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Filament Depolymerization Can Explain Chromosome
Pulling during Bacterial Mitosis
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Abstract

Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome
translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a
ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via
disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can
robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically
consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is “self-
diffusiophoretic”: by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is
higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA
gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this
case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the
product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures
the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest
explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and
chromosomal compaction.
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Introduction

Several processes involved in DNA partitioning rely on
depolymerization of filaments for translocation. In eukaryotes,
depolymerizing microtubules [1] position chromosomes before cell
division via macromolecular couplers and/or molecular motors
bound to the microtubules [2,3]. In prokaryotes, however, no such
coupler or motor has been identified. Instead, proteins bound to the
chromosome or plasmid bind directly to filaments and trigger their
depolymerization [4,5]. This poses the question of whether in the
absence of a coupler, DNA can be pulled in a robust fashion,
without becoming detached from the filaments as they disassemble.

Type I low-copy-number-plasmids [6,7], chromosome I of Vibrio
cholerae 8], and the chromosome of Caulobacter crescentus [9-12] all
share a common segregation mechanism that relies on pulling
mediated by filament depolymerization. This conserved system
relies on three central components: the ATPase ParA, the DNA-
binding protein ParB, and a centromere-like DNA locus. ParA is a
deviant Walker-type ATPase that upon binding ATP forms dimers
that can polymerize and associate with DNA [10,13]. ParB
interacts with ParA directly and stimulates ATP hydrolysis,
causing ParA to dissociate into free monomers [13]. The spatial
and temporal organization of ParA and the ParB-binding parS
chromosomal locus can lead to robust chromosome segregation i
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vivo. For example, in C. crescentus, the chromosomal origin (orz) i3
initially localized at a single cell pole (the “‘stalked” pole) [14], and
must translocate to the opposite “swarmer” pole before cell
division. In predivisional cells, approximately one thousand ParB
are bound via par$ near the origin of the chromosome (or7) [9,15].
There appear to be several distinct stages of ParB-parS-ori complex
translocation [11]; our focus is on the final, most rapid stage in
which the complex binds to filaments of ParA and translates from
partway across the cell to the swarmer pole at a velocity of
v~0.3 um/min [9,11,16,17]. As the ParA bundle depolymerizes,
presumably due to ParB-induced ATP hydrolysis or nucleotide
exchange [7-11,13,15,18,19], the ParB-parS-ori complex remains
localized near the edge of the ParA structure [8,10-12].

For eukaryotic chromosome segregation driven by depolymer-
ization of microtubules [2,3], models generally assume the
existence of a “coupler” that attaches the chromosome to the
depolymerizing microtubules. This coupler moves along the
microtubule ahead of the depolymerizing end, either because it
slides along it diffusively [20-24], because it is pushed by
conformational changes near the tip of the microtubule [23-26],
or because it has a complex internal structure that causes it to
process [3,27]. Of the existing models of bacterial chromosome
segregation [28-33], only a few address the question of how
depolymerizing proteins can cause translocation. Typically, these
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Author Summary

Reliable chromosome segregation is crucial to all dividing
cells. In some bacteria, segregation has been found to
occur in a rather counterintuitive way: the chromosome
attaches to a filament bundle and erodes it by causing
depolymerization of the filaments. Moreover, unlike
eukaryotic cells, bacteria do not use molecular motors
and/or macromolecular tethers to position their chromo-
somes. This raises the general question of how depoly-
merizing filaments alone can continuously and robustly
pull cargo as the filaments themselves are falling apart. In
this work, we introduce the first quantitative physical
model for depolymerization-driven translocation in a
many-filament system. Our simulations of this model
suggest a novel underlying mechanism for robust
translocation, namely self-diffusiophoresis, motion of an
object in a self-generated concentration gradient in a
viscous environment. In this case, the cargo generates and
sustains a concentration gradient of filaments by inducing
them to depolymerize. We demonstrate that our model
agrees well with existing experimental observations such
as segregation failure, filament-length-dependent translo-
cation velocity, and chromosomal compaction. In addition,
we make several predictions-including predictions for the
specific modes by which the chromosome binds to the
filament structure and triggers its disassembly—that can be
tested experimentally.

models attempt to explain ParAB partitioning systems with
reaction-diffusion models or general thermodynamic arguments,
but do not address the conditions required for robust translocation
[31,32].

Here we ask whether depolymerization of ParA by ParB
without a coupler 1s sufficient to explain the observed translocation
in prokaryotic DNA partitioning. We performed Brownian
dynamics simulations that explicitly incorporate the biochemistry
of the primary constituents of the ParABS segregation system. In
our simulations, a polymer representing the ParB-panS-ori complex
(henceforth referred to as the “ParB polymer”), binds to a
filamentous ParA bundle and initiates disassembly of ParA. We
find that the ParB polymer can indeed exhibit robust, depolymer-
ization-driven translocation via a novel mechanism (Fig. 1),
provided certain conditions are met.

Results

Simulating ParB translocation

To understand the mechanism by which ParA translocates
ParB, we performed Brownian dynamics simulations of a ParB
polymer interacting with an anchored ParA filament bundle
(Fig. 1c). The ParB polymer, shown in Figs. 1b—c, corresponds to
the ParB-parS-ori complex. It is represented by a semi-flexible
chain of monomeric subunits, typically of length 100 subunits. The
center section (dark green in Fig. 1b), typically of length 50
subunits, represents the part of the chromosome that binds to
ParA via ParB, while the two peripheral segments (light green in
Fig. 1b only) cannot bind to ParA.

