides causes high-energy

phosphate group transport via PCr, and that PSmom,AdN is never

lower than 7.35 s21 therefore argues against a predominant

phosphocreatine transport. Also when the value PSmom,AdN =

7.45 s21 estimated from Sepp et al. ([26]), see above, is

incorporated as prior knowledge, the analysis still yields similar

predictions of Rdiff,PCr, which stays with 95% confidence between

0.16 and 0.46 at heart rate 220 bpm.

It might be argued that the Kia value of the mitochondrial CK

should be set to 290 mM with oxidative phosphorylation active

([28]) to reflect functional coupling of CK to the adenine

nucleotide translocator (ANT). Optimization based on this Kia

value gives as result that on average 18% of the high-energy

phosphate flux at a heart rate of 220 beats/min is transported in

the form of PCr, the rest as ATP. The parameter values for

Vmax,Mi,f calculated from rat heart mitochondria is

16096113 mM/s in [28] and Vmax,ATPsyn is 2960 mM/s which is

about twice the value measured in the rabbit heart study analyzed

here. When using the rat heart parameters combined with

Kia = 290 mM, the contribution of PCr to high-energy phosphate

transport is estimated to be 25%. Further analysis of a model

which incorporates a microcompartment which functionally

couples the mitochondrial creatine kinase to the adenine

nucleotide translocator ([6]) shows that it is difficult to explain

the response time and molecular kinetic parameters simultaneous-

ly with this model. The results of this analysis can be found in Text

S2. The conclusion that the contribution of PCr to high-energy

phosphate transport is relatively modest appears to be robust,

because the contribution was estimated to be 15–17% in the

ensemble study with rabbit heart parameters, see above, and does

not become substantially higher in analyses with other parameter

sets.

Prediction of temporal energy buffering
The results described above indicate that direct ATP transport

is predominant in working heart muscle. Given that PCr energy

shuttling is of limited importance, we investigated another

potential function of CK, i.e. temporal energy buffering. When

ATP consumption by the myofibrils exceeds mitochondrial ATP

production during muscle contraction, ATP homeostasis can be

maintained by PCr [4]. Ensemble predictions for Rdiff,PCr,

concentrations of cytosolic ADP and Pi and ATP synthesis rate

at relative CK activity of 2, 100, and 300% of wild type levels are

shown in Figure 6. Note that Mi-CK and MM-CK activities are

both changed by the same factor in this set of simulations. Even at

Figure 2. Fit by the model of measured response times to heart
rate steps. The response times of oxidative phosphorylation (tmito)
were measured in isolated rabbit hearts [9]. Model parameters were
estimated using a modified Levenberg-Marquardt algorithm. Red bars
represent the tmito values from the experiment, yellow bars represent
the tmito values predicted by the model after the fitting procedure. Data
is available for six different conditions: three different amplitudes of
heart rate jump (from 135 bpm to 160, 190 and 220 bpm heart rate),
each one measured with full wildtype CK activity (100%) or with CK
activity inhibited to 2% of wildtype value. The error bars reflect the
standard error of the measurements and the standard deviation of the
tmito values in the ensemble, respectively.
doi:10.1371/journal.pcbi.1002130.g002
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3-fold increased CK activity, Rdiff,PCr does not increase dramat-

ically (Figure 6F). However, oscillations of cytosolic ADP

concentrations are significantly affected by the CK activity. The

amplitude of the ADP oscillation is 77611 mM at normal CK

levels and becomes 14661 mM if CK is inhibited by 98%, as is the

case for IA treated perfused hearts (Figure 6K,J). At threefold

increased CK activity this becomes 36622 mM (Figure 6L). In

simulations of a hypothetical case with 10000-fold increase of

enzyme activity, oscillations of adenine nucleotide concentrations

are almost fully damped to an amplitude of 2.660.2 mM (data not

shown).

The time course of mitochondrial ATP production oscillates

with amplitudes of 566631, 215623 and 91614 mM*s21 for 2,

100 and 300% relative CK activity, respectively (Figure 6G–I).

The pulsatility of ATP and ADP concentrations and of ATP

synthesis is synchronized to ATP hydrolysis in the myofibrils. The

confidence regions for these trajectories are relatively narrow. By

blocking CK by 98%, the average concentrations of ADP in the

IMS increases to 6469 mM from 5669 mM at normal CK levels.

In contrast to ADP, the amplitude of oscillations of cytosolic

inorganic phosphate stays relatively constant at different CK

activities at about 145 mM. This reflects that Pi is not directly

buffered by CK. Surprisingly, average levels of cytosolic inorganic

phosphate drop with CK activity. The average Pi concentration at

2% CK activity is 1618697 mM and becomes 1416680 mM for

wild-type CK activity (Figure 6M,N). For all parameter sets in the

ensemble the Pi concentration declines when CK activity is

increased.

The specific role of the mitochondrial CK isoform
Transport of HEP by PCr from mitochondria to cytosol

partially takes place via the circuit formed by both CK isoforms,

but was predicted to be quantitatively not very important. On the

other hand, temporal buffering of the systolic ATP hydrolysis burst

needs only the MM-CK activity in the cytosol, which is much

higher than the Mi-CK activity (see Table 1). It was therefore still

unclear what the function of the mitochondrial CK isoform is.

