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Abstract

There is growing interest in understanding the nature and consequences of interactions among infectious agents. Pathogen
interactions can be operational at different scales, either within a co-infected host or in host populations where they co-
circulate, and can be either cooperative or competitive. The detection of interactions among pathogens has typically
involved the study of synchrony in the oscillations of the protagonists, but as we show here, phase association provides an
unreliable dynamical fingerprint for this task. We assess the capacity of a likelihood-based inference framework to accurately
detect and quantify the presence and nature of pathogen interactions on the basis of realistic amounts and kinds of
simulated data. We show that when epidemiological and demographic processes are well understood, noisy time series
data can contain sufficient information to allow correct inference of interactions in multi-pathogen systems. The inference
power is dependent on the strength and time-course of the underlying mechanism: stronger and longer-lasting interactions
are more easily and more precisely quantified. We examine the limitations of our approach to stochastic temporal variation,
under-reporting, and over-aggregation of data. We propose that likelihood shows promise as a basis for detection and
quantification of the effects of pathogen interactions and the determination of their (competitive or cooperative) nature on
the basis of population-level time-series data.
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Introduction

Studies of infectious disease systems typically focus solely on the

interaction between the host and the causative agent. This

approach has served epidemiologists well, especially for antigen-

ically stable pathogens, such as measles or chickenpox [1–4]. It is

becoming increasingly evident, however, that a broader perspec-

tive may be necessary to take interactions among infectious agents

into account [5]. The mechanisms responsible for these interac-

tions may be either immune-mediated or ecological, and their

effects may be either competitive or cooperative [6,7].

Consider immune-mediated interactions, which are well-

studied in the context of, for example, influenza virus infections

in humans and other species. Exposure to a particular strain of

influenza virus induces a humoral response from the host’s

immune system that subsequently clears the infection and is

thought to confer long-lasting protection against that strain of the

virus. This protective immunity may extend to other strains,

depending on the similarity between the strains as measured by

their ‘‘antigenic distance’’ [8], or the number of amino acid

differences in haemagglutinin epitopes [9]. Under the resulting

selective pressure, the influenza virus accumulates amino acid

differences in haemagglutinin epitopes to successfully evade

immunity present in the population [10], an evolutionary

consequence of competition [11].

Immune-system mediated interactions may also be cooperative.

An example of such an effect is the so-called doctrine of original

antigenic sin, whereby ‘‘the antibody-forming mechanisms appear to

be oriented by the initial infections of childhood so that exposures

later in life to antigenically related strains result in a progressive

reinforcement of the primary antibody’’ [12]. It is worth

emphasizing that immune-mediated interactions are not necessar-

ily restricted to genetically related pathogens. A number of recent

studies speculate about the mutually beneficial interaction between

HIV and malaria in Sub-Saharan Africa [13]. This interaction is

thought to arise because the risk of clinical malaria is increased in

HIV-1-positive individuals (due to immune-suppression) [14,15],

while malarial antigens can stimulate HIV-1 transcription and

enhance replication [16], promoting HIV transmission [17]. In

contrast to the competitive dynamics resulting from cross-

immunity in influenza, here the interaction is facilitative.

Interactions can also arise at the population scale, driven by

ecological processes. Previously, Rohani et. al. [18] proposed an

interaction between measles and pertussis, two predominantly

childhood diseases, via a shared susceptible pool [19]. Because

infection with such acute diseases is typically followed by a period

of convalescence and perhaps eventual death, an epidemic of one

will lead to the temporary (due to recovery) or permanent (due to

fatality) removal of susceptibles for the competing pathogen. This

type of interaction –termed ecological interference– was shown to
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affect the phase relation between disease outbreaks [18], as well as

the inter-epidemic periodicity [20].

An infectious disease system in which many of these facets are

thought to be simultaneously at play is the four dengue virus

serotypes [21]. After an infection, individuals are immune to

subsequent homologous viruses and are thought to be protected

for 2–9 months against infection with a heterologous serotype [22].

These cross-reactive antibodies, however, wane over time leading

to a scenario where heterotypic viral infections are in fact

enhanced through the process known as antibody-dependent

enhancement (ADE) [23,24]. Hence, with dengue, immune-

mediated serotype interactions may be both competitive and

cooperative, depending on the time since previous infection.

Understanding the mechanisms that drive the transmission

dynamics of dengue – and other strain polymorphic pathogens – is

crucial because they affect interpretation of epidemiological data

[25,26], clinical case management [27] and the design, selection

and implementation of alternative control programs [26,28]. It is

thought that ADE is a major determinant of clinical pathogenesis

and may explain why prior infection with a heterologous serotype

is a significant risk factor for the development of the potentially

fatal Dengue Hemorrhagic Fever (DHF). It is not known, however,

whether ADE results in increased transmission success of dengue.

