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Abstract

Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic
lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding
sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and
loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes
representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich
ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with
95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared
with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement
between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the
estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was
dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals.
The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The
reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the
evolution of alternative splicing.
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Introduction

Spliceosomal introns that interrupt most of the protein-coding

genes and the concurrent splicing machinery that mediates intron

excision and exon splicing are defining features of gene

architecture and expression in eukaryotes [1,2]. To date,

eukaryote genomes including the compact genomes of parasitic

protists, previously suspected to be intronless, have been shown to

possess at least a few introns [3,4,5] and a (nearly) full complement

of spliceosomal proteins [6]. However, eukaryotes dramatically

differ in their intron densities, ranging from only a few introns per

genome in many unicellular forms to over 8 introns per gene in

vertebrates as well as some invertebrates like the sea anemone

[7,8].

Despite the ubiquity of introns in eukaryotic genomes, their

biological status is poorly understood. To what extent introns are

‘‘junk DNA’’ as opposed to being functional parts of the genome,

remains an open question and the answers are bound to be

complicated and multifaceted. There are many reports on the

contribution of introns to the regulation of gene expression [9,10],

and in vertebrates introns encode a variety of non-coding RNAs

with established or predicted regulatory functions [11]. However,

it remains unclear how general such functional roles of introns are.

In addition to these specific functions, numerous introns are

essential for alternative splicing which involves the great majority

of genes in multicellular eukaryotes and is one of the principal

mechanisms of proteome diversification [12,13,14].

Given that most unicellular eukaryotes are intron-poor whereas

complex, multicellular organisms are intron-rich, it would seem

intuitively plausible that introns accumulated in the course of

evolution of eukaryotes. However, comparative analysis of the

exon-intron structures of orthologous genes of plants and animals

revealed a high level of intron position conservation, with the

implication that the common ancestor of these organisms was

relatively intron-rich [15,16,17,18,19]. Moreover, reconstructions

of the evolution of gene architecture that were performed using

maximum likelihood (ML) approaches suggested intron-rich

ancestors for several major groups of eukaryotes [19,20,21]

including even the Chromalveolata, a eukaryotic supergroup that

consists entirely of unicellular organisms [22]. These results imply

that evolution of eukaryotes involved at least as much intron loss as

intron gain, and that intron loss was the main process in the

majority of eukaryotic lineages whereas intron gain was only

episodic [19,21]. However, all these reconstructions provided

relatively coarse resolution and involved substantial uncertainty

with respect to the inference of intron density in deep ancestors,

especially, the Last Eukaryotic Common Ancestor (LECA). The

uncertainty was caused by the sparseness of the genomic data sets

employed for the reconstruction and by the difficulty of assigning

confidence intervals to inferences of ancestral state. As a result,
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depending on the features of the ML models employed and the

data sets analyzed, some of the reconstructions yielded evolution-

ary scenarios with an excess of intron gain over intron loss [23].

Here we employ a probabilistic Monte Carlo model combined

with a Markov Chain Monte Carlo (MCMC) method for the

inference of ancestral states including robust estimation of

confidence intervals to analyze a representative data set of 99

eukaryotic genomes which extensively covered the three super-

groups of eukaryotes, Unikonta, Archaeaplastida (Plantae), and

Chromalveolata, for which multiple genome sequences are

available. The results clearly show that ancestral eukaryote forms

were intron-rich, with LECA having a high intron density, on the

order of two-thirds of the introns density in human genes. The

subsequent evolution was heavily dominated by intron loss, with

several episodes of massive intron gain associated with the

emergence of some of the major eukaryote groups, in particular,

animals.