During robust translocation, the ParB polymer remains
localized near the tip of the ParA bundle and moves across the
cell (see snapshots in Fig. lc and Video SI). By inducing
disassembly, ParB creates a concentration gradient of ParA
filaments that remains fixed with respect to the center of mass of
the ParB polymer. Thus, the ParA concentration profile
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Figure 1. Schematic model for chromosome segregation and
simulation snapshots. (A) Model of chromosome segregation in
Caulobacter crescentus. (i) Initially, the two copies of the origin of
replication (ori - green) and the terminus (ter - blue) of the chromosome
are localized at the stalked and swarmer poles, respectively. (ii) The two
origins separate and a structure of ParA protein (red) emanating from
the swarmer pole comes into contact with the medial origin; ParB,
polymerized on the chromosome near the origin, binds to ParA. (iii)
ParB and the origin localize with the end of the ParA and move across
the cell as ParA depolymerizes. (iv) The origin localizes near the swarmer
pole; the terminus moves towards mid-cell. (B) Snapshot of ParB-ParA
binding in simulation. The central strip of the ParB polymer (dark green)
binds side-on to ParA filaments, whereas the peripheral segments of
the ParB polymer (light green) cannot bind to ParA. (C) Snapshots of the
full simulation and corresponding ParA filament concentration profiles
(red). The dashed green lines indicate the center of mass of the ParB
polymer. ParB binds to ParA and disassembles the ParA bundle (for
clarity, depolymerized ParA monomers are not displayed). This
interaction creates a steady-state ParA filament concentration gradient
(black), which moves with and transports the ParB across the cell,
providing a mechanism for chromosome segregation.
doi:10.1371/journal.pcbi.1002145.9001

translocates with the ParB, and exhibits only small, short-lived
fluctuations around a well-defined steady-state mean (Fig. lc).

Translocation is most robust when ParB binds side-on to
ParA

Since the precise nature of the ParB—ParA interaction is
unknown, we used our simulations to identify the modes of binding
and disassembly that provide robust translocation. In our model (see
Methods), ParB binds to ParA subunits in the filament bundle
(Fig. 1c). The ParB polymer hydrolyzes ParA subunits that it binds
to; once a subunit at the tip of a ParA filament is hydrolyzed, it can
depolymerize from the filament. Monomers rapidly diffuse away
once they have depolymerized. Some interaction/disassembly
mechanisms or parameter ranges lead to robust translocation of
the ParB polymer, while others lead to failure by rapid detachment:

Tip-only binding. In this model, ParB binds only to the tips
of ParA filaments (Fig. 2a). Since the number of ParA filament tips
is limited, the ParB polymer is held only weakly to the ParA
bundle, and small fluctuations can cause it to detach (Fig. 2a). In
principle, this failure mode could be suppressed by increasing the
number of ParA filaments within the bundle, but translocation is
intrinsically fragile for this model.

Side-binding with filament severing. As an alternative, we
allow ParB to bind to the sides of the ParA filaments (Fig. 1b). In this
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Figure 2. Mean time, (Zjchny, to first detachment of ParB
polymer from ParA for various failure modes. In a standard
simulation, ParB binds ParA filaments side-on, and hydrolyzes individual
ParA subunits. Hydrolyzed ParA disassembles from the tip of each
filament in the bundle. In a typical simulation it takes about 200ms for
the ParB polymer to translocate across a distance of 1 um. However,
ParB completely detaches in a short time if (A) the ParB polymer binds
to only the tips of the ParA filaments or (B) if ParA filaments disassemble
via mid-filament severing. In addition, the ParB polymer detaches if (C)
ParB binds too weakly to ParA or (D) ParA disassembles too quickly.
Measurements for (A) and (B) are taken from simulations with side-
binding with severing or tip binding, respectively, with standard
parameters. Measurements for (C) and (D) are taken from simulations
with the slowest disassembly rate or highest binding energy,
respectively, for which the mean time to first detachment is shorter
than the time required for the ParB polymer to translocate across the
cell.

doi:10.1371/journal.pcbi.1002145.9002

model, ParA filaments can disassemble by severing in addition to
disassembling from the filament tips (Fig. 2b). Severing may occur at
the location of any ParA subunit that has been hydrolyzed by ParB.
Typically, we find that the ParB polymer binds to multiple severed
ParA segments, preventing ParB from binding to the remaining
filaments in the ParA bundle (Video S2). As a result, the ParB
polymer rapidly detaches from the anchored bundle. ParA severing
therefore does not lead to reliable ParB translocation.

Side-binding with tip-only disassembly. In this model,
ParB binds side-on to ParA filaments (Figs. 1b—c) and ParA
disassembles only at the filament tips. In this case, the ParB
polymer translocates across the cell without detaching from the
ParA bundle for a wide range of parameters. However, under
certain extreme conditions, translocation fails:

Weak binding. If the ParB-ParA binding energy, €, is too
small, ParB quickly detaches from ParA due to thermal noise and
the force from the rest of the ParB polymer (Fig. 2c).

Fast hydrolysis and depolymerization. Rapid detachment
occurs if the ParA hydrolysis rate, kj, and ParA depolymerization
rate, kg, are both too large (Fig. 2d).

Our major result is that translocation is most robust in the side-
binding model with disassembly only from the tips of ParA
filaments. The rest of our simulations use this robust mode of
disassembly and translocation, and henceforth, we refer to side-
binding with tip-only disassembly as our standard model.

The rate of disassembly controls the ParB translocation

velocity
To understand how ParA translocates ParB, we identified
variables controlling the translocation velocity, vparg. In all cases,
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we find that vpyrp is given by the mean rate, &, of disassembly of a
ParA filament, so that vp,g =ak, where a is the length of a ParA
subunit. In order for a subunit to disassemble from the tip of a
ParA filament, the subunit must bind to ParB, its ATP must
hydrolyze, and the subunit must fall off. k therefore depends on
the distance, ¢, that the ParB polymer typically penetrates into the
ParA bundle and causes ParA-ATP hydrolysis, the rate, kj, of
ParA-ATP hydrolysis, and the rate, k4, at which a ParA subunit
depolymerizes once hydrolyzed.

In turn, the penetration length, ¢, depends on the shape of the
ParB polymer. In our simulations, the freely diffusing ParB polymer
adopts an isotropic, globular equilibrium shape. The maximum
value, max, of the penetration length, ¢, is achieved if the ParB
polymer is able to maintain this equilibrium shape as it is pulled by
ParA. If the disassembly rate, k, is too high, the ParB polymer is
pulled along so rapidly that it does not have time to relax to its
equilibrium shape. In this case, the ParA bundle pulls the leading
region of the ParB polymer faster than the rear of the polymer can
respond to the perturbation and the ParB polymer stretches out.
Because the part of ParB polymer does not keep pace with the
retraction of the depolymerizing ParA bundle, the ParB polymer
does penetrate as deeply into the ParA bundle, so ¢ < /.