Attempts to explore this question have focused on comparing the

dynamics of various mathematical models with serotype-specific

longitudinal data. Reported data for dengue serotypes in hyper-

endemic areas such as Mexico [29], Thailand [30] and Vietnam

[31] show the co-circulation of all four serotypes. A pattern of

sequential serotype dominance is observed, with outbreaks of

serotypes typically out of phase. This phase association has been

viewed as a key dynamical signature which a variety of

mathematical models of dengue have been challenged to

reproduce. However, no consensus has yet emerged as to the

primary mechanisms responsible for the observed oscillations in

dengue serotypes. A number of studies suggest that cross-immunity

may play a central role [25,28,32]; others have argued for ADE as

the primary driving mechanism [31,33,34].

In an ideal world, the epidemiological impact of pathogen

interactions would be quantified from individual-level infection

histories observed in hosts in their natural habitats. Apart from

exceptional settings [35,36], however, such an undertaking is not

feasible. It is inherently a difficult problem to scale biological

processes at the level of individual organisms up to their

population level consequences. Yet it is precisely the understand-

ing of these population level implications of potential interactions

that are fundamental for both public health strategies, and

inferring longer-term ecological and evolutionary consequences. A

step toward understanding the impact of such interactions might

reside in our ability to infer their traces directly from the

population level data. However, as we will show, approaches to

this based on key dynamical signatures (such as phase relation-

ships) can be unreliable as guides. Formal confrontation of

mathematical models that include putative mechanisms for

pathogen interactions directly with data may enable us to more

effectively harvest the data’s information and thus to more

effectively and reliably distinguish among competing hypotheses

and to quantify their relative transmission impact.

In this paper, we assess the feasibility of using a likelihood-based

inference framework to detect interactions from epidemiological

data. Because models with pathogen interactions can generate a

rich variety of dynamics [4,20,28,32,33,37] and may exhibit

sensitivity to noise [38], it is a priori unclear whether such inference

is feasible. The question we ask is, if several mechanisms induce

dynamics that are qualitatively indistinguishable, might it

nevertheless be possible to quantitatively ascertain which are most

likely to be operative? Answering this question is complicated by

the ubiquitous presence of stochasticity, which may very well be

responsible for ‘‘patterns’’ that appear in data. We use a recently

developed set of inference tools [39,40] and a flexible and freely

available software package [41], to formulate, estimate, and

compare mechanistic models with different mechanisms of

pathogen interactions. We seek to understand whether such

interactions can be correctly inferred from the data. The

techniques we use have been successfully applied in the context

of understanding key features of cholera [42], measles [43], and

malaria [44], and are amenable to testing mechanistic models of

stochastic dynamics with a continuous treatment of time and

noisy, incomplete observations.

In this proof-of-principle study, we show that, despite the

complexity of multi-pathogen models, it is feasible to rigorously

compare and distinguish among models having a realistic degree

of complexity. We find that when inference is focused on pathogen

interactions (ie, when host demography and epidemiology are

known), likelihood-based inference leads generally to correct and

precise conclusions. Critically, inferential power in these circum-

stances is determined by the strength of the underlying interaction

mechanism. This conclusion is robust even where temporal

dynamics are highly variable. That is, we find that accurate

inference is reliably possible despite stochasticity- and initial-

condition driven phase drift. We conclude that likelihood shows

great promise as a basis for the detection of the effects of pathogen

interactions and the determination of their (competitive or

cooperative) nature on the basis of population-level time-series

data.

Methods

Model for pathogen interactions
The model we focus upon is designed to be the simplest that

admits [(i)] multiple competing interaction mechanisms, both

permanent and temporary effects, and demographic stochasticity.

It is a slightly simplified version of the two-pathogen compart-

mental model proposed by Vasco et al. [37]. It tracks hosts

according to their pathogen-specific infection status. We bear in

mind that the two pathogens in the model may represent two

different strains of the same species or genetically unrelated

infectious agents. In general, scaling the model up to deal with

Author Summary

It is becoming increasingly evident that pathogens
associated with infectious diseases interact amongst
themselves. Pathogen interactions can occur in a co-
infected host, or in host populations where they co-
circulate, and they can be cooperative or competitive. Four
serotypes of dengue virus, for example, can exhibit both
forms of interactions – cross protection for a temporary
period and followed by long-lasting enhancement. This
bears important consequences for understanding the
ecology and developing control and prevention measures.
Detecting such interactions in a natural host population,
though, can be tricky. We show that studying the phase
relation of epidemic cycles, as it has been typically done, is
unreliable. We assess the ability of a likelihood based
method in detecting such interactions, and find that they
are accurate and robust. We propose that this framework
shows promise of serving as a basis for detecting and
quantifying pathogen interactions.
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more than two interacting pathogens will be a straightforward

matter, though the resulting model’s complexity, eg, in terms of its

state-space dimension, will increase geometrically with the number

of interacting pathogens.