Results

The present analysis of gene structure evolution included an

extensive data set of sequenced and annotated genomes from the

Unikonta (the Opisthokont group that combines animals and

fungi, together with Amoebozoa), the Archaeplastida (green algae

and land plants), and Chromalveolata (Heterokonta and Alveo-

lata). Of the five supergroups of eukaryotes [24,25,26], only these

three are currently represented by multiple genomes with broad

ranges of intron densities. There are no sequenced genomes for the

supergroup of Rhizaria. The fifth supergroup, Excavata, includes

mostly parasitic forms with very few introns and only one

sequenced genome of a free-living organism, Naegleria gruberi, with

a moderate intron density [27], which renders ancestral recon-

struction moot within this supergroup. Thus, our data set

effectively covers the entire available diversity of eukaryotic

genomes. The evolutionary relationships between the supergroups

remain uncertain [26,28], so they are represented as a trifurcation

in the schematic evolutionary tree shown in Figure 1. We

identified large orthologous protein-coding gene sets that are

represented in a substantial majority of the analyzed genomes

using a procedure that combined ortholog clustering and gene-

species tree reconciliation techniques (see Methods and Support-

ing Text S1 for details). The encoded protein sequences from each

of the orthologous gene sets were aligned and projected onto the

coding nucleotide sequences, annotated with the exon-intron

structures. The data set was further filtered to exclude aligned

positions with significant ambiguity (see Methods and Text S1 for

details). The final data set contained 8403 intron presence-absence

profiles from 245 sets of orthologous genes.

Intron loss and gain were modeled using a probabilistic Markov

model encompassing lineage-specific loss and gain rates, as well as

rate variation across sites. The Markov Chain Monte Carlo

(MCMC) method [29] was employed to sample model parameters

and ancestral reconstructions by their posterior distributions, and

to infer ancestral states along with the respective Bayesian

confidence intervals (see Methods and Supporting Text S1 for

details). Experiments with various rate variation models across sites

showed that only the loss rate variation had a significant impact on

the model fit (Figure 9 in Supporting Text S1). Thus, it appears

that, when uniform site preferences that apply across all eukaryotes

are considered, introns in certain positions are prone to be lost

significantly more often than others whereas no sites are

significantly more prone to intron gain.

This reconstruction provides a thorough view of the evolution of

gene structure across three eukaryotic supergroups and reveal

several general trends (Figure 1 and Supporting Figure S1). Most

lineages show net intron loss that can be substantial as in

alveolates, some lineages of fungi, green algae and insects, or well-

balanced by concomitant intron gains as in land plants [30], most

animal lineages, and some fungi [31]. Massive intron gains were

inferred only for several deep branches, most conspicuously, the

stem of the Metazoa, and to a lesser extent, the stems of

Mamiellales (a branch of green algae), Viridiplantae, Opistho-

konta, and Metazoa together with Choanoflagellata (Figure 1).

These findings vindicate, on a much larger data set and with

greater confidence, the previous conclusions that intron gain was

rare during evolution of eukaryotes compared to intron loss.

Episodes of substantial intron gain seem to coincide with the

emergence of major new groups of organisms with novel biological

characteristics such as Metazoa [19].

Several previous studies, performed on much smaller data sets

and with less robust reconstruction methods, have suggested that

at least some eukaryotic ancestral forms could have possessed

intron-rich genes [19,20,31]. In particular, we found previously

that the last common ancestors of Chromalveolata and particu-

larly Alveolata could possess high intron densities despite the fact

that all extant genomes available for in these groups are intron-

poor [22]. The present analysis reinforces these conclusions by

inferring high intron densities for the ancestors of each major

group of eukaryotes within each of the three supergroups

(Figures 1, 2, and Supporting Figure S1). The implication is that,

whenever an extant eukaryotic genome shows a low intron density,

this intron-poor state is a result of extensive, lineage-specific intron

loss. Inspection of individual intron site histories revealed the same

trends (see Figure 3 and Supporting Video S1). For example,

Figure 3 shows the reconstructed history of intron loss and gain in

the gene that encodes the membrane protease prohibitin. For this

gene, a relatively high intron content was reconstructed for LECA,

with four or five introns most likely present in the ancestral gene.

The subsequent evolution of this gene involved multiple, parallel

loss of introns in most of the eukaryotic lineages. Substantial intron

gain is inferred only for Metazoa, one lineage of fungi, and one

lineage of green algae. Notably, the intron content in mammals is

Author Summary

In eukaryotes, protein-coding genes are interrupted by
non-coding introns. The intron densities widely differ, from
6–7 introns per kilobase of coding sequence in vertebrates,
some invertebrates and plants, to only a few introns across
the entire genome in many unicellular forms. We applied a
robust statistical methodology, Markov Chain Monte Carlo,
to reconstruct the history of intron gain and loss
throughout the evolution of eukaryotes using a set of
245 homologous genes from 99 genomes that represent
the diversity of eukaryotes. Intron-rich ancestors were
confidently inferred for each major eukaryotic group
including 53% to 74% of the human intron density for
the last eukaryotic common ancestor, and 120% to 130%
of the human value for the last common ancestor of
animals. Evolution of eukaryotic genes involved primarily
intron loss, with substantial gain only at the bases of
several major branches including plants and animals. Thus,
the common ancestor of all extant eukaryotes was a
complex organism with a gene architecture resembling
those in multicellular organisms. The line of descent from
the last common ancestor to mammals was an uninter-
rupted intron-rich state that, given the error-prone splicing
in intron-rich organisms, was conducive to the elaboration
of functional alternative splicing.