We now estimate the time for the ParB polymer to relax to its
equilibrium size. In our simulations, since ParB decorates the
center section of the polymer and binds to ParA, the undecorated
peripheral segments of the chain are the first ones to stretch out
when the ParB polymer is pulled too rapidly (Video S3). The
stretching of the peripheral segments is governed by the equation:

<Z> =vParB_DS<Z>/(RE—))2=VParB_<Z>/Th (1)

where {z) is the ensemble-averaged z-distance between the ends
of a peripheral segment pulled by one end in the z-direction, Dy is
the diffusion coefficient of the segment, R is the z-component of
its equilibrium radius of gyration, and the relaxation time,
T,.=(R§_))2/Ds, is the ratio of its internal drag, kT /D;, to the
effective spring constant, kzT /(R%)* (see Text S1). Stretching is
appreciable if {z) 2 R, so for translocation in steady state
({£)=0), stretching becomes appreciable for vpyp 2 v =Dy/R?,
or, equivalently, @kR%/Dy » 1 (inset to Fig. 3a). The shape of the
pulled ParB polymer is therefore governed by the product .k,
where we have defined

1,=aR’/Dy=(a/R)z,. 2)

The penetration length, ¢, depends directly on the shape of the
ParB polymer. For large 7,k the ParB polymer is pulled rapidly
and £ is small. This is because the ParB polymer is pulled away
from the ParA bundle, leading to less overlap of the volume of the
ParB polymer with the volume of the ParA bundle. As a result,
there is less binding between individual ParB subunits with ParA
subunits. As 7,k decreases, £ increases and saturates at £,y for
74k 51 (inset to Fig. 3b). In the latter regime, the disassembly rate
is k =k, where

ako=(1/lmaxkn+1/aky) " (3)

Thus, the translocation velocity is controlled by the effective
relaxation time, 7,, and the maximum disassembly rate ko.
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Figure 3. Dependence of translocation velocity on disassembly rate and relaxation time. (A) Translocation velocity, vp,p (solid symbols),
increases with depolymerization rate, k;. At low kg, vy is linear in kg, scaling as ak, (green curve), where a is the diameter of a ParA subunit. At
large k,, with an arbitrarily fast hydrolysis rate, k;, the ParB polymer detaches from the ParA bundle in an observably short time, {Zgetachy (Open
symbols). The dashed line separates the regime of translocation from the regime of detachment. For small &, (red triangles), translocation velocity
saturates at intermediate values of k; and vp,p. Inset: Ratio of the z-component of the radius of gyration of the ParB polymer squared to the p-
component squared (R2/R2) At large k,, the polymer stretches along the axis of motility. The black dotted line marks the k; at which the
depolymerization time, l/kd, exceeds the effective relaxation time, 7, (Eg. 2), of the ParB polymer. The green dashed line indicates R2/R2 =1/2,

which is expected for an isotropic polymer coil. (B) vp,:g grows with hydrolysis rate for small k;, and saturates at k), ~

k4 (indicated by dotted line). This

behavior can be fit by 1/vpys =1/lk; + 1/ak, (green, see Eq. 3). Inset: Variation of the best-fit length scale, ¢, over ParA subunit diameter, a, with k.
(C) vparp is insensitive to the total drag, {p,.s, on the ParB polymer over several orders of magnitude for both fast &, (black) and slow k;, (red). For very
large (p,., the ParB polymer translocates more slowly. (D) For a fixed quantity of ParB as one component of the polymer, longer polymers move
more slowly than shorter polymers for both fast k;, (black circles) and slow k;, (red triangles). Unless noted to be varying, variables have the following

values: k; =1230s !, k=0

(black circles) or k;, =250s~! (red triangles), e =8k T, {pyp =300{, = 1.6-10‘4g/s, L =500nm, and there are 50 subunits

that can bind to ParA in the ParB polymer. In (D), {pas =(5(L/a— 50)+50)(,.

doi:10.1371/journal.pcbi.1002145.g003

Three regimes of translocation velocity
We find that the translocation velocity, vpas, falls into three
regimes, depending on 7,ky:

~aky for 1,kp <1 (regime )
<aky for 1,k 2 1 (regime IT) 4)
=0 for t,ko>1 (regime I1I)

VParB

For t,ko 1 (regime I), the ParB polymer retains its equilibrium
shape as it is pulled across the cell at the velocity vpyr = akyp. For
Tk <1 (regime 1I), the ParB polymer stretches as it is pulled and

does not penetrate deeply into the ParA bundle. Since fewer ParA
subunits bind to ParB, fewer are hydrolyzed and vparg drops below
aky. For t,ko>1 (regime III), the ParB polymer is so elongated
that ParB binds to very few ParA subunits and the ParB polymer
quickly detaches from the ParA bundle, leading to vpas =0.
This physical picture explains the results shown in Fig. 3, where
we vary both the disassembly rate, ko (Figs. 3a—b) and the effective
relaxation time, 7, (Figs. 3c—d). Specifically, Fig. 3a shows how
vparg depends on the depolymerization rate, k;. For the black
circles in Fig. 3a, the hydrolysis rate, kj, is effectively infinite so
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that ko=ky (Eq. 3). In this case, for sufficiently small k4, the
system is in regime I and vpap~ako=ak,. As kg increases,
Toko =T4kq also increases; as a result, the ParB polymer stretches
(inset to Fig. 3a) and the system crosses into regime II, where vpyr
drops below aky=ak,. At very large ky, the system reaches
regime III, and vp, =0.

In contrast, if kj, is small (red triangles in Fig. 3a), then ky
cannot exceed fmaxky as kg increases (Eq. 3). Therefore, for small
ky, the ParB polymer remains in regime I, t,kp <1, for all k4, so
that vpa X ako and translocation is robust for any k4. Thus, by
decreasing the overall rate of disassembly by lowering kj, the
system can achieve robust translocation, albeit at a cost to velocity.