In order to further elucidate the effect of the compartmentalized

CK system on metabolism, we performed ensemble predictions

with individual inhibition of both CK isoforms one by one. In

Figure 7, we show the 95% confidence intervals of predicted

metabolite concentrations and reaction fluxes. The amplitude of

oscillations in mitochondrial ATP synthesis is predicted to rise

from 215623 mM*s21 at baseline CK activity to 278633 with

98% Mi-CK inhibition, compared to 375621 mM when MM-CK

is inhibited by 98% (Figure 7I–K). Thus, despite its low activity,

Mi-CK still has a small but clear effect on the ATP synthesis

oscillation amplitude. Inhibition of Mi-CK has a larger effect when

MM-CK is already inhibited (amplitude 565631 mM*s21,

Figure 7L). The damping of ADP oscillation is highly affected

by MM-CK but not by Mi-CK: 98% inhibition of Mi-CK leads to

an increase in the amplitude of systolic ADP oscilation from

77611 to 83611 mM (Figure 7M,N), whereas MM-CK inhibition

doubles the amplitude to 14661 mM (Figure 7O).

Predictions of Rdiff,PCr illustrate that both Mi-CK and MM-CK

are required for a functioning phosphocreatine shuttle. PCr

diffusion averaged over the cardiac cycle makes a very small

Figure 4. Prediction of energy transport from mitochondria to
cytosol by PCr. (A) Forcing function of pulsatile cytosolic ATP
hydrolysis for the last two cardiac cycles of a simulation over 60 s. (B)
Prediction of the relative PCr contribution to high-energy phosphate
flux across the mitochondrial outer membrane (Rdiff,PCr) at heart rate
220 bpm. The shaded region gives the central 95% confidence interval
of the Rdiff,PCr trajectories derived from ensemble simulations of 658
parameter sets. Solid lines depict a single simulation of the best scoring
parameter set. Blue color indicates the condition with CK active.
Simulations with CK inhibited by 98% by IA are plotted in orange. Note
that two cardiac cycles are plotted after a steady state was reached.
doi:10.1371/journal.pcbi.1002130.g004

Figure 3. Distributions of individual parameters in the ensemble generated by the Metropolis-Hastings algorithm. Plots show
histograms of all values in the ensemble for the given parameter. The ensemble consists of 658 parameter sets. Plotted in red is the probability
density function of the lognormal distribution with mean and standard deviation of each parameter scaled to the observed frequencies.
doi:10.1371/journal.pcbi.1002130.g003
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contribution to total HEP delivered from the mitochondria when

either Mi-CK or MM-CK is inhibited by 98%. With 98%

inhibited Mi-CK activity, Rdiff,PCr is even slightly below zero

during diastole with low ATP hydrolysis, meaning that PCr is

transported from cytosol to IMS (Figure 7F). Note that this

situation is reversed with respect to normal Mi-CK and MM-CK

activity where PCr diffusion is always positive during diastole and

occasionally becomes negative during ATP hydrolysis peaks. For

normal CK activity the explanation for reversed PCr diffusion

during ATP hydrolysis (Figure 7E) was that the CK activity per

unit volume is higher in the IMS than in the cytosol. During Mi-

CK inhibition this is of course no longer the case and systolic PCr

consumption in the cytosol leads to PCr diffusion from the IMS,

explaining the reversal of PCr transport during systole. In contrast,

with MM-CK inhibited, ATP is buffered by Mi-CK in the IMS

and PCr diffuses to the IMS at the end of the ATP hydrolysis

peaks. This explains why Rdiff,PCr goes more negative during ATP

hydrolysis peaks with MM-CK inhibition and its oscillation is

stronger than for normal Mi-CK and MM-CK activity (Figure 7E,

G). When inhibiting Mi-CK activity, our model predicts an

increase in the amplitude of [ADP] oscillation in the IMS from

5768 to 7168 mM. Mi-CK therefore has a damping effect on

oscillations of ADP concentrations in the IMS, which contributes

to the damping of mitochondrial ATP synthesis.

The concentration of cytosolic Pi is predicted to be lowered by

mitochondrial creatine kinase activity. Blocking Mi-CK leads to a

Pi increase by about 18% from 1416680 to 16706167 mM

(Figure 7Q, R). If Mi-CK is inhibited by 100%, the steady state Pi

concentration becomes 16786173 mM (data not shown). MM-CK

inhibition decreases the Pi concentration; a combination of Mi-CK

and MM-CK inhibition leads to a slightly higher Pi level

compared to the wildtype (Figure 7S, T).

Discussion

The relative importance of the different roles of the CK system

in myocytes is still hotly debated [4]. The present study was

designed to investigate the function of CK in cardiomyocytes

under varying workloads. In particular we sought to elucidate

whether the phosphocreatine shuttle is the major pathway for

HEP transfer from mitochondria to energy consuming myofibrils

as stated in the phosphocreatine shuttle hypothesis or whether CK

has other metabolic functions, e.g. the damping of swings in ATP

and ADP concentrations and oxidative phosphorylation.