Intron-rich Ancestors of Eukaryotes
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the same as the inferred intron content of LECA (five introns), and

there is no intron-poor stage on the path from LECA to mammals

(Figure 3).

In addition to the Bayesian MCMC estimates, we inferred

ancestral densities by using Dollo parsimony [32], and by the

posterior distributions in the maximum-likelihood (ML) model

derived during the MCMC sampling. More precisely, the

posterior reconstruction uses a fixed parameter set (the ML

model) and infers a ‘‘plausible’’ history by computing the posterior

probability of intron presence for every site at each ancestral node.

Posterior probabilities are summed across sites to yield expected

values [33] which can be interpreted as a parsimonious

reconstruction weighed by the inferred lineage- and site-specific

predispositions for loss and gain. The results of the comparison

between the reconstructions obtained with the three methods

indicate that parsimony reconstructions introduce a noticeable

bias.

The Dollo and ML estimates show a picture of intron-rich

eukaryotic ancestors that is qualitatively similar to the MCMC

results. Quantitatively, similarly to the case of ancestral molecular

sequence reconstruction [34], the Bayesian estimates often

disagree with the parsimony reconstruction. Specifically, the

MCMC sampling showed the tendency to infer higher ancestral

densities (15–17% higher at intron-rich ancestors; see Figure 11 in

Text S1) than Dollo parsimony, with the exception of the ancestors

along the lineage from LECA to protostomes, for which Dollo

parsimony yields up to 45% higher densities (see Figure 11 in Text

S1). The differences highlight the idiosyncrasies of ancestral

reconstruction methods and the pitfalls of disregarding model

uncertainties. Dollo parsimony places the origin of introns at the

most recent common ancestor of intron-bearing terminal taxa at

each site, thereby systematically underestimating intron age and

parallel gains. In contrast, ML infers similar ancestral reconstruc-

tions as MCMC (Figure 11 in Text S1), and the ML model

parameters are not very different from the sampled model

parameters (93% of the ML parameters fall within the 95%

confidence intervals; see Figure S12 in Supporting Text S1).

The MCMC sampling procedure provides robust statistical

estimates of ancestral states through Bayesian confidence intervals.

The 95% confidence intervals are fairly tight around most

estimates, even for such deep ancestors as those of alveolates

(3.7–6.3 introns/kilobase), Dikarya (‘‘higher’’ fungi: 3.7–4.7

introns/kilobase), opisthokonts (4.7–5.5 introns/kilobase) and,

most importantly, LECA (see below). The uncertainty is larger

in ancestors with subsequent turbulent history in the descendants.

A case in point is the amoebozoan ancestor. There was extensive

intron loss along the branch leading from the intron-rich unikont

ancestor to the extant Amoebozoa. It is unclear, however, whether

the losses occurred in parallel in multiple descendant lineages, or

prior to the split between Dictyostelium and Entamoeba (see Figure 4

in Text S1). Even more problematic is the reconstruction of the

gene structure evolution in chromalveolates, because of the

extensive intron turnover in many lineages within this supergroup.

Indeed, there was no detectable intron conservation across

haptophytes (E. huxleyi), pelagophytes (A. anophagefferens), diatoms,

and other eukaryotes within or outside chromalveolates (see Table

6 in Text S1). For instance, the diatom T. pseudonana shares only

25% of introns with other diatoms in the data set, and only 3–6%

with other eukaryotes. For comparison, human intron positions

show 75–80% conservation with other Metazoa and 25–30%

conservation with plants. Introns of Phytophthora and alveolates are

also often conserved across large evolutionary distances. Accord-

ingly, the reconstruction is fairly certain for the alveolate,

Phytophthora and diatom ancestors and their descendants, and

even for the chromalveolate ancestor, but many equally plausible

scenarios are apparent for haptophyte ancestors (see Figure 5 in

Supporting Text S1). Exploration of alternative phylogenies for

the major chromalveolate groups yielded neither a better model

fit, nor more precise estimates (data not shown). These examples

demonstrate the inherent uncertainties in ancestral reconstruction.