As shown in Fig. 1, we assume that individuals are born

susceptible to both pathogens. For each pathogen, infection

dynamics follow the S?I?C?R progression, where S, I and R
are the familiar susceptible, infectious and recovered classes,

respectively. Compartment C has, in previous analyses [18,37],

been used to incorporate a period of convalescence, but here

might also represent, either a temporary period of immuno-

suppression or strain-transcending cross-immunity or a temporary

period of enhanced transmissibility associated with ADE, for

example.

In this model, pathogens interact when an individual currently

or previously infected with strain i is exposed to pathogen j. The

consequence of this exposure for individuals previously exposed to

strain i is determined by positive parameters w, j and x, which

modulate the force of infection of strain j, lj experienced by

individuals in each of the I , C, and R classes, respectively. Hence,

if all w~j~x~1, we have the null model in which the dynamics

of the two pathogens are mutually independent. A value smaller

than 1 reflects either temporary (as when wv1 or jv1) or

permanent (as when xv1) cross-immunity. Similarly, when these

multipliers are greater than 1, current or previous infection with

one pathogen increases susceptibility to the other, either in a

temporary (ww1 or jw1) or permanent (xw1) fashion. This

model assumes that all pathogen interactions are via modulation of

host susceptibility. In reality, interactions may also operate via

transmissibility. Here we ignore effects of heterotypic infections on

transmissibility, as explored by, for example, [28].

The model also accounts for host demography in that births

replenish the susceptible pool, and natural deaths remove hosts

from each compartment. These rates are assumed independent of

disease status and are both fixed at m. Thus the host population

size is held constant.

Deterministic skeleton of the model. In a deterministic

setting, the model is described by 16 ordinary differential

equations. Equations for each state can be read directly from

Fig. 1. In particular, each arrow is associated with an

instantaneous flux which is the product of a per capita rate and

the number of individuals in the source box. The per capita rates are

Figure 1. Schematics of a two pathogen model with various interaction mechanisms. Each box represents a possible host state, with
individuals Xij categorized according to their status with regards to the two pathogens. Letters S, I , C, and R stand for susceptible, infected,
convalescent, and recovered, respectively. The horizontal arrows follow the progression of a host’s infection due to the first pathogen, and the
vertical arrows follow the progression of the second. The diagonal arrows represent disease independent births and deaths. The transitions denoted
by red arrows are affected by pathogen interaction.
doi:10.1371/journal.pcbi.1002135.g001

Statistical Inference for Multi-Pathogen Systems
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symbolized using Greek letters. The equations of state for any

compartment are obtained by summing the fluxes associated with

all arrows pointing into that compartment and subtracting the sum

of the fluxes associated with arrows pointing out of it. For example,

if we let XII denote the number of individuals currently infected

with both strains, then

dXII

dt
~w1 l1 XSIzw2 l2 XIS{(mzc1zc2)XII:

The entire set of differential equations are presented in the

supplementary information (Text S1).

The only non-linearities in the model arise as usual via the

frequency-dependent transmission process. In particular, the

respective forces of infection terms for the two pathogens are given

by l1~b1 (XISzXIIzXICzXIR)=Nzv1 and l2~b2 (XSIz
XIIzXCIzXRI)=Nzv2. Here, vis are immigration terms, which

are constant through time.
Stochastic model. To model the presence of stochasticity, we

translate the ODE defined above into a stochastic process model.

We do this by considering each flux between compartments to be a

random process. In particular, we assume that, over a small time

interval of duration Dt, the per capita rates are constant and that the

fluxes out of each compartment are independent, multinomial

random variables. Thus for example, if we focus on the SS
compartment, there are three ways of exiting: infection by agent 1,

infection by agent 2, and death. By assumption, the per capita

probability of exit in the interval ½t,tzDt) is constant and, letting

ESS(t) denote the number that actually do exit SS in this interval,

we have ESS*Binomial(XSS,1{ exp ({(l1(t)zl2(t)zm)Dt)).
Among those that exit, the numbers of hosts respectively infected

with agent 1, infected with agent 2, and dying over this time interval

are distributed as Multinomial(XSS,
l1

l1zl2zm
,

l2

l1zl2zm
,

m

l1zl2zm
). Finally, to model extra-demographic stochasticity,

we include a gamma-distributed multiplicative white noise, dW=dt,
in the transmission process [43,45].

In full, the pathogen-specific forces of infection are given by:

l1~
b1

N
(XISzXIIzXICzXIR)zv1

� �
dW

dt

l2~
b2

N
(XSIzXIIzXCIzXRI)zv2

� �
dW

dt

Inference technology
To infer the nature of pathogen interactions in systems with

variability in phase relationships, we utilize the framework of

partially observed Markov processes [41–43]. This consists of

three major components: (i) the data; (ii) the ‘process’ model, proposed

to describe the underlying epidemiological and demographic

processes (described in section ‘‘Stochastic Model’’); and finally

(iii) the observation model, proposed to describe the process by which

the data are generated and linking the process model with the

reported data.