Various computational studies of cardiac energy metabolism

have been published based on models which contained the

creatine kinase reaction, ATP hydrolysis and synthesis. The model

analyzed in the present study is a subset of the model of Vendelin

et al. ([6]) and was described previously [17,18]. The diffusion

gradients in the cytosol which had been shown to be very small

([6]) were replaced by a simple diffusion conductance. The

adenine nucleotide translocator and phosphate carrier in the

mitochondrial inner membrane and oxidative phosphorylation

(OxPhos) reactions in the mitochondria in the model of Vendelin

et al. were replaced by a Michaelis-Menten equation describing

OxPhos flux as a function of ADP and Pi in the intermembrane

space [18]. The model was further modified in order to prevent

thermodynamically infeasible loops by introducing constraints on

the equilibrium of the CK reactions in IMS and cytosol [19].

Some models in the literature implement substrate channeling

Figure 5. Dependence of PCr diffusion flux on heart rate and mitochondrial membrane permeability to adenine nucleotides.
Prediction of the PCr contribution to high-energy phosphate flux across the mitochondrial outer membrane (Rdiff,PCr), averaged over the cardiac cycle,
as a function of (A) heart rate and (B) mitochondrial outer membrane permeability for adenine nucleotides (PSmom,AdN), respectively. Values for (A)
Steady state values for Rdiff,PCr as a function of heart rate (B) Steady state values for Rdiff,PCr as a function of PSmom,AdN at fixed heart rate of 220 bpm.
We performed simulations for the ensemble of Figure 3, with the heart rate or PSmom,AdN set according to the x-axis. Blue shaded regions depict the
95% confidence interval of the prediction, black solid lines show the prediction for the optimized parameters (see Table 1).
doi:10.1371/journal.pcbi.1002130.g005
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between ANT and Mi-CK by a microcompartment which is

located inside the intermembrane space [6,11,29]. The perfor-

mance of those models is discussed below. Other models exist for

myocardial energy metabolism which do not consider the role of

two creatine kinase isoforms connected via facilitated diffusion.

For instance, Beard et al. integrated a detailed model of oxidative

phosphorylation [14] with a model of spatially distributed oxygen

transport and HEP metabolism to investigate the regulation of

oxidative phosphorylation at different cardiac workloads [5] and

HEP buffering in hearts at high workloads, acute ischemia and

reactive hyperemic recovery.

In the present study we predicted the functions of the CK

enzyme isoforms based on the following strategy. A set of

experimental data from multiple scales was assembled. We based

the analysis on our model which had been shown to contain the

key elements of the CK system [17,18]. The experimental data set

allowed to estimate all parameters of this model. In order to set

confidence regions for the predictions of CK function, the

experimental errors for the data were taken explicitly into account.

This was possible by generating an ensemble of model parameter

sets. The probability of a set of parameters being part of the

ensemble was determined based on the probability of the

predicted experimental data set given the parameters. This

approach was termed sloppy modeling [21]. Brown et al. [20]

and Gutenkunst et al. [22] applied it to time series of protein

activity levels measured during dynamic responses of a system as a

whole. The surprising finding in their studies was that responses of

the system as a whole were predictable with acceptable confidence

regions even if all parameters of the model were known with very

poor accuracy. This is possible because the correlation between

parameters is well defined by the behavior of the system as a

whole.

A novel aspect in the present study is that we combined data

taken from different integration levels in the system: kinetic

parameters determined on enzymes in isolation, enzyme activity

levels measured in tissue homogenates, organellar capacity levels

measured on isolated mitochondria and dynamic response times

determined on the heart as a whole. The whole organ response

times were very important because they sensitively depend on the

permeability of adenine nucleotides through the outer mitochon-

drial membrane, one of the organellar level parameters. This

MOM permeability could not be determined experimentally with

any degree of accuracy in isolated mitochondria. Combining some

strategically important data from the whole system level with

molecular parameters appears sufficient to predict system

properties with acceptable confidence regions (Figures 4–7).

Many of the experiments that are invoked to support high

degrees of functional coupling between CK and ANT have been

done in isolated mitochondria or in isolated myocytes and muscle

fibres that were permeabilized. These were often studied at

temperatures substantially below the physiological level. An

important aspect of our analysis is that we try to estimate the

functional roles of CK in the intact heart. To that end we combine

the kinetic data from the molecular level with data obtained in

isolated perfused hearts. It is important to realize that these hearts

were intact, with contractility and cell membranes fully functional.