Fig. 3b shows how vpyp varies as kj increases. In this case, ko
saturates to ky at large kj, (Eq. 3). Since k4 is chosen to be small,
we find 7,kg = 1 over the entire range of k;, meaning the system is
in regime I and vp,p ~ aky.

The different velocity regimes can also be explored by varying
7, instead of kg. Fig. 3¢ shows that vpyp is insensitive to the total
drag, {pag =kpT/Dpars, on the polymer when (p,g and thus 7,
are small. In this case, 7,k is small, and the system is in regime I.
As {pyrp increases, T,ko increases, causing vpy,p to drop below aky
as the system crosses into regime II.
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Fig. 3d shows the effect of the total contour length, L, of the
ParB polymer. For small L, vpy;p & aky is constant since the system
is in regime I. As L increases, 7, increases, a9nd when 7,k 2 1,
Vpar crosses into regime II and vpyp drops below aky.

Dependence of the translocation velocity on binding
energy, binding sites, applied load, and other physical
variables

Fig. 4 shows that vp,p has a threshold dependence on the
ParB—ParA binding energy, €. As shown in Figs. 2c, 4, ParB
rapidly detaches from the ParA bundle if € is too small. However,
as long as € is sufficiently large, the ParB polymer remains attached
to the bundle throughout the simulation and translocates with a
velocity that is insensitive to € and is set by t,ko (Eq. 4). We
observe similar behavior as the number of binding sites on the
ParB polymer is varied. If there are too few binding sites, the ParB
polymer quickly detaches from ParA. Above a threshold value,
however, vp,p does not sensitively depend on the length of the
binding strip (Fig. S1). The translocation velocity is also insensitive
to the filament density within the ParA bundle, the arrangement of
filaments in the bundle, and stiffness of the ParB polymer (Figs. S2,
S3, S4). Finally, we have also verified that our main results hold
when the form of the ParB-ParA binding potential is altered to
allow binding by multiple points on ParB and/or ParA subunits.

Detachment force for the ParB polymer

We next investigate the extent to which motility is robust to an
external force on the ParB polymer that opposes translocation.
The external force, fext/2, opposes translocation by pulling on
cach end of the ParB polymer. In our simulations, we find that
vpar is unperturbed for fext </~ 10pN (Fig. S5). For fexi >f*,
however, the ParB polymer rapidly detaches from the ParA bundle
and translocation stalls.

In order to understand this behavior, we analytically estimate
the “detachment force,” f*, required to pull the ParB polymer off
of the ParA bundle in a time, 7, that is approximately equal to the
time required for the ParB polymer to translocate across the cell
(see Text S1 for details).

In our simulations, we model the ParB-parS-ori complex as a
polymer chain comprised of N monomeric subunits. Each subunit
in the central strip of the ParB polymer binds with a binding
energy, €, to a subunit in the ParA bundle. Thus, the total strength
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Figure 4. Dependence of translocation velocity on ParB-ParA
binding energy. ParB detaches in an observably short time, {Zdetach )+
when the binding energy, ¢, is too small (open symbols). When ¢ is large
enough, vp,p (solid symbols) is non-zero, and is insensitive to ¢ over the
observed range for both fast (black) and slow (red) k. The dashed line
separates regimes of detachment and translocation.
doi:10.1371/journal.pcbi.1002145.g004
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of the attraction between the ParB polymer and the ParA bundle is
approximately proportional to ne, where 7 is the number of ParB
subunits actually bound to ParA. Since ParB subunits lie in
approximately a Gaussian distribution about the center of mass of
the ParB polymer [34], n=n(z¢m), depends on the location, Zem, of
the center of mass of the ParB polymer.

Now consider the effect of a force —fZ on the ParB polymer
that opposes translocation in the Z direction. At the simplest level,
based on the above analysis, the ParB polymer may be replaced by
a point particle at the center of mass of the ParB polymer, z¢py, in
an effective potential given by

U(zem) = — en(zem) +fZem- (5)

The first term is due to ParB binding to ParA and the second term
is the work done by the external pulling force, f. As f increases,
the minimum of U shifts to lower values of z¢y, and the number of
bound ParB sites decreases, eventually leading to unbinding of the
ParB polymer from the ParA bundle.

The mean time for the particle to escape from the potential well
(to detach from the ParA bundle) is well approximated by the
Kramers escape time, g for this potential [35,36]:

- 2”/;13 T | U”(Zmin)UN(Zmax)‘*l/ze(U(Zmax)*U(Zmin))/kBT_ (6)

3¢
Given these expressions, we calculate the detachment force f* to
be the force f for which the escape time, 1k, is equal to 7, the
time required for the ParB polymer to translocate across the cell.

In simulations with our standard model, the central binding
strip has R=16nm and D=0.054 ym?/s. There are N =50 ParB
subunits that bind to ParA with energy, e=8kpT, so the
maximum total binding energy is Ne¢=400kgT. The ParB
polymer translocates at Vpap=5um/s, so that the time to
translocate lum is 7*=200ms. With these parameters, we
estimate that the detachment force is f*~40pN. An estimate
for the detachment force under more realistic conditions (in vio) is
given in the Discussion section.

This order of magnitude estimate agrees with our simulations at
high depolymerization rates, kg (Fig. 3a), large drag coeflicients,
{par (Fig. 3c¢), and large external pulling forces, fex (Fig. S5). In
the first case, the mean time to first detachment is shorter than the
translocation time for kg > 3.4-10%s~!; this suggests that the force,
f, required for rapid detachment is f*={p,pVparg = OpN.
Similarly, we find that the ParB polymer fails to translocate for
{parg 2 5.:4:1073g/s, giving a detachment force of f* =~ 15pN. In
addition, we have conducted simulations in which we apply an
external force, fext/2, to each of the ends of the polymer. For these
simulations, we find robust translocation up to a detachment force

of f*~10pN.