We assume the data consist of monthly pathogen/serotype-

specific case notifications. Since we consider two pathogens, the

data comprise parallel time series data y1,t and y2,t (t~1, . . . ,n) are

related to the true number of infections via a Poisson distribution.

Specifically, if Hi,t is the total number of new recoveries in month t
for pathogen i, and r is the reporting probability, then monthly

case notifications yi,t is assumed to have been drawn from a

Poisson distribution with mean rHi,t. The data sets we use to

challenge our inference technique are realizations of this model.

We use 40 years of simulated data, unless otherwise stated.

For each simulated data set, we compute profile log-likelihoods

over the parameters of interest, h. The log-likelihood function

may be expressed logL(h)~
Xn

j~1
log f (y1,t,y2,tjy1,1, . . . ,y1,t{1,

y2,1, . . . ,y2,t{1,h), ie, as the sum of conditional log-likelihoods of

y1,t,y2,t given y1,1, . . . ,y1,t{1,y2,1, . . . ,y2,t{1 and parameters h.

These quantities are computed using a Sequential Monte Carlo

(SMC) algorithm [40,46]. Each SMC calculation uses 30,000

particles. To estimate Monte Carlo error, we repeat each SMC

calculation 5 times at each parameter. The number of SMC

particles and the resolution of the grid over h are the only

algorithmic parameters: it would be straightforward to further

reduce Monte Carlo noise in our estimates by using more particles

in the SMC calculations and/or a finer grid over h. The cost of

doing so is purely the greater computational effort required. For

further details, refer to the supplementary information (Text S1).

Results

We present our results in several parts. First, we devote

subsections titled ‘‘System dynamics’’ and ‘‘Unreliability of phase

as an indicator of interactions’’ to an examination of the phase

association between strains under a variety of interaction

scenarios. In subsection ‘‘Basic identifiability of pathogen interac-

tion mechanisms’’, we report our findings from the inference

study. Subsequently (subsection titled ‘‘Stress testing the inference

approach’’), we examine the robustness of our results to a number

of realistic complications.

System dynamics
In the absence of pathogen interaction, the dynamics of our

unforced deterministic system are characterized by damped

oscillations. However, interaction between pathogens can lead to

sustained oscillations depending on parameter values [4,37].

When oscillations exist, cooperative interactions tend to generate

in-phase cycles while competitive interactions tend to lead to out-

of-phase oscillations. However, as Kamo & Sasaki [38] showed in

a somewhat similar, but seasonally forced, system, the phase

relationship between strains can be sensitive to stochasticity.

Specifically, they demonstrated that noise can destabilize the in-

phase solution, leading to asynchronous fluctuations. Similarly, in

our stochastic system, phase relationships are variable. For all

parameter values we examined, stochastic trajectories drift in and

out of phase.

Unreliability of phase as an indicator of interactions
To assess the reliability of between-strain phase relationship as

an indicator of the nature of pathogen interactions, we performed

a simulation study. We varied the interaction parameters (w, j, x)

across broad ranges, simulating 40 realizations of 5000 yr duration

at each point in parameter space. For each combination of

parameters, the phase difference in strain-specific incidence

generally varies with time. Fig. 2 shows the fraction of time

during which oscillations are in-phase (left) and anti-phase (right),

as a function of the strength and sense (cooperative versus

competitive) of both short- and long-term interaction. Even in

multiply replicated time series of 5000 yr duration, no consistent

association between the cooperative or competitive nature of

epidemiological interactions and phase relationship emerges.

While permanent cross-immunity (xv1), for example, frequently

leads to out-of-phase dynamics, it is also associated with in-phase

Statistical Inference for Multi-Pathogen Systems
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solutions 10%–20% of the time. More generally, for any

combination of parameters, there is a moderate chance (between

10% to 50%) of observing either in-phase or anti-phase

trajectories. The important practical implication is that phase

relationship may be a poor predictor of the mechanism of

pathogen interaction. Indeed, phase relationship alone appears to

be of little use in indicating even the cooperative or competitive

sense of pathogen interactions.

Basic identifiability of pathogen interaction mechanisms
To establish whether likelihood offers an improved basis for

inferring the nature of pathogen interactions from epidemiological

data, we performed another simulation study. We focused on

parameters intended to be typical of closely related pathogen

strains. In particular, we assumed symmetry between interacting

pathogens, ie, b1~b2, c1~c2, d1~d2, v1~v2, w1~w2, j1~j2,

and x1~x2. To keep the complexity manageable in this proof-of-

principle study, we focused on the interactions parameters by

assuming the strictly epidemiological parameters (contact rates,

infectious periods, immigration rates, and durations of the

temporary C stage) to be known. Moreover, we assumed the

short-term interaction parameters to be identical, ie, w~j. Table 1

gives the values to which these parameters were set. With these

parameters, the net reproductive number, R0, is 2.7 (in the

absence of pathogen interaction).