Conceivably, the extensive intron turnover in chromalveolate

algae, and the massive loss in Amoebozoa all but effaced any clues

as to the ancestral gene structures, illustrating the fundamental

limits of the reconstruction [35].

The gene architecture of LECA is of special interest. Previous

estimates of intron density for LECA were very uncertain due to

methodological problems with maximum likelihood inference

[19]. The present reconstruction yielded the median value of 4.3

Figure 1. Reconstruction of intron gains and losses in the evolution of eukaryotes and intron density in ancestral eukaryote forms.
Branch widths are proportional to intron density which is shown next to terminal taxa and some deep ancestors, in units of the introns count per
1 kbp coding sequence. Human (Hsap) is marked by a blue dot. Edges are colored by the relative amount of intron gain and loss, as indicated in the
inset scatter plot where each point corresponds to an edge in the tree. Gain% is the percentage of introns gained in the given lineage from the
parent node; loss% is the percentage of the parent’s introns lost within the same lineage. Species names and abbreviations: Aureococcus
anophagefferens (Aano), Aedes aegypti (Aaeg), Agaricus bisporus (Abis), Anopheles gambiae (Agam), Allomyces macrogynus ATCC 38327 (Amac), Apis
mellifera (Amel), Aspergillus nidulans FGSC A4 (Anid), Acyrthosiphon pisum (Apis), Arabidopsis thaliana (Atha), Babesia bovis (Bbov), Batrachochytrium
dendrobatidis (Bden), Branchiostoma floridae (Bflo), Botryotinia fuckeliana B05.10 (Bfuc), Brugia malayi (Bmal), Bombyx mori (Bmor), Coccomyxa sp. C-
169 (C169), Chlorella sp. NC64a (C64a), Caenorhabditis briggsae (Cbri), Caenorhabditis elegans (Cele), Coprinopsis cinerea okayama7#130 (Ccin),
Cochliobolus heterostrophus C5 (Chet), Coccidioides immitis RS (Cimm), Ciona intestinalis (Cint), Cryptococcus neoformans var. neoformans (Cneo),
Chlamydomonas reinhardtii (Crei), Capitella teleta (Ctel), Capsaspora owczarzaki ATCC 30864 (Cowc), Dictyostelium discoideum (Ddis), Dictyostelium
purpureum (Dpur), Drosophila melanogaster (Dmel), Drosophila mojavenis (Dmoj), Daphnia pulex (Dpul), Danio rerio (Drer), Entamoeba dispar (Edis),
Entamoeba histolytica (Ehis), Emiliania huxleyi (Ehux), Fragilariopsis cylindrus (Fcyl), Phanerochaete chrysosporium (Fchr), Phaeodactylum tricornutum
(Ftri), Gallus gallus (Ggal), Gibberella zeae PH-1 (Gzea), Hydra magnipapillata (Hmag), Helobdella robusta (Hrob), Homo sapiens (Hsap), Ixodes scapularis
(Isca), Laccaria bicolor (Lbic), Lottia gigantea (Lgig), Micromonas sp. RCC299 (M299), Monosiga brevicollis (Mbre), Mucor circinelloides (Mcir),
Mycosphaerella fijiensis (Mfij), Mycosphaerella graminicola (Mgra), Magnaporthe grisea 70-15 (Mgri), Melampsora laricis-populina (Mlar), Micromonas
pusilla CCMP1545 (Mpus), Neurospora crassa OR74A (Ncra), Nematostella vectensis (Nvec), Nasonia vitripennis (Nvit), Ostreococcus sp. RCC809 (O809),
Ostreococcus lucimarinus (Oluc), Oryza sativa japonica (Osat), Ostreococcus taurii (Otau), Phytophthora capsici (Pcap), Plasmodium falciparum (Pfal),
Puccinia graminis (Pgra), Pediculus humanus (Phum), Phaeosphaeria nodorum SN15 (Pnod), Physcomitrella patens subsp. patens (Ppat), Phytophthora
ramorum (Pram), Pyrenophora tritici-repentis Pt-1C-BFP (Prep), Proterospongia sp. ATCC 50818 (Prsp), Phytophthora sojae (Psoj), Paramecium tetraurelia
(Ptet), Plasmodium vivax (Pviv), Plasmodium yoelii yoelii (Pyoe), Rhizopus oryzae (Rory), Sorghum bicolor (Sbic), Saccharomyces cerevisiae (Scer),
Schizosaccharomyces japonicus yFS175 (Sjap), Schistosoma mansoni (Sman), Selaginella moellendorffii (Smoe), Schizosaccharomyces pombe (Spom),
Spizellomyces punctatus DAOM BR1173 (Spun), Strongylocentrotus purpuratus (Spur), Sporobolomyces roseus (Sros), Sclerotinia sclerotiorum 1980 UF-70
(Sscl), Trichoplax adhaerens (Tadh), Theileria annulata (Tann), Tribolium castaneum (Tcas), Toxoplasma gondii (Tgon), Taenopygia guttata (Tgut),
Theileria parvum (Tpar), Thalassiosira pseudonana (Tpse), Tetrahymena thermophila (Tthe), Ustilago maydis 521 (Umay), Uncinocarpus reesii 1704 (Uree),
Volvox carteri (Vcar), Vitis vinifera (Vvin).
doi:10.1371/journal.pcbi.1002150.g001
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introns/kilobase, with the 95% confidence interval of 3.7–5.1