The ParB polymer translocates even when the ParA
bundle is not anchored

So far, we have assumed that the ParA bundle is anchored to
the pole. Recent reports suggest that in C. crescentus, ParA is
localized to the swarmer pole by TipN [10,12], but it is unclear if
TipN actually anchors ParA. We therefore examined whether
ParB translocation could occur if the ParA bundle is localized but
not anchored.

Fig. 5 shows that the ParB polymer translocates even when the
ParA bundle is unanchored. We understand this through Newton’s
third law, which dictates that the force, Fpa, that pulls ParB to
ParA is equal in magnitude but opposite in direction to the force
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Figure 5. The ParB polymer translocates even when the ParA
bundle is unanchored. (A) Snapshots of a simulation in which the
ParA bundle is not anchored at its right end (swarmer pole). The ParA
bundle (red) is pulled towards mid-cell as the ParB (green) moves
towards the swarmer pole. (B) Dependence of speeds of ParA (red) and
ParB (green) on the ratio of drags, {paa/Cpars- IN these simulations,
{parp=1.1"10"3g/s and L=1000nm.
doi:10.1371/journal.pcbi.1002145.9g005

on ParA. Thus ParB is pulled towards the swarmer pole while
ParA is simultancously pulled away from it:

FBA = CParB VParB = — CParA VParA, (7)

where (pyp and (pya are the drag coefficients of the ParB
polymer and ParA filament bundle, respectively.

In the case of a long, unanchored ParA bundle, {p,a > {pap
and the ParB polymer translocates across the cell while the ParA
bundle remains relatively stationary (Fig. 5b). However, if the
ParA bundle is sufficiently small (e.g., when the ParB has nearly
reached the swarmer pole), {para /Cpar is small, so the large ParB
polymer remains relatively stationary while pulling the smaller,
disassembling ParA bundle towards mid-cell (Fig. 5b).

Discussion

Based on recent experimental observations [7-12,15], we have
tested several simulation models (Fig. 2) and discovered a robust
mechanism for chromosome segregation in C. crescentus via the
ParABS system.

Self-diffusiophoresis can explain ParA pulling

Our simulations point to a specific physical mechanism
underlying translocation in the ParABS system. We find that
disassembly of ParA generates a steady-state ParA filament
concentration gradient that remains fixed in the center-of-mass
frame of the translocating ParB polymer (Fig. 1c). In other words,
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disassembly of ParA allows the ParA filament concentration
gradient to translocate with the particle across the cell so that at all
times the ParB polymer is moving up the concentration gradient of
ParA to satisfy its attraction to ParA. Our simulations do not
include fluid flow, but it is known that external concentration
gradients can also drive motion of a particle in a fluid
environment; the latter phenomenon is known as “diffusiophor-
esis.” If the particle (in this case, the ParB-parS-ori complex) is
attracted to the solute (the ParA filament bundle), it will
translocate up the concentration gradient towards high solute
concentrations [37]. In “self-diffusiophoresis,” the particle itself
(the ParB-parS-ori complex) generates and sustains the solute
concentration gradient [38,39] via disassembly of ParA. We
emphasize that ParB-induced depolymerization (particle-induced
destruction of solute) is central to this process. Without
depolymerization, the ParA bundle would remain intact and the
concentration of ParA filaments would not change with time. As a
result, the ParA concentration profile would not be able to move
with the particle and translocation would not occur.

This intrinsically many-body mechanism is distinct from biased
diffusion. In contrast to biased diffusion mechanisms which apply
to a coupler that attaches a load to a single filament or fiber [20—
22,26], self-diffusiophoretic translocation can occur even if the
ParB polymer does not diffuse, as long as the ParB-ParA
interaction range is finite. In self-diffusiophoresis, ““diffusio” refers
not to diffusion of a coupler, but to the key role of the solute
gradient, just as the prefix in “electrophoresis” refers to an electric
potential gradient [37]. The self-diffusiophoretic mechanism also
differs from ones involving motion of a coupler [3,20—27]; in our
case, the load is not attached to a coupler that cannot detach from
the depolymerizing filaments. Instead, the load is attached directly
to the depolymerizing filaments via many non-permanent bonds.

It has been suggested that polymerization-driven motility, as in
the case of F-actin in the lamellipodium of eukaryotic cells, also
constitutes an example of self-diffusiophoretic motility [40,41]. In
that case, the object to be moved (eg., the cell membrane) is
repelled by the structure (the branched actin network) that it builds
in order to move. In depolymerization-driven translocation, on the
other hand, the object to be moved (the ParB-DNA complex) is
attracted to the structure (ParA) that it destroys in order to move.

The self-diffusiophoretic mechanism suggests modes of failure
for translocation. For example, overexpression of ParA leads to
segregation defects, and it has been suggested that these defects
arise due to the increase in the quantity of delocalized ParA
[12,15]. This effect may be analogous to what we observe in our
simulations with severing (Video S2), where instead of binding to
the ParA bundle, ParB can bind to severed ParA filaments. This
disrupts the steady-state generation of a translating ParA
concentration gradient so that it does not support steady-state
ParB polymer translocation. Similarly, when ParA is overex-
pressed, extra ParA monomers or protofilaments may diminish or
erase the ParA concentration gradient created by depolymeriza-
tion. Alternatively, the extra ParA could saturate ParB, preventing
translation of the ParA gradient.

Translocation is most robust for side-binding of ParB to
ParA with disassembly only from the tip

We observe robust translocation over a wide range of physical
parameters only if ParB binds to the sides of ParA filaments,
triggering disassembly only from the tips of filaments (Fig. 1b—c). If
ParB binds only to the tips of filaments, translocation is far less
robust for two reasons. First, there are many fewer ParA subunits
to which ParB can bind so the overall attraction between ParB and
ParA is weaker. Second, the ParB polymer is localized near the tip
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of the bundle, at the very edge of the concentration gradient of
ParA that drives translocation. In contrast, in the side-binding
model, the ParB polymer penetrates further into the bundle so that
it is localized near the steepest, central section of the concentration
gradient (Fig. S6). Thus, in the tip-binding-only model, the ParB
polymer is much more likely to detach from the ParA bundle due
to thermal noise (Fig. 2a). This failure mode can only be averted
by greatly increasing the binding energy or the number of
filaments, and thus tips, in the ParA bundle.