We examined the identifiability of the interaction parameters in

three distinct scenarios (Fig. 2):

Scenario I: No pathogen interactions, w~j~x~1. Since each

pathogen is independent of the other, this serves as a null model.

Scenario II: Perfect short-term cross-protection, no long-term

interaction, w~j~0, x~1. The ecological interference proposed

to explain measles-pertussis interactions (eg, [18]) is an example.

Scenario III: Moderate short-term cross-protection, permanent

enhancement, w~j~0:6, x~1:4. These effects have been posited

for the 4 dengue serotypes in hyper-endemic regions.

For each scenario, we present log-likelihood profiles for the two

interaction parameters of interest: short-term (w~j) and long-term

(x). We plot differences of log-likelihoods, Dloglik, and compute

confidence regions using likelihood ratio tests. We scale log-

likelihoods such that the 95% confidence region corresponds to

Dloglikw0. Further details of the profile likelihood construction

are provided in the supplementary information (Text S1).

Scenario I: No interaction. Here, the pathogens are

independent; oscillations are noisy and phase relationship is

variable. In particular, when epidemics are observed over only

40 yr, pathogen-specific oscillations can appear to be in phase, out

of phase, or neither. We selected two superficially different data

sets (Fig. 3): one realization displays large-amplitude oscillations

with strongly in-phase dynamics; the other, smaller-amplitude

fluctuations and strongly asynchronous dynamics.

Perhaps surprisingly, the log-likelihood profiles derived from

these two data sets are similar for both short- and long-term

interaction parameters. Despite the noticeable qualitative dynam-

ical differences between these data sets, the long-term interaction

Figure 2. Phase relation between the two epidemics in the simulation of the model. Level contours plot the fraction of time epidemics are
in-phase [Left], and anti-phase [Right]. Phase difference is calculated by considering 5000 years of simulation (100 years of transients are excluded),
computing the fraction of the time series during which strains are in-phase and anti-phase and averaging these fractions over 40 stochastic replicates.
Strains are categorized as in phase if the phase difference is less than an eighth of the period, and anti-phase if the difference is 1=2+1=8 of a period.
The three points marked (I), (II) and (III) are distinct scenarios examined in our inference tests. Model parameters are as in Table 1, with
v1~v2~10{6 .
doi:10.1371/journal.pcbi.1002135.g002
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parameter, x, is extremely well identified, with a narrow

confidence interval embracing the true value. The short-term

interaction parameter (w~j) is less well identified, as can be seen

from the flatter likelihood profile. That these parameters are

estimated correctly if imprecisely is indicated by the fact that the

true value is contained within the confidence interval.

Scenario II: Strictly temporary cross-immunity. In this

scenario, we set w~j~0, representing a strong competitive

interaction ( ie, perfect cross-immunity or complete convalescent

isolation) during the infectious and convalescent periods (a total

of 7 wk). We set x~1, denoting no long-term interaction. In

Fig. 4, we present time series for two independent model

realizations. Again, in one, oscillations appear to be out of phase

and in the other, in phase. As before, we find likelihood yields

accurate estimates, with greater precision in the case of the long-

term interaction parameter. Log-likelihood profiles indicate

that both the temporary, perfect cross-immunity (w~j~0) and

the absence of long term interaction (x~1) are quite well

identified.

Scenario III: Temporary, partial cross-immunity and

long-term enhancement. In the third scenario, we consider

both permanent and temporary immunological interactions.

During the infectious and convalescent phases, hosts are

assumed partially immune to secondary infection (w,j~0:6).

After recovery, host susceptibility to the other pathogen is

enhanced (x~1:4). As we have seen before, phase relationship is

variable and both in- and out-of-phase dynamics of 40 yr duration

are possible (Fig. 2). Among typical realizations, the degree of

asynchrony evident in the top right panel of Fig. 5 is relatively but

not extremely unusual; we comment more on this below.

Again, the likelihood profiles establish that both long- and short-

term interaction parameters are well identified, the long-term

parameters with higher precision. That the true parameter value

lies outside the 95% confidence interval for the anti-phase time

series reflects the fact that the simulated data set is somewhat

atypical. Even in this case, however, the null hypothesis (x~1) can

be rejected, with the estimate within 2% of the true value. It is

interesting that the degree of enhancement is over-estimated in

this case despite the strongly anti-phase nature of the dynamics.