Our model analysis explains the experimental data without

invoking direct coupling of CK and ANT. However, the limited

permeability of the mitochondrial outer membrane to adenine

nucleotides, estimated from the response time in the intact heart,

results in a certain degree of dynamic compartmentation of the

adenine nucleotides. This approach helps to define the functional

roles of CK in the intact heart at physiological temperatures. If

CK-ANT direct coupling is the only way that ADP is delivered to

the ANT, then the experiments with 98% inhibition of CK cannot

be explained. It would then also be hard to explain that Mi-CK

knockout animals still have substantial cardiac contractile function

[30]. Future CK-ANT interaction models need to address such

experimental data sets with CK inhibition and also explain the

phosphate-labeling data of Erickson-Viitanen et al. [31]

Our findings suggest that the principal role of the CK system in

heart muscle is to serve as a temporal energy buffer for ATP and

ADP at the 100 millisecond time scale. CK’s role in supporting

transport of high energy phosphate groups seems of limited

importance. If oxygen supply is interrupted, PCr will also buffer

ATP and ADP for several seconds [5]. Temporal energy buffering

therefore has a relatively large bandwidth. Joubert et al.

experimentally investigated the role of the CK shuttle by 31P

NMR magnetization transfer protocols in vivo and proposed the

hypothesis of a versatile role of PCr on intracellular energy

transport depending on cardiac activity [32,33]. Partial inhibition

of ATP synthesis led to a decrease of indirect energy transport via

PCr. This decrease is predicted by our model (data not shown).

Some computational models on compartmentalized energy

transfer in muscle, as for instance in Vendelin et al. ([13]), assume

restricted diffusion of adenosine nucleotides to an extent where

energy transport via PCr becomes essential. However, a large

restriction of adenine nucleotide permeation of the cytosol and

MOM is not compatible with the relatively fast responses of

oxidative phosphorylation to cytosolic workload steps [18].

The conductance parameter PSmom,AdN in our model reflects

not only the permeation of the MOM proper but in series with

that also diffusion in myofibrils and cytosol. The inverse of

PSmom,AdN in our model is therefore the sum of the inverse of

permeability-surface products (PS) for the MOM proper and

cytosol, respectively [18]. The present Monte-Carlo ensemble

approach indicates that PSmom,AdN lies within a range from 7.4 to

115 s21 (see Figure 3). Based on the transverse diffusion coefficient

of 52 mm2/s for ATP in the myofibrillar space measured with

fluorescently labeled ATP [34], the PS calculated for the cytosol is

216.7 sec21 [18]. Given an ensemble mean PSmom,AdN of 31.7 s21

(see Table 1) we predict that about 15% of the total resistance to

diffusion can be attributed to the cytosol. Note that the

fluorescently labeled ATP has a higher molecular mass than

ATP. The true diffusion coefficient of ATP is probably higher and

the contribution of the cytosolic space to diffusional resistance is

therefore probably overestimated in this calculation. The contri-

bution of PCr to HEP transport predicted in the present study

(Figure 4) is compatible with measured response times of the

system (Figure 2). It has been suggested that in cardiomyocytes the

density of mitochondria and their vicinity to myofibrils is sufficient

to ensure energy transport via adenosine nucleotides [3]. The

Figure 6. Fluctuations of metabolite concentrations and fluxes during the cardiac cycle at three levels of CK activity. Plots show (A–C)
Trajectory of the forcing function of ATP hydrolysis and ensemble predictions of (D–F) Rdiff,PCr, (G–I) mitochondrial ATP synthesis rate, (J–L) cytosolic
ADP and (M–O) cytosolic Pi concentrations at heart rate 220 bpm. Mi-CK and MM-CK activities were set to 2, 100, and 300% of wildtype levels. Three
cardiac cycles are shown at steady state. Solid lines show the simulated trajectory of the optimized parameter set (see Table 1). Shaded regions show
the 95% confidence interval for all trajectories of the ensemble of 658 parameter sets. To alter CK activity, the parameters describing maximum
enzyme velocity, Vmax,Mif and Vmax,MMf, are changed in parallel to the indicated percentage.
doi:10.1371/journal.pcbi.1002130.g006
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prediction by our model that CK-facilitated transport of PCr is not

obligatory for HEP transport is in line with the observation that

CK knockout has relatively mild effects on cardiac function

[10,30,35].

Activation of oxidative phosphorylation has been proposed to

be strongly dependent on substrate channeling of ATP and ADP

between the tightly coupled enzymes Mi-CK and ANT, meaning

that ATP exported from the mitochondrial matrix via ANT is

immediately available as a substrate for Mi-CK. The resulting

ADP is then channeled back to stimulate oxidative phosphoryla-

tion in the mitochondrial matrix. However, the hypothesis of

functional coupling is still debated [1] and other studies seem to

contradict it [36]. In order to investigate the effect of functional

coupling between the ANT and Mi-CK we implemented and

analyzed the model of Vendelin et al. ([6]), where the reactions are

coupled by a microcompartment (see Text S2). The model, which

contains constants which phenomenologically reflect the function-

al coupling of Mi-CK to the ANT is considered to give a good and

computationally effective representation of the functional coupling

between Mi-CK and oxidative phosphorylation [29]. It appeared

to be rather difficult to fit the model of Vendelin et al. to the given

experimental data of mitochondrial delay times (tmito) when

measurements on molecular kinetic parameters are taken into

account in the cost function. Especially at low workloads, a quicker

response to a step in ATP consumption rate after CK inhibition

could not be predicted with this model. Even when all parameters

from the model of Vendelin et al. were variable during the

optimization procedure, the quality of the fit is far from optimal

despite the fact that the model of Vendelin et al. has about three

times as many parameters as our present model. We therefore do

not consider the microcompartment explicitly in our present study.