We also find that ParA disassembly via severing does not
provide robust translocation (Fig. 2b) because severed protofila-
ments can bind to ParB, reducing the attraction between the ParB
polymer and the main ParA bundle, leading to detachment.

We therefore predict that ParB binds to the sides of ParA
filaments and ParA filaments disassemble primarily from the tip.
This prediction can be tested with i vitro experiments.

Comparisons with experiments on Par-mediated
chromosome pulling

Our model is sufficiently versatile to account for a range of
experimental observations. For example, by varying the initial
density and cross-linking of the ParA filament bundle in our
simulations, we find cases in which some ParA filaments remain
partially assembled even though the ParB polymer has translo-
cated across the cell (Fig. S7). This is in agreement with the
observations of Ptacin ¢t al. [10], who found that in some cases, a
fiber of ParA extended across the predivisional cell after oz had
translocated.

We find that the robustness of translocation is primarily
controlled by the quantity t,ko, the product of an effective
relaxation time (Eq. 2) and the maximum rate of disassembly of
ParA (Eq. 3). The underlying details of the ParB polymer are only
important insofar as they affect quantitative results such as the
precise value of the relaxation time; they do not affect the
qualitative physical principles described above.

Specifically, if 7,kq is too high, the ParB polymer stretches out
and can detach from the ParA bundle. This finding suggests a
possible role for chromosome organizing factors such as the SMC
protein [14,42]. In order to translocate reliably and efficiently, the
chromosome of four million base pairs [14,16] must be organized
such that it does not overload the pulling mechanism. We propose
that one important physical function of chromosomal organization
and condensation is to minimize the effective relaxation time, t,,
so that the chromosome can keep up with the retracting ParA
bundle, to ensure robust translocation.

In addition, we find that the velocity is simply the product of the
ParA subunit length and the maximum disassembly rate,
ko, provided disassembly is slow enough to guarantee that
T.ko 21 (Eq. 4). From the observed ori translocation velocity,
v=0.3 pm/min [9,11,16,17], we estimate the in vivo ParA
disassembly rate to be k~0.9s~!, which is slower than the
measured disassembly rate of dynamically unstable ParM
filaments [43], but comparable to the disassembly rate of actin
filaments [44].

The translocation velocity in our simulations is considerably
higher, typically several um/s, because we used high disassembly
rates. Translocation is robust in our simulations at these high
values of k¢ because the effective relaxation time, 1,, of our ParB
polymer is fairly short. In the real system, where the effective
relaxation time of the chromosome is likely to be considerably
longer, it could be a biological necessity that both ParA
disassembly and ori translocation proceed at slower than the
simulated rates.
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Likewise, in our simulations the ParB polymer detaches when it
is pulled with a force f* of order tens of pN, but this detachment
force is likely to be much higher in the real system. The most
important difference between our simulations and the actual
bacterium lies in the number of ParB binding sites N. To estimate
the detachment force, f*, under realistic conditions, we first
estimate N, the maximum possible binding energy Ne¢, the extent
of the chromosome R, and the diffusion coefficient of the
chromosome D. We first estimate N ~1000 by assuming that
ParB decorates the approximately 10 kilobase segment of the
chromosome that was found to be the site of force exertion during
translocation in [9]. For e¢x~10kpT we therefore obtain a
maximum binding energy of Nex 10*pT. For ideal polymer
chains [34], R.cv/N and Docl/N. Thus, we estimate
R.~100nm and D~10~3 um?/s. This crude estimate of R
actually agrees well with experimental snapshots of C. crescentus
during chromosome segregation [10,11]. The estimate of D falls
within the range 107! um?/s<D<107° um?/s, which is
measured in E. coli for DNA segments of varying sizes [45,46].
We note that /* is insensitive to D, and varies by less than 1pN
over that range.

According to experiments [9,11,16,17], the ParB-parS-ori
complex translocates across the cell in about 10 minutes. Using
Eq. 6, we find that the detachment force is f* &~ 200pN. This value
is of the same order of magnitude as the 700pN stall force for
chromosome segregation along kinetochore fibers in eukaryotes
[47,48]. Thus, this estimate suggests that the mechanism we have
proposed is both physically reasonable and biologically relevant.

Implications for other phenomena

Insights from our results may extend to plasmid segregation by
ParAB. In Escherichia coli, the ParA concentration profile is known
to oscillate as plasmid pB171 is partitioned [6,19,49]. This
dynamic behavior appears to be required for proper plasmid
partitioning [7,19]. We suggest that ParB creates a moving ParA
filament concentration gradient that pulls the plasmid along as
ParA disassembles.

In addition, our findings suggest an alternative explanation for
observations that the distance that plasmid pB171 translocates in a
given time interval increases approximately linearly with the initial
ParA filament length [7]. Ringgaard et al. [7] suggest that this
effect arises from a ParA filament-length-dependent plasmid
detachment rate. However, we have shown that the relative
velocities of the ParB polymer and the ParA bundle depend on the
ratio of the viscous drags on ParA and ParB, (pya/{pas (Fig. 5).
Thus, the observed dependence of plasmid translocation distances
and velocities on ParA filament length may simply be a result of
Newton’s third law, due to the variation of {pya /{parp With ParA
filament length.

Our simulations with unanchored ParA filaments suggest a new
possibility for the mechanism of terminus segregation in C.
crescentus. As translocation begins, the ParA filaments are long, so
{parA > Cparp and the ParB polymer is pulled rapidly towards the
swarmer pole. However, as the ParB polymer nears the swarmer
pole the ParA filaments are much shorter and {p,;4 < {p,p may be
satisfied, so that the ParA bundle is pulled toward mid-cell.
Experiments have indicated that ParA binds non-specifically to
DNA [7,10,18]. Thus, we propose that DNA near the terminus is
non-specifically bound to ParA and translocates away from the
swarmer pole as ParA filaments are pulled toward mid-cell by the
ParB-parS-ori complex. In contrast to previously suggested passive
mechanisms [16,30,33], this is an active process, directly linked to
ort translocation.
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Our results provide a new paradigm for understanding
depolymerization-driven translocation in prokaryotic DNA segre-
gation systems. Since self-assembly and disassembly are ubiquitous
in cellular systems, the creation of concentration gradients by these
processes provides a general and robust mechanism for translo-
cation.