introns/kilobase (Figure 2), i.e., 53–74% of the human intron

density with a 95% confidence. Different resolutions of the

trifurcating plant-unikont-chromalveolate root did not significantly

affect the model fit (see Figure 9 in Text S1). Our analysis of the

gene structure in the only sequenced genome of a free-living

excavate (a member of a fourth supergroup of eukayotes), Naegleria

gruberi [27], identified a high fraction (30–50%) of intron positions

shared with other supergroups (see Table 14 in Supporting Text

S1), an observation that is compatible with an intron-rich LECA

and with a moderate intron turnover within the line of descent

leading from the LECA to Naegleria.

Strikingly, the greatest intron density among all ancestral and

extant eukaryotes was inferred for the last common ancestor of the

Metazoa, at 120–130% of the human density, with a 95%

confidence (Figures 1 and 2).

We validated the inference procedures by simulating the

evolution of intron sites (see Figure 13 in Supporting Text S1).

The MCMC and ML methods infer the ancestral intron densities

with no obvious bias, concurring on simulated data to a similar

extent as on the main data set. In a sharp contrast, Dollo parsimony

is significantly biased towards overestimation at many intron-rich

ancestors. The variance of the probabilistic estimators at different

ancestral nodes recalls the spread of Bayesian confidence intervals:

fairly small variance was observed for almost all nodes including the

LECA but the inferences for the amoebozoan and heterokont

ancestors were unreliable. Additional simulation experiments (see

Figure 13 in Supporting Text S1) showed that the probabilistic

models performed robustly even in the presence of missing

orthologs, or heterotachious model violations.

In all eukaryotes, with the interesting exception of the tunicate

Oikopleura dioca [36], introns show a non-uniform phase distribu-

tion, i.e., an excess of introns that are inserted between codons

(phase 0) compared to introns between codon positions 1 and 2,

and 2 and 3 (phases 1 and 2, respectively) [16,37]. We compared

the inferred phase distributions for the gained, lost and ancestral

introns (or, in other words, derived the phase-specific gain and loss

rates, and ancestral states). In most animals, including the

ancestral forms, and in LECA, the ratios of the three phases

remained nearly constant at 2:1:1 (twice as many introns of phase

0 as there were introns of phase 1 or 2). In some of the fungi and

chromalveolates, the excess of phase 0 introns was less pro-

nounced, whereas in plants, there was a greater than average

excess of phase 0 and a paucity of phase 1 introns (see Figure 7 and

Table 8 in Text S1). These findings indicate that the excess of

phase 0 was a (nearly) universal feature of intron evolution

throughout the history of eukaryotes but also reveal significant

deviations from this pattern in some lineages. The mechanistic

basis of both the ancestral excess of phase 0 and the lineage-

specific variations remains to be identified.