Stress testing the inference approach
Having established that likelihood-based inference is computa-

tionally feasible in this system and can yield accurate estimates of

interaction parameters, we now push further in search of the

approach’s limitations.
Trade-off between the estimated strength and duration of

interaction. The dynamical consequences of an temporary

pathogen interaction depend not only on its strength but also on its

duration [18,37]. From an inference perspective, strength and

duration may trade off against one another: increasing duration

may masquerade as increased strength and vice-versa. In the

preceding section, we assumed the mean duration of the short

term interaction (1=d) to be known. We seek now to understand

whether this parameter can be identified simultaneously with the

interaction strengths. Fig. 6 shows how the likelihood depends on

short-term interaction strength and duration in each of the three

scenarios described above. In the absence of all interaction

(scenario I, top panel), there is a noticeable likelihood ridge

spanning the full range of 1=d at w~j~1. This indicates that the

duration of the (non-existent) interaction is, not surprisingly,

unidentifiable. One also notes that the ridge broadens as the 1=d
decreases. Thus the fact that the data contain little evidence for the

pathogen interaction can be interpreted either as an interaction of

zero strength but arbitrary duration or a very short interaction of

arbitrary strength.

In scenario II (temporary, perfect cross-immunity), the likeli-

hood profile reveals that, although the trade-off described above is

evident, the interaction duration is quite well identified. Impor-

tantly, the null case (w~j~1) is well outside the 95% confidence

region. In scenario III (temporary, partial cross-immunity and

long-term enhancement), the duration of the temporary phase is

very well identified. This is due in part to the fact that under this

scenario, the temporary and long-term interactions are of opposite

senses.

Length of time series. With 40 yr of monthly data,

likelihood appears a promising basis for inferring pathogen

interactions. In Fig. 7, we quantify how the quality of inference

degrades as the time series become shorter. As should be expected,

the likelihood profiles are flatter ( ie, estimates are less precise) with

less information. It remains relatively easy to distinguish the lack of

interaction (scenario I), as well as the presence of strong negative

interaction when this is the sole interaction (scenario II). In

scenario III, however, monthly data sets of less than 40 yr contain

insufficient information to reject the null hypothesis for the short-

term interaction (j~w~1).
Under-reporting bias. So far, we have assumed that our

case-report data are an unbiased reflection of the true number of

Table 1. Model parameters and their corresponding ranges.

Parameter Description Range

N Host population size 10 million

m Per capita host birth/mortality rate 0:02 per year

1=ci Average infectious period 2 weeks

1=di Average convalescent period 0:1 years

bi Transmission rate 70 per year

wi Interaction during infectious period 0{2

ji Interaction during convalescent period 0{2

xi Interaction during recovered period 0{2

vi Force of infection due to immigration 10{7

g Std. deviation of the gamma-distributed white noise (dW=dt) 0:01
ffiffiffiffiffiffiffiffiffiffi
year
p

r Reporting rate 1

doi:10.1371/journal.pcbi.1002135.t001
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infections, i.e. reporting rate, r~1. Next, we assess to what extent

our ability to infer the sense and strength of interactions is

hampered by systematic under-reporting. We construct the log-

likelihood profiles, shown in Fig. S2 in the supplementary

information (Text S1), using the same data set as in

Fig. 5[Right], but assuming that, on average, only 50% of cases

are reported (r~0:5). The figure shows that the log-likelihood

profiles remain essentially unchanged. Hence, in the presence of

known under-reporting, little information is lost, and minimal bias

is introduced.

Figure 3. Inference under scenario I: No pathogen interaction. Inference is carried out for two separate data sets constructed from the same
set of parameter values – results are shown in [Left] and [Right] columns for each data set. [Top] Simulated case-data for the two infections are
plotted in solid and dashed lines. Log-likelihood profiles for parameters describing the short (w,j) [Middle] and the long term (x) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted Dloglik are relative difference in the raw log-likelihood from the
reference point set at Dloglik~0, indicated by the horizontal dashed line. Dloglik~0 represents the 95% confidence interval–parameter values
corresponding to a positive Dloglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate SMC
calculations for each profile point, 30,000 particles in each SMC calculation). The profiles are created by fitting a smooth line through the log of the
arithmetic mean likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to generate the
simulated case-data. Parameters not shown in the graph are taken from Table 1.
doi:10.1371/journal.pcbi.1002135.g003
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A more rigorous challenge arises when reporting bias is not known

a priori and must be inferred along with interaction parameters. We

take one such scenario in which both reporting rate, r, and long-term

interaction, x, are unknown. The log-likelihood profiles (Fig. 8) show

that these parameters can be identified simultaneously.