Methods

At the start of each simulation, ParA monomeric subunits form
a cross-linked bundle of filaments. The ParB-decorated chromo-
some 1is represented by a semi-flexible chain of monomeric
subunits, typically of length 100 subunits, divided into three
sections. The center section, typically of length 50 subunits,
represents the part of the chromosome bound to ParB; these
subunits can bind specifically to ParA subunits. The two end
sections of the ParB polymer flanking the ParB section do not bind
to ParA.

Biochemistry

The process of ParA disassembly begins when a ParB subunit
binds to a ParA-ATP subunit. If the interaction energy, Uyp,
exceeds a certain threshold, 0.75¢, the ParA-ATP hydrolyzes at
rate kj. Once the ParA subunit hydrolyzes, it may detach from the
ParA filament by depolymerization at rate ky (after which it
continues to interact with other subunits by the interaction Ug). In
our standard model, ParB binds to the sides of ParA filaments, and
a hydrolyzed ParA subunit can only depolymerize if it is located at
the tip of a ParA filament.

Units

Simulation units are converted into physical units by taking the
subunit length to be a=5nm. The typical subunit diffusion
cocfficient is taken to be D=7.7 um?/s, as measured in [50], and
the diffusion coefficient for a particular subunit is D;=D/{;
(typically {;=1 or 5, see below), giving a cell viscosity #=11.4cP
and a characteristic time scale 7=a’/D=23.3 us. Typical runs are
approximately 100ms and simulation steps are 0.81ns.

Interactions

Several interactions are included in the model; their specific
forms are given below. All subunits are spheres with diameter a
that repel each other if they overlap:

1
~Kg(ri—a),

Ur(ry)=1 2 for rj<a

(8)

0 for r;;>a,

where rj; is the center-to-center distance between subunits i and j

and Kr=100kzT/a*>. Within a ParA or ParB polymer chain,
neighboring subunits are held together through an attractive
harmonic potential:

1
UB(r[j)=§KB(r,~j—a)2, for ry>a, 9)

with Kg=100kpT/ a”. In order to hold the ParA bundle together,
we typically take 40% of ParA subunits to be cross-linked to a
subunit in a nearby filament through an attractive potential:

Uc(}’l'/'):%[(c(ri]'—b)z, for }"U'>b, (10)
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where b=>5a is the initial spacing of filaments in the ParA bundle
and Kc=Kp/2. ParA filaments are stiffened by a bending
potential [51]:

US(O,-)=%K5(cos 0;— cos ), (11)

where 0; is the angle between the bond vector, I;,-,l,,-, between
ParA subunits i—1 and i, and the bond vector, l_)';,iJrl, between
subunits  and i+ 1. Thus, cos Hf:l;,-,l,,-'g,-,jﬂ, where B:E/|E|
We take Ks=500kpT and 0p=0. Similarly, the stiffness of the
ParB polymer can be controlled by an interaction potential of form
of Eq. 11 (however, in our standard model, Kg =0kpT in the ParB
polymer).

In addition, we introduce interactions so that binding between
ParA and ParB occurs in specific spatial locations on the spheres
representing the subunits. Each subunit 7 has a unit polarization
vector, p;, that determines the location of the binding site for the
ParB-ParA interaction, and the following interaction potential
aligns it to be at an angle 0, to the bond vectors b connecting
adjacent subunits:

1 o
UP((")i):EKP(pi'bi,iJrl — COS Hp)2+§KP(pi'bi—l,i_ Ccos 9,,)2. (12)

We choose 0,=m/2 so that p; tends to be perpendicular to the
bond vectors, and fix Kp=100kgT for ParA filaments and
Kp=25kpT in the ParB polymer, which is relatively more flexible.
Binding sites are arranged helically on the ParA filaments and the
ParB polymer due to two additional interaction potentials. The
first constrains polarization vectors on nearest-neighbor subunits
on a given chain:

1
UHl(l//i,1)=§KH1(COS i1 — cos Py, ), (13)

where cos ;| =pipi+1 and Yo =7/18 sets the pitch of the helix.
Here, K1 =200kgT for ParA and Ky =50kpT for ParB. The

second potential has the same form,

U (Y;5) =%KH2( cos ;5 — cos )’ (14)

but constrains polarization vectors on the next-nearest-neighbor
subunits with cos Y, , = p; i 12 and Y = /9. Here, Kip = 100k T
in ParA and Ky, =25kgT for ParB. Note that in addition to
regulating the locations of the binding sites, Eqgs. 13 and 14 implicitly
regulate torsion within the ParB polymer.

Finally, ParB binds to ParA with a site-specific, short-ranged
interaction potential:

¢ ot 2
E[FT;*FIT]( cos ¢, cos ¢, cos ;)
Uu(rap.91,02.03)= A5 4B (15)

for cos¢, >0, cos¢,,cos ;<0
0 otherwise.

where ¥ p=Fp—7,4 is the vector distance between the ParA and
ParB subunits and ¢ is the binding energy. In our standard model,
€=8kpT. The normalization factor C = (a/a)12 —(o*/a)M ensures
that ¢ is the relevant energy scale for binding. The distance
6=a4/6/7 sets ryp=a as the minimum of the binding potential.
Binding site specificity is implemented through regulation of the
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angles between the polarization vectors on the ParA and ParB
subunits as well as Fyp=F4p/rap. In Eq. 15, cos¢;=psFap,
coS ¢, =ppi4p, and cos¢;=p4pp. Binding is strongest when
the two polarization vectors point towards each other and along
FaB.