The results of this study reveal three principal modalities of

evolution of the eukaryote gene structure:

Figure 2. Inferred ancestral intron densities and confidence intervals. The plots for 9 key ancestral forms show the posterior distributions of
the ancestral intron density inferred from the sampling chains. On each plot, the horizontal red line shows the median (the dot) and the 95% (+/
247.5%) confidence interval around it, estimated from 50,000 sampled MCMC steps.
doi:10.1371/journal.pcbi.1002150.g002

Intron-rich Ancestors of Eukaryotes
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i) relative stasis accompanied by slow, roughly uniform loss of

introns

ii) extensive loss of ancestral introns that in many lineages led to

nearly intronless genomes

iii) extensive turnover of introns when the high loss rate is

(approximately) offset by a high gain rate.

The choice between these routes of evolution in a particular

lineage could depend primarily on the intensity of purifying

selection that is linked to the effective population size [38,39].

Periods of large effective population size entail strong purifying

selection and create a ratchet effect whereby lost introns are

unlikely to be regained. Remarkably, the line of descent from

LECA to mammals seems to have never gone through a strong

selection stage, so the intron density remained continuously high,

the only major perturbation being the gain of many introns at the

onset of animal evolution followed by subsequent gradual loss

(Figure 1).

Discussion

The results of this work, thanks to the extensive data set of

analyzed genomes and the robust reconstruction method that

yields inferences of ancestral states with minimal uncertainty, seem

to close the debate on the gene architecture of ancestors of extant

eukaryotes including LECA. It is now clear that the genes of

ancestral eukaryotes possessed high intron density, close to the

densities in the most intron-rich modern genomes, those of

mammals.

This finding has substantial implications for understanding the

evolution of eukaryotes. It has been noticed that intron-poor

genomes typically possess strong, highly efficient splice signals,

whereas intron-rich genomes contain mostly weak, error-prone

splice signals [40], an effect that appears to be due primarily to

weak purifying selection that precludes both purging of introns

and tightening of the junctions (splice signals) [41]. In intron-rich

ancestral genomes, frequent errors of splicing yielding aberrant

transcripts were inevitable. The abundance of such transcripts was

the driving force behind, first, the evolution of defense systems that

attack immature mRNAs and prevent their translation, like the

nonsense-mediated decay (NMD) system that also contributes to

expression regulation [42,43], and second, the recruitment of

aberrant transcripts to produce variants of proteins, the trend that

in animals gave rise to the pervasive alternative splicing, one of the

principal mechanisms of diversity generation and protein function

regulation [12,14,44].

Remarkably, the present results indicate that the entire line of

descent from LECA to mammals was a continuous intron-rich

state (Figure 1) that provided for uninterrupted evolution of the

growing repertoire of functional alternative spliced forms. The

unprecedented intron gain at the onset of animal evolution could

further contribute to the expansion of alternative forms. This spurt

of intron gain might have resulted from a combination of a

population bottleneck that led to weak purifying selection with

increased transposon activity that could activate double-strand

break repair, a likely major mechanism of intron gain [45].

Methods

Orthologous genes were identified using a modification of the

previously described procedure [22]. The groups of putative

orthologs from eukaryotes from the eggNog database [46] were

employed as ‘‘seeds’’ to which members from the 99 selected

genomes were added. The resulting candidate sets of orthologs

were further filtered by verifying their phylogenetic relationships.

In particular, a non-negative log-likelihood ratio between the

neighbor- joining tree and the known species phylogeny,

computed by PhyML (Guindon and Gascuel, 2003) was required.

Figure 3. Inferred intron site histories in prohibitin orthologs (KOG3083). The tree from Figure 1 is used as the template for the
reconstruction. Vertical bars are placed at intron sites proportionally along the X axis within the bars with respect to the underlying alignment. The
height of green bars is proportional to the probability of intron presence; the height of red bars is proportional to the probability of intron gain in the
lineage leading to the node.
doi:10.1371/journal.pcbi.1002150.g003

Intron-rich Ancestors of Eukaryotes
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The adopted phylogeny reflects known evolutionary relationships

between major taxonomic groups [24,26]. Sequences of Naegleria

gruberi were selected using the same procedure, but the large

evolutionary distance precluded identification of a sufficient

number of orthologs and unambiguous alignment of splice sites.

Therefore, sequences from N. gruberi were not included them from

the ancestral inference.