Aggregated data. We have assumed in the foregoing that the

data are strain specific, ie, that accurate strain typing is possible. It

is frequently the case that strain identification is unavailable,

impossible, or ambiguous. In the extreme case, incidence data

represent an aggregate across strains. We now ask whether with

Figure 4. Inference under scenario II: Temporary cross-immunity. Inference is carried out for two separate data sets constructed from the
same set of parameter values – results are shown in [Left] and [Right] columns for each data set. [Top] Simulated case-data for the two infections are
plotted in solid and dashed lines. Log-likelihood profiles for parameters describing the short (w,j) [Middle] and the long term (x) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted Dloglik are relative difference in the raw log-likelihood from the
reference point set at Dloglik~0, indicated by the horizontal dashed line. Dloglik~0 represents the 95% confidence interval – parameter values
corresponding to a positive Dloglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate SMC
calculations for each profile point, 30,000 particles in each SMC calculation). The profiles are created by fitting a smooth line through the log of the
arithmetic mean likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to generate the
simulated case-data. Parameters not shown in the graph are taken from Table 1.
doi:10.1371/journal.pcbi.1002135.g004
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such aggregated data it is possible to infer the strength and sense of

strain interactions. To address this, we sum the strain-specific

incidence data from Scenario III (Fig. 5,[Top]). The resulting log-

likelihood profiles are shown in Fig. 9. The broader confidence

intervals reflect the fact that information has been lost by

aggregation (cf Fig. 5). Yet, the longer term interaction is still

well identified, irrespective of phase relation.

Unknown initial conditions. In our proof-of-principle study

thus far, we have assumed accurate knowledge of initial

conditions–the fraction of the host population in each

Figure 5. Inference under scenario III: Partial and temporary cross-immunity, and delayed but permanent enhancement. Inference is
carried out for two separate data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns for each
data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines. Log-likelihood profiles for parameters describing the
short (w,j) [Middle] and the long term (x) [Bottom] interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted Dloglik are
relative difference in the raw log-likelihood from the reference point set at Dloglik~0, indicated by the horizontal dashed line. Dloglik~0 represents
the 95% confidence interval – parameter values corresponding to a positive Dloglik are within the confidence bound. The gray dots indicate the
repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30,000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the arithmetic mean likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual
parameter value used to generate the simulated case-data. Parameters not shown in the graph are taken from Table 1.
doi:10.1371/journal.pcbi.1002135.g005
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Figure 6. Two-parameter profile log-likelihood surfaces: strength and duration of the short term interaction. Dloglik contours
(strength of the short term interaction, w~j, on the horizontal axis and the average duration of such interaction, 1=d, on the vertical axis) for (top to
bottom) scenarios I, II, and III. The red cross indicates the actual parameter values. Darker contours correspond to parameter regions that have higher
log-likelihood, and more consistent with the data. Solid white lines show the 95% confidence regions. Parameters as in Table 1.
doi:10.1371/journal.pcbi.1002135.g006
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compartment immediately before the first observation. In a real

world application, these would need to be estimated along with the

other parameters. In Fig. S4 in Text S1, for the data sets in Fig. 5,

we construct profile likelihoods as before but conditional on the

estimated initial conditions. That is to say, for each value of the

interaction parameters, we first estimate the initial conditions (see

the Text S1 for implementation details) and compute likelihoods

based on these values. Results show that while uncertainty

regarding initial conditions reduces the precision of interaction

parameter estimates, the fundamental identifiability is unaffected.

Discussion

In recent decades, much work has focused on identifying the

immunological consequences of infection with one pathogen for

subsequent infection with other co-circulating pathogens. This is

most obviously applicable to strain-polymorphic pathogens, such

as influenza and dengue viruses, but is increasingly thought to

affect unrelated infections, including the mutual enhancement of

HIV and malaria [13], TB and macroparasitic infections [47],

competitive/mutualistic dynamics of intestinal worms [35,48],

and an entire community of parasites co-circulating in wildlife

populations [36]. There are two practical problems. First, it is

imperative to establish the extent to which processes of

enhancement or exclusion occurring at the level of an individual

impact large scale transmission dynamics. Second, in instances

where multiple competing mechanisms for pathogen interaction

have been mooted, it is important to know whether analyses of

incidence data can facilitate hypothesis testing.

We have approached these problems by attempting to infer

potential interactions from simulated case-notification data. Our

choice of a two-pathogen model is deliberately simple. In general,

concurrent or prior infection with heterotypic pathogens may

modify host susceptibility, transmissibility, virulence, and infection

duration, with concomitant impacts on epidemiology. Here, we

focus strictly on interactions that affect host susceptibility. Our

transmission model is sufficiently flexible and likelihood sufficiently

powerful as a basis for inference that investigations of other

mechanisms can be straightforwardly accommodated.

We are encouraged to find that, in the optimistic case where the

epidemiological traits of each pathogen (R0 and infectious period)

and seroepidemiology (initial conditions) are known, it is clearly

possible to correctly infer the strength and nature of interactions

from longitudinal data. Moreover, even when initial conditions are

not known, it is possible to estimate them, with little loss of

precision. Examining three distinct scenarios, we have described

accurate inference of the presence/absence of an interaction, its

strength and, promisingly, the confident identification of multiple

co-occurring modes of interactions. Not surprisingly, our ability to

infer an interaction is determined by its dynamical impact, with

permanent effects better identified than interactions that operate

over short time scales.