We have also studied several variations of these models. For
example, in a separate set of simulations, we set Kg; =0 and
K> =0 for both ParA and ParB, so that the binding sites were not
arranged helically on the ParA filaments and ParB polymer. The
orientation of the polarization vectors was set by Up, where 0,=0
for tip binding and 0, =7/2 for side-on binding. We also studied
cases in which monomeric ParB subunits did not possess specific
orientations (polarization vectors). In these cases, ParA polariza-
tion vectors were set by Up, where 0, =0 for both tip-binding and
side-binding. Binding only weakly depended on the orientation of
the ParA-ParB bond through a modified version of U 4p, which we
denote U}z and Ujj for tip-binding and side-binding, respec-
tively. For tip-binding without ParB polarization vectors:

c o4 o2
E[F_rﬁ} cos® B
UZB("AB,¢1)= AB 4B (16)

for cos¢,; >0
0 otherwise

For side-binding without ParB polarization vectors::
14

€. 0

. sz
UAB(VAB,(/H):E[VW—V]T] sin'" ¢, (17)
AB AB

where r4p, ¢, 0, and C are as defined above.

Equations of motion

All subunits in the system translate and rotate according to
Brownian dynamics [52]. Thus, we solve a system of coupled
Langevin equation where the velocity of each subunit is governed
by the forces exerted by other subunits in the system as well as
thermal forces, F from the surrounding liquid medium:

(F= —V(Ur+Ug+ Uc+ Us+ Up+ Uyp)+F(t)  (18)

CE()y =0, <F(tyF({ )y =6kpT{S(1—1) (19)

and

{p=—Vp(Up+ Ui + Upa + Uyp) + G(2) (20)

> - - o -, = ! /
{G(1)) =0, {G(1) G(r )>=%<F(t)'F(t )>=6kpT(,0(1—1) (21)

The subunit friction constant is { = 3nnal;, where n is the viscosity,
and {; is a constant that determines the relative magnitude of the
drag on subunit i. Typically, {;=1 for ParA and normal ParB
subunits, and {; =5 for ParB subunits that cannot bind to ParA.
& =nna®{; is the rotational friction coefficient.

Supporting Information

Figure S1 Behavior of the ParB polymer as a function of
the length of the central ParB strip that binds to ParA. If
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too few of the ParB can bind to ParA, the ParB polymer detaches
in an observably finite average time, {Zdetachy (Open symbols).
When the percentage of binding sites is above threshold, the
translocation velocity, VparB, is non-zero. If there are enough
binding sites to cause disassembly at all of the ParA filament tips
simultaneously, Vpy,B 1s insensitive to the number of ParB that can
bind ParA. The dashed line separates the regimes of detachment
and translocation.

(PDF)

Figure S2 Dependence of translocation velocity, Vpas,
on the density of ParA filaments within the ParA bundle.
For ParA bundles of equal diameter, d & 6a, but different numbers
of ParA filaments, the translocation velocities are approximately
equal. Thus, vpyp is insensitive to the density of filaments in the

ParA bundle.

(PDF)

Figure S3 Snapshots of a simulation with a ‘ParA
tube’. The ParA filaments in the ParA bundle are arranged
cylindrically. The snapshots are slightly rotated into the page and
the thin black circle indicates the base of the cylinder.
Translocation of the ParB polymer is insensitive to whether the
ParA filaments are arranged as a tube or as a bundle.
Depolymerized ParA monomers are not shown.

(PDF)

Figure S4 Dependence of translocation velocity, Vpars,
on the stiffness of the ParB polymer. In our standard model,
the ParB polymer is flexible, and the bending stiffness is
Ks=0kpT. In order to simulate a stiff ParB polymer, we apply
the bending potential in Eq. 11 to the ParB polymer. vpyp is
insensitive to the bending stiffness over the observed range of Kg.
(PDF)

Figure S5 Force-velocity relation for ParB polymer
translocation in our simulations. In these simulations, an
external force, fext/2, pulls on each of the two ends of the ParB
polymer, thus opposing depolymerization-driven translocation.
Translocation of the ParB polymer is unperturbed when subjected
to external pulling forces up to fex¢ & 7pN.

(PDF)

Figure S6 Steady-state ParA concentration profiles for
tip-binding-only and side-binding models. Steady-state
ParA concentration is plotted versus position relative to the center
of mass of the ParB polymer, which is located at z=0nm and
indicated by the dotted green line. When ParB binds only to the
tips of ParA filaments, the center of mass of the ParB polymer
(dotted green line) localizes near the edge of the ParA filament
concentration gradient (dashed black curve). This enables the ParB
polymer to easily escape the ParA concentration gradient and
detach from the ParA bundle due to thermal noise. However,
when ParB can bind to the sides of ParA filaments, the ParB
polymer penetrates further into the ParA bundle, and thus the
center of mass (green) of the ParB polymer is localizes near the
center of the ParA concentration gradient (dashed red curve).
Thus, the ParB polymer is not susceptible to falling out of the ParA
gradient and detaching from the ParA bundle due to thermal
noise.

(PDF)

Figure S7 Snapshots of a simulation in which several
ParA filaments remain after the ParB polymer has
translocated. If the initial spacing, b, of the ParA filaments in
the bundle is large, the ParB polymer may translocate by
disassembling some, but not all, of the ParA filaments. In the
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snapshots shown, the initial ParA filament spacing is b =20a, four
times greater than the initial spacing, used in our standard
simulations. This simulation demonstrates the versatility of our
model by replicating one of the observations of Ptacin et al. (2010)
[10]. This result can also be obtained with closely packed (e.g.,
b=>5a) ParA filaments if the filament bundle contains a large
number of filaments.

(PDF)

Text S1 Polymer relaxation time and estimated detach-
ment force for the ParB polymer. This text explains how to
calculate the characteristic polymer relaxation time, 7,, and the
peripheral segment diffusion coefficient, Ds. In addition, we
provide details for the estimation of the detachment force, f*.
(PDE)

Video S1 A movie of translocation of the ParB polymer in
our standard simulation conditions. The ParB polymer remains

localized near the tip of the ParA bundle and translocates as the ParA
bundle disassembles. Depolymerized ParA monomers are not shown.

(MOV)

Video $S2 A movie of a simulation run for the model in
which ParB binds to the sides of ParA filaments and
severs them. The ParB polymer translocates briefly until
severed ParA protofilaments bind to the ParB polymer and
disrupt its binding to the main ParA filament bundle.

MOV)
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