The present results suggest that most of the delay of the

activation of oxidative phosphorylation after temporal changes in

ATP hydrolysis is caused by the delay of changes in phosphate

metabolite levels outside the inner mitochondrial membrane. To

investigate whether processes inside the mitochondria delay the

response further, we tested a model of the mitochondrial matrix

including metabolite transport across the inner mitochondrial

membrane with instananeous step changes in ADP or Pi and also

with ADP and Pi simultaneously outside the inner mitochondrial

membrane. This corresponds to the model applied in Text S2 with

all processes outside the inner mitochondrial membrane removed

and the ADP and Pi concentrations outside the inner mitochon-

drial membrane set as forcing function. After a 20% increase in

ADP concentration, ATP synthesis in the mitochondria reached a

steady higher level within one second. The response time,

calculated as for tmito, was 0.4 s. For a step in Pi the response

was even faster with a negative value for the response time of 20.3

s because the response showed an overshoot. For a simultaneous

change in ADP and Pi the mitochondrial response was essentially

complete within half a second, with a response time of 0.08 s.

When extramitochondrial ADP is changing, both mitochondrial

oxygen consumption and ATP efflux via the ANT reacted even

faster than the ATP synthase reaction. The fast response of

mitochondrial metabolism predicted by the model is in agreement

with spectroscopic measurements of the oxidation state of the

electron carrier cytochrome b which was oxidized with a half-time

of 70 milliseconds after a step in extramitochondrial ADP

concentration at 26uC, and presumably much faster at the

physiological temperature [37].

In studies on isolated rabbit cardiac muscle mitochondria the

direct contribution of mitochondrial ATP to PCr formation by Mi-

CK is low [31]. It was shown with radioactively labeled phosphate

groups that if the concentration of ATP in the environment of the

mitochondria is larger than 0.2 mM, less than 6% of PCr synthesis

uses ATP synthesized immediately beforehand in the mitochon-

drial matrix. This is incompatible with a model where a major part

of PCr is synthesized from ATP directly transferred to creatine

kinase via a very small compartment with limited exchange with its

environment.

By in silico analysis, we inferred distinct roles for the

mitochondrial and myofibrillar creatine kinase enzymes. MM-

CK is mainly responsible for damping large swings in metabolite

concentrations and large oscillations in the rate of oxidative

phosphorylation which would otherwise be caused by the large

peaks of ATP hydrolysis during the cardiac cycle. Mi-CK restricts

high concentrations of inorganic phosphate, which is surprising

considering that inorganic phosphate is not handled directly by

CK. Despite its low activity, Mi-CK also decreases oscillations of

ATP synthesis, mainly due to the effect of Mi-CK on ADP

oscillations in the intermembrane space.

The effect of the CK isoforms on the buffering of ADP

oscillations and the prevention of high concentrations of inorganic

phosphate may play a role in the prevention of formation of

reactive oxygen species (ROS). ROS production highly depends

on the mitochondrial membrane potential, which is increased at

low ADP levels [38,39]. The electric membrane potential in

mitochondria can also be altered by inorganic phosphate, leading

to enhanced ROS release [40]. Low ADP concentrations during

diastole are prevented by MM-CK according to our predictions

(see Figure 7). A protective role of Mi-CK against oxygen radical

formation by preventing high inorganic phosphate concentrations

is also predicted by our model. A function of Mi-CK to prevent

oxygen radical formation has been found experimentally in

isolated brain mitochondria [38]. The energy buffering role of

the CK system has been linked to the prevention of oxidative stress

in neurons [41,42]. Creatine supplements to nutrition have also

been shown to have a neuroprotective effect in models of

Huntington’s disease [43,44]. The effects of creatine as a

nutritional supplement in health and disease have recently been

reviewed by Wallimann et al. [45].

In conclusion, we showed that by using a relatively small

‘skeleton’ model we were able to explain the dynamic adaptation

of cardiac energy metabolism to changing workloads and to

discern different functions of distinct CK isoenzymes. The sloppy

modeling approach enables to make useful predictions of CK

system behavior despite limited experimental input data and

limited knowledge of kinetic parameters. The concept of sloppy

modeling can also be used to find optimal experimental designs to

further test the model [46]. We also demonstrated that combining

Figure 7. Ensemble predictions of metabolite concentration and flux oscillations during the cardiac cycle for selective CK isoform
inhibition. In the first row (panels A–D), the pulsatile forcing function for ATP hydrolysis is plotted. Predictions of the time courses of (E–H) relative
contribution of PCr to high-energy phosphate transport, Rdiff,PCr, (I–L) ATP synthesis rate, (M–P) cytosolic ADP and (Q–T) Pi concentrations. Heart rate
is 220 bpm. In the four columns we compare: no CK inhibition, 98% Mi-CK inhibition, 98% MM-CK, or both CK enzyme reactions inhibited by 98%.
Black solid lines show the simulated trajectory of the optimized parameter set (Table 1). Blue shaded regions show the 95% central confidence
interval for all trajectories of the ensemble of 658 parameter sets. To alter CK activity, the parameters describing maximum enzyme velocity, Vmax,Mif