The intron positions were mapped onto gene sequences using a

previously developed computational pipeline [22]. The resulting

data set is a table of intron absence and presence in which each

column corresponds to a splice site projected onto an unambig-

uous alignment column (retaining intron phase information), and

each row corresponds to one of the 99 species. Table entries may

be 1 (splice site is present), 0 (no splice site), or ‘‘*’’ (ambiguous) for

a missing ortholog or an uncertain alignment portion. The final

table was produced using the Malin software [47] and contained

all columns with at most 24 ambiguous entries (and at least one

entry of 1).

Gene structure evolution was modeled mathematically by

assuming that the table columns xj : j~1,:::,l are independent

and identically distributed random vectors. The distribution itself

incorporates variable intron gain and loss parameters across

lineages and splice sites (16,40). For a formal treatment, define T

as the known phylogeny for the terminal taxon set S, i.e., a rooted

tree with n leaves that are bijectively labeled by taxa from S.

Internal tree nodes correspond to common ancestors. The history

of a potential splice site is modeled as a binary labeling of all tree

nodes: j= (j[u]M{0,1}: uMT). In a Markov model, the labeling is

randomly drawn from a distribution for which the parent-child

relationships in the phylogeny define conditional independencies.

The distribution of j at a site is fully determined by the presence

probability at the root p= Pr{j[root] = 1}, and edge-specific rates

(luv,muv) : uv[T . On the edge uv, labels change with probabilities

puv(0?1)~Pr j½v�~1 j½u�~0jf g~ luv

luvzmuv

1{exp {luv{muvð Þð Þ

puv(1?0)~Pr j½v�~0 j½u�~1jf g~ muv

luvzmuv

1{exp {luv{muvð Þð Þ

Conversely, puv(0?0)~1{puv(0?1),puv(1?1)~1{puv(1?0).
The rates are set on each edge uv as luv~cj

:luv,muv~nj
:muv where

c, n are site-specific rate multipliers, and luv,muv are lineage-

specific average rates. The site-specific rate multipliers are drawn

independently from discretized Gamma distributions [48] with the

mean of 1. The model is thus completely specified by the vector

h~ again,aloss,p, tuv,ruvð Þ : uv[T
� �

, where the hyperparameters a
specify the shape of the Gamma distribution for the site-specific

rate multipliers, and the edges are parametrized by their length and

rate ratio tuv~luvzmuv,ruv~luv

�
muv, respectively. An input table

column is a vector xj [ 0,1,�f gn
, where the character * denotes

ambiguity. Accordingly, equivalence between resolved and

unresolved labelings is defined by

j½S� p xj

� �
~ Vu[S : j½u�~xj ½u� _ xj ½u�~�
� �

,

where j[S] is a random leaf set labeling. The model defines the

likelihood L(xj ; h)~ Pr j½S� p xj hj
� �

for each table column. The

likelihood for the complete data set, defined as

L(h)~P
n

j~1

L(xj ; h)

Pr j½S�=0n hjf g

can be computed efficiently for a given model parametrization h,

and numerically optimized to find the maximum-likelihood

parameters h* [22,33]. The condition in the denominator accounts

for the lack of columns with no splice site (entry 1) at any terminal

taxon.

Ancestral intron counts were inferred using three methods.

Intron count estimates were converted into densities by the

formula density = intron count ? 6.946 kbp21/875. The conver-

sion formula uses human as a reference: 6.946 is the mean number

of human introns per 1000 base pairs (kbp) in the coding

sequences of the analyzed genes, and 875 is the number of human

introns in the data set. The posterior distribution for ancestral

intron counts for a given model parametrization is computable

without much difficulty [33], and was used to infer the ancestral

densities in conjunction with the maximum-likelihood model

found during MCMC sampling, as implemented in the Malin

software [47]. The ancestral intron positions were also inferred by

using the Dollo parsimony principle, as implemented in Malin

[47].

In order to estimate ancestral intron densities and lineage-

specific changes in a Bayesian setting, we adapted mutation

mapping techniques commonly employed with molecular se-

quence evolution models [34]. The Metropolis- Hastings algo-

rithm [49] was used to estimate the posterior distributions for

ancestral reconstructions and model parameters in a Markov-

chain Monte Carlo framework [29]. The SAMPLING algorithm

(Box 1) generates a random walk by a Markov chain over the

parameter space and ancestral reconstructions.