It is important to point out that much of the work on serotype

dynamics of dengue [28,32,33] or interference effects between

measles and pertussis [18,19] has focused on phase association as a

key dynamical signature. In our stochastic unforced model, we

find that phase relation is highly variable (Fig. 2) and is, by itself,

an unreliable indicator of the type and the intensity of pathogen

interaction. To quantify the impact of phase structure in our

inference, for each scenario, we deliberately picked two data sets

that showed qualitatively different relative phases. Somewhat

surprisingly, our ability to make inference about underlying

interactions is not driven by the correlation dynamics of the data.

This suggests that phase relation–visually suggestive though it may

be–is not a characteristic feature that provides reliable information

about pathogen interaction.

We need to place the relatively encouraging results of this proof-

of-principle study within the context of our central–and at times

rather optimistic–assumptions. As we have shown, the length of

the time-series data directly affects the power of the inference.

Within the confines of this project, we find that 40 yr of monthly

data appear sufficient for robust inference. However, restricting

the data to 20 yr substantially weakens the inference, particularly

concerning short-term interactions.

Figure 7. Inference precision and accuracy as a function of time series length. We compare the shape of the log-likelihood profiles for short
term interaction w~j as the size of the data varies, in three different scenarios. Other parameters are taken from Table 1.
doi:10.1371/journal.pcbi.1002135.g007
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Relaxing the assumption of 100% reporting fidelity is an

important reality check. We find that under-notification does not

significantly impact the identifiability of key model parameters,

assuming that the reporting precision is known. Even when the

extent of under-reporting is not known and must be estimated along

with other parameters, however, our results indicate that pathogen

interactions remain identifiable (see Figs. S3 in Text S1, & Fig. 8).

Another possible data limitation is aggregation, particularly when

for disease systems with multiple genetically related strains or

serotypes. Our explorations of this problem suggest, although the

information on the short term interaction is diluted, it need not

substantially impair the correct identification of the interaction.

Figure 8. Simultaneous inference of under-reporting and long-term interaction. Plotted are Dloglik contours (strength of the long-term
interaction, x, on the horizontal axis and the reporting rate, r, on the vertical axis). Marked in red crosses are the actual parameter values for x and r.
Darker contours correspond to parameter regions that have higher log-likelihood. Solid white lines show the 95% confidence regions. For this figure,
short term interaction w~j~1. Parameters not shown in the graph are taken from Table 1. See Fig. S3 in the supplementary information (Text S1) for
the simulated data and corresponding profiles.
doi:10.1371/journal.pcbi.1002135.g008
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The inference tests carried out here assumed a relatively low

basic reproduction ratio (R0&2:7), a short mean duration of

temporary interaction (*7 weeks) in a large population (N~107).

The power of these inferential tests is likely to change with disease

epidemiology and population demographics. As we show in Fig.

S1 in Text S1, interactions are more clearly identifiable with a

higher R0. This is to be expected since more interactions occur

when infections are more contagious. Similarly, we expect

temporary interactions to be more clearly identifiable when they

operate over longer periods. In contrast, strain interactions in

Figure 9. Inference under scenario III with aggregated data. Inference is carried out for two separate data sets constructed from the same set
of parameter values – results are shown in [Left] and [Right] columns for each data set. [Top] These are the same data sets used to make Fig. 5. For
each data set, the two time series are added together to form a single aggregated time series. Log-likelihood profiles for parameters describing the
short (w~j) [Middle] and the long term (x) [Bottom] interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted Dloglik are
relative difference in the raw log-likelihood from the reference point set at Dloglik~0, indicated by the horizontal dashed line. Dloglik~0 represents
the 95% confidence interval – parameter values corresponding to a positive Dloglik are within the confidence bound. The gray dots indicate the
repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30,000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the arithmetic mean likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual
parameter value used to generate the simulated case-data. Parameters not shown in the graph are taken from Table 1.
doi:10.1371/journal.pcbi.1002135.g009
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smaller populations–with their noisier dynamics and lower-

amplitude outbreaks–should be less precisely identifiable.

All of our inference tests have relied on an important

assumption–perfect knowledge of disease epidemiology. In any

real world application of our methodology, the transmission rate,

infectious period and initial conditions will likely need to be

estimated alongside the interaction parameters. It remains to be

seen whether likelihood-based inference is up to such a challenge.

Supporting Information

Text S1 In the supplementary information, we provide the

following: 1. The complete deterministic skeleton of the model in

Table S1. 2. A brief description of the inference technology used in

the paper. 3. Details on the construction of log-likelihood profiles

and surfaces. 4. An example examining the effect of changing

epidemiology, with Fig. S1. 5. Supplementary information on

under-reporting, with Fig. S2, and Fig. S3. 6. An example where

initial conditions are estimated along with the interaction, with

Fig. S4.
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