and Vmax,MMf, are changed to the indicated percentage. Three cardiac cycles are shown after a steady state was reached. Note that the first and the
last column also appear in Figure 6 and are shown here for ease of comparison.
doi:10.1371/journal.pcbi.1002130.g007
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a computational model analysis with experimental data on the

level of cellular organelles and isolated enzymes and with the

response of the heart as a whole provides a powerful combination

that gives valuable insights in the functional roles of CK, such as

regulation of oxidative phosphorylation, energy transport, inor-

ganic phosphate levels and buffering of peaks of ATP hydrolysis at

the 100 millisecond time scale.

Methods

Computational model
For our analysis, we employed a previously published

computational model [18]. It is available in various formats and

can be found in the BioModels database [47] as well as in the

CellML model repository [48]. The model incorporates the key

elements of the CK system with ATP synthesis in the

mitochondria and pulsatile ATP hydrolysis in the cytosol (see

Figure 1). The input of the model is a forcing function of cytosolic

ATP usage catalyzed by myosin-ATPase and ion pumps. The

model contains ten ordinary differential equations (ODEs)

describing the rate of change of each metabolite concentration

(ADP, ATP, PCr, Cr, Pi) in two compartments over time. These

equations were extensively described previously [18]. Model

dynamics depend on 22 kinetic parameters retrieved from the

literature which are listed in Table 1. In general the kinetic

constants retrieved from the literature have relatively modest

standard errors. However, for the permeability of the MOM to

ATP and ADP (assumed to be equal in the model analysis; cf. [6]),

reported values differed from 0.16 [6] to 85 mm*s21 in the model

of Beard [14] based on measurements of Lee et al. [49]. This large

variation is possibly due to mitochondrial isolation or cell

membrane permeabilization procedures.

The mitochondrial outer membrane permeability-surface prod-

uct parameter PSmom,AdN influences the response time for

dynamic adaptation of oxidative phosphorylation strongly.

Therefore the dynamic measurements of venous oxygen outflow

in the heart as a whole in response to an increase of heart rate

allow estimating the mitochondrial membrane permeability at the

organellar level. The whole heart measurements were corrected

for oxygen transport delay to reflect events at the level of the

mitochondria (see below). The mitochondrial response time tmito is

defined as the generalized time constant of the time-course of

oxygen consumption (defined to be equivalent to the first central

statistical moment of the impulse response function in case the

system is linear), previously described in [18,50-52]. From a model

simulation, tmito is calculated as follows:

tmito~

ðtend

tstep

JATPhyd,test{JATPsyn(t)

JATPhyd,test{JATPhyd,basis

dt ð3Þ

Where JATPhyd,basis and JATPhyd,test are the values for the

ATP hydrolysis rates for the two electrically paced heart rates

at baseline and test level, averaged over the cardiac cycle;

JATPsyn denotes the time course of ATP synthesis in the

mitochondrion. tstep is the time point when the heart rate is

increased and tend is the time point of the final oxygen

measurement. Note that the average JATPsyn in the steady state

before and at the end of a test challenge equals JATPhyd,basis and

JATPhyd,test, respectively.

In order to correspond with the experimental conditions in [9],

tend was set to 60 seconds with tstep = 0 seconds; an initial run for

40 seconds before the heart rate step ensures that ATP synthesis

has adapted to ATP hydrolysis and is found to be in steady state at

this stage. In order to investigate the damping capabilities of the

modeled system, ATP hydrolysis is simulated as a pulsatile

function representing the alternating nature of energy demand

in systole and diastole as described in [18]. Figure 8 shows the

Figure 8. Pulsatile nature of energy production and consumption in the beating heart and the response to a step in heart rate.
Shown are the time courses of (A) ATP hydrolysis and (B) synthesis simulated with the model of Figure 1. At time 0 s, average ATP hydrolysis rate was
increased from 486.5 to 627.6 mM*s21 corresponding to an increase in heart rate from 135 to 220 bpm, as was imposed in the experiments which
were simulated in this study. Please note the difference in scale of the y-axis between panels A and B.
doi:10.1371/journal.pcbi.1002130.g008
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dynamic response of mitochondrial ATP production in response to

a step in heart rate and ATP hydrolysis.

Sloppy ensemble modeling
Almost all models in systems biology contain parameters that

cannot be determined precisely. It is common practice to estimate

missing parameter values by a parameter fit to experimental data.

After the fit, one can make model predictions and analyze the

underlying biological processes. This, however, is dangerous

because a range of parameter combinations may agree with the

available data equally well, potentially leading to deviating model

predictions of new experimental situations. Directions in param-

eter space where parameter changes do change the simulation

outcome very little were termed ‘sloppy’ by Brown et al., whereas

directions where small changes in parameter values affect the

dynamic behavior of the system strongly were termed ‘stiff’ [21].