In Line S4, the acceptance probability includes the likelihoods

L(h) at different model parameters, the prior distribution P(h) of

parameters, and a proposed model distribution Q(hRh9). In Line

S5, random ancestral labelings x̂xj are drawn at each column j by

using the so-called conditional likelihoods for labeling node u with

x = 0, 1, given the (possibly unresolved) labelings at the terminal

taxa Su within the subtree rooted at u:

Box 1. SAMPLING algorithm

S1. draw random initial parameters h by their prior
distribution P(h)

S1. repeat
S3. propose new random model parameters h9 by

distribution Q(hRh9)
S4. with probability min 1,

L(h0)

L(h)
:Q(h0?h)

Q(h?h0)

� �
, set h= h9

S5. generate random ancestral labeling by posterior
probabilities

Box 2. LABELING algorithm

L1. draw random site-specific rate multipliers c, n
L2. set luv~cj

:luv,muv~nj
:muv on every edge uv

L3. compute conditional likelihoods L[u:x] for all nodes u
and labels x = 0,1
L4. set x̂xj ½root�~1 with probability

p:L½root : 1�
p:L½root : 1�z(1{p):L½root : 0�; otherwise set x̂xj ½root�~0

L5. for all non-root nodes v in a preorder traversal do
L6. set u~parent(v),x~x̂xj ½u�
L7. with probability puv(x?x):L½v : x�, set x̂xj ½v�~x; other-
wise set x̂xj ½v�~1{x
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L½u : x�~Pr Vv[Su : j½v�~xj ½v� _ xj ½v�~ � j½u�~x; hj
� �

:

The conditional likelihoods are calculated by dynamic pro-

gramming in a postorder traversal by adapting the pruning

algorithm of Felsenstein [50] (LABELING algorithm, Box 2).

In Line L1, the rate multipliers are drawn from the posterior

distribution for the different discretized rate categories using the

shape parameters of the respective Gamma distributions. The

SAMPLING algorithm generates a Markov chain for pairs of

model parameters and ancestral reconstructions. The equilibrium

distribution for the chain is the posterior distribution

q(h,x̂x)~P(h):L(h): P
l

j~1
Pr Vu : j½u�~x̂xj ½u� j½S� p xj

		 ; h
� �

:

In addition to sampling histories of profiles from the input data,

we also generated ‘‘all-absent’’ profiles with introns missing at

every terminal taxon [33]. The history of all-absent profiles was

randomly sampled with the same procedure, and the number of

such profiles was set as a negative binomial random variable with

parameters (l,p0), where p0~Pr j½S�~0n hjf g is the probability of

an all-absent profile. Ancestral intron counts were computed by

tallying x̂xj ½u� across all j, and adding the analogous sum for the

sampled histories of all-absent profiles. Intron gains and losses on

branches were estimated with a similar calculation.

The prior distribution P(h) was uniform for every parameter

(and thus absent from the formula in Line S4): over the range [0,

10] for shape parameters and edge lengths, and over the range [0,

1] for p and the rate ratios. In a typical MCMC proposal, a subset

of model parameters was chosen, and then multiplied by a random

value; see Text S1for the details of the proposal distributions

Q(hRh9).

The convergence and the mixing efficiency were assessed by

running 100 chains in parallel (see Figures 1–3 in Text S1).

Estimates were computed using 50,000 independent samples from

the joint posterior distribution q of parameters and ancestral intron

densities.

Individual intron site histories were reconstructed using the

Malin software [47] with the median parameter values taken from

the MCMC sampling.

Simulations were performed by generating 100 random data

sets of a comparable size to the input data set using the MCMC

median model parameters, coupled with an erasure procedure

simulating missing orthologs, or randomly generated multipliers

for simulating heterotachy (lognormal multipliers for rate param-

eters, exponential multipliers for edge lengths): see Figure 13 in

Supporting Text S1.

Supporting Information

Figure S1 Posterior distributions of the ancestral intron densities

inferred from the sampling chains for all ancestral forms.

(PDF)

Text S1 Detailed methods and results with the illustrating figures

and tables.

(PDF)

Video S1 Dynamic representations of the histories of intron loss

and gain for the 245 analyzed clusters of orthologous genes.

(MOV)
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