Sloppy parameter sensitivity spectra have been identified for

numerous biological models by the analysis of the eigenvectors and

eigenvalues of a sensitivity matrix calculated from the chi-square

cost function [22]. Sloppy models exhibit a characteristic pattern

with the logarithms of eigenvalues approximately uniformly

distributed over a large range. A sensitivity analysis of the CK

model revealed the presence of both stiff and sloppy parameter

combinations and a ‘sloppy’ sensitivity spectrum [53]. Since our

model shows sloppy parameter sensitivities and is based on data

subject to experimental variation, drawing predictions from an

ensemble of parameter sets is preferable to merely relying on one

parameter set fit to experimental data. According to the sloppy

modeling paradigm ([21,22]), the probability of a set of model

parameters h to be included in the ensemble is proportional to its

likelihood to describe given experiment data D multiplied by the

likelihood of prior experimental information about the parameter

values themselves. The sampling process is thus based on Bayesian

inference of a posterior distribution of parameter sets

P(hjD)~P(Djh) � P(h), where P(Djh) is the likelihood of the

data given a parameter set,P(h) is the prior probability of the

parameter set based on experimental prior knowledge on single

parameter values and the posterior P(hjD)is the probability of a

parameter set to describe the given experimental data. The

construction of the ensemble with a Markov-Chain Monte Carlo

(MCMC) method was done with the Metropolis-Hastings

algorithm [54]. The Sloppy cell software environment, used for

the analysis, was adapted to process all operators which were in

the SBML file describing the model. The modified version is

provided in Dataset S1. To speed up convergence, Sloppy Cell

takes larger steps along sloppy directions and smaller steps along

stiff directions in parameter space; this ‘importance sampling’ is

described in [20,21].

Experimental data
Measured values of molecular model parameters and their

provenance, extracted from the scientific literature, are listed in

Table 1. For nine of the 22 parameters reliable standard

measurement errors could be found. In addition to the direct

measurements on molecular parameters, we employ tmito values

from a study by Harrison et al. where the effects of inhibiting

creatine kinase and different sizes of electrically paced heart rate

jumps in rabbit hearts were investigated [9]. Isolated hearts were

perfused with Tyrode’s solution containing among others glucose

and pyruvate to provide substrates for energy metabolism. In our

dataset we include two experimental conditions where hearts were

exposed to either (i) iodoacetic acid (IAA) to block glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) or (ii) iodacetamide (IA) to

inhibit both CK and GAPDH. In order to provide a sufficient

amount of reducing equivalents to fuel aerobic respiration despite

the inhibition of glycolysis, the buffer also contained pyruvate.

Adenosine was added to the Tyrode buffer to ensure that

oxygen supply is non-limiting when oxygen consumption is

recorded. The whole heart measurements were corrected for the

O2 transport time in the coronary vessels based on a model of

oxygen transport by convection in blood vessels and diffusion

through tissue. The tmito therefore reflects the response time at the

level of the mitochondria (cf. [9] and references cited there). The

mean response time was also corrected for a small deviation from

an ideal step in beat-to-beat ATP hydrolysis measured as an initial

overshoot in rate-pressure product [50]. For each condition, steps

in heart rate were imposed from 135 to 160, 190 and 220 beats per

minute, respectively, using electrical pacing. Note that glycolysis is

always inactive when the dynamic response is measured, which

corresponds to the absence of glycolysis in the computational

model. This approach made it possible to isolate the contribution

of the CK system from the contribution of glycolysis, which

removes substantial complexity from the model analysis.

A step in ATP hydrolysis from 486.5 to 627.6 mmol*l21 cell

water*s21 corresponds to a step in the electrically paced heart rate

from 135 to 220 bpm, as was estimated from measurements of

myocardial oxygen consumption [18]. From these values, we

linearly interpolated hydrolysis rates of 531.4 and 579.5 mmol*l21

cell water*s21 for heart rates 160 and 190 bpm, respectively. To

simulate CK inhibition by IA the model parameters for the

maximum velocities of both enzyme reactions were set to 2.3% of

their original values, corresponding to the CK activity measured

for the inhibited hearts. Note that the enzyme activities, the

mitochondrial capacities and the whole organ dynamic response

times were all measured in the same experimental model by the

same laboratory.

Cost function
Model parameters are fitted to experimental data using a

modified Levenberg-Marquardt least-squares procedure in loga-

rithmic parameter space, which is part of the SloppyCell modeling

environment. For our model and data we calculate the cost C for a

given parameter set h as follows:

C(h)~
1

2

X
c

yc(h){dc

sdc

� �2

z
X

i

prior(hi) ð4Þ

with yc being the model prediction of tmito (Eq. 3) as a function of

the parameter value h and dc the measured value for condition c

with standard error sdc
. The first term of the cost function takes

into account the experimental data on the whole heart level,

whereas the second term represents prior experimental informa-

tion about parameter values found in the literature or measured in

conjunction with the modeled experiments. The prior cost, which

gives a penalty for a parameter hi for drifting to far from its

measured value hi
*, is calculated as in [54]:

prior(hi)~
1

2

lnhi{lnhi
�

sln h

� �2

ð5Þ

Note how the prior is used to enter experimentally measured

information on parameters measured at the molecular level in the

second term of Eq. 4, while the first term contributes measured

information on the whole system response. The deviations of the

predicted response times from their measured values are penalized

relative to their measured standard errors and the deviation of the
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molecular parameters from measured values are penalized relative

to their reported standard errors. Values for molecular parameters

reported in the literature are usually given as mean and standard

error. However, in the sloppy modeling framework, it is preferable

to choose a normal distribution in log space [20,22,54]. A

Gaussian distribution of logarithmic parameters has been

proposed to be biologically plausible [55]. This forms a convenient

way to deal with dimensionless positive quantities as parameter

values [56].

In order to calculate the s value for a parameter h in log space

from its reported standard error (considering the span of a 95%

confidence region), we set the slnh value as follows:

slnh~
1

4
ln

hiz2SE

hi{2SE

� �
ð6Þ

where SE is the absolute standard error of parameter hi. If the

standard error is small relative to the mean of the parameter, the

shapes of the prior distributions become approximately normal

(see Figure 3). Since standard errors for only nine of all 22 system

parameters could be found, we chose the default slnh value for the

remaining parameters to be at the maximum of all slnh values for

parameters with known error. This maximum was the error of the

parameter for the binary dissociation constant for creatine from

Mi-CK (Kib,Mi, and see Table 1). In order to investigate the effect

of altered default prior standard deviation on posterior parameter

distributions and ensemble predictions, we performed several

additional ensemble simulations with lower and higher default slnh

values. Results of these simulations can be found in Text S1. The

parameter describing MOM conductance for adenine nucleotides,

PSmom,AdN, could not be reliably determined by experiments on

the organellar level and was therefore not constrained by a prior.

Determining prediction uncertainty: Ensemble
simulations

A first estimate of parameter values was determined by a least-

squares fit to the data, using the cost function of equation 4. This

initial best parameter estimate resulting from the optimization is

used as the starting point for a walk through the parameter space

using the Metropolis-Hastings algorithm. Starting the random

walk from the optimized set of parameters made the algorithm

converge more quickly to the posterior distribution. We use the

algorithm’s implementation in SloppyCell to sample parameter

sets with probability density proportional to exp({C(h)). All

scripts to reproduce the presented calculations can be found in

Dataset S2. To ensure that the members of the ensemble are

statistically independent, we ‘prune’ the ensemble by taking only

every nth sample, where n is the maximum correlation time of all

parameters. The correlation time of a parameter is defined as the

time constant of its autocorrelation function. For our model, taking

50000 steps in the random walk is sufficient to obtain more than

600 independent parameter sets. The independent parameter sets

in the ensemble provide the final estimate of the parameters, not

only characterized by a mean but also by a standard deviation

which reflects the spread of the estimation. Calculations were

executed in parallel on a ClusterVision parallel machine with 16

nodes of four 3GHz processors with 4GB RAM. For computa-

tional performance reasons, we calculated model simulations for

parameter estimation and ensemble sampling with an ATP

hydrolysis rate averaged over the cardiac cycle rather than the

pulsatile pattern shown in Figure 8. This reduced the time needed

for calculations tremendously, making it feasible to do the

ensemble calculations in several hours.

However, to investigate the damping characteristics of the

system, we use a pulsatile forcing function of ATP hydrolysis (see

Figure 8A) [18]. To assess the differences in metabolite levels and

fluxes caused by replacing the pulsatile function with a time-

averaged continuous function, 1000 parameter sets were randomly

drawn from all parameter sets tried in the Monte-Carlo random

walk, to compare the values of model results between pulsatile and

nonpulsatile simulations. The variables most affected by the

pulsatile approximation are Rdiff,PCr and tmito. The difference

between pulsatile vs. nonpulsatile simulations of all 1000

parameter sets is 7.664.3 and 6.861.5% (mean6SD), respective-

ly. tmito values from nonpulsatile simulations are always slightly

smaller than values from a pulsatile simulation, but their deviation

is smaller than the standard error of the experimental tmito data.

The difference between pulsatile and non-pulsatile model results

for other variables is below 4.5% of their average values in a

nonpulsatile setting.

Supporting Information

Dataset S1 Patched SloppyCell Python library. This

additional dataset consists of a patched version of the SloppyCell

Python library, version 0.8.1, which is required to reproduce all

calculations in this manuscript. The package is provided as a zip

file. Detailed installation instructions can be found in the zip file.

(ZIP)

Dataset S2 Model files and Python code. This zip file

contains the model in SBML format and all Python scripts

necessary to reproduce the results in this study.

(Z )

Text S1 Ensemble predictions with different default
prior standard deviations. This supplemental text reports the

results of our analysis procedure when smaller or larger default

prior standard deviations for parameters with unknown standard

error are assumed.

(PDF)

Text S2 Model analysis with additional microcompart-
ment which couples CK to the adenine nucleotide
translocator. In this supplemental text we present the results

of the analysis of a computational model which implements

substrate channeling between Mi-CK and ANT in a microcom-

partment, integrated with the data on mitochondrial response

times used in this study.

(PDF)
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