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Abstract

In motor tasks with redundancy neuromotor noise can lead to variations in execution while achieving relative invariance in the
result. The present study examined whether humans find solutions that are tolerant to intrinsic noise. Using a throwing task in
a virtual set-up where an infinite set of angle and velocity combinations at ball release yield throwing accuracy, our
computational approach permitted quantitative predictions about solution strategies that are tolerant to noise. Based on a
mathematical model of the task expected results were computed and provided predictions about error-tolerant strategies
(Hypothesis 1). As strategies can take on a large range of velocities, a second hypothesis was that subjects select strategies that
minimize velocity at release to avoid costs associated with signal- or velocity-dependent noise or higher energy demands
(Hypothesis 2). Two experiments with different target constellations tested these two hypotheses. Results of Experiment 1
showed that subjects chose solutions with high error-tolerance, although these solutions also had relatively low velocity.
These two benefits seemed to outweigh that for many subjects these solutions were close to a high-penalty area, i.e. they were
risky. Experiment 2 dissociated the two hypotheses. Results showed that individuals were consistent with Hypothesis 1
although their solutions were distributed over a range of velocities. Additional analyses revealed that a velocity-dependent
increase in variability was absent, probably due to the presence of a solution manifold that channeled variability in a task-
specific manner. Hence, the general acceptance of signal-dependent noise may need some qualification. These findings have
significance for the fundamental understanding of how the central nervous system deals with its inherent neuromotor noise.
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Introduction

Decrease of error and its variability as a consequence of practice

is a widely recognized indicator of skilled performance and

improvement. More recent studies have tried to look beyond pure

outcome measures and examined the variability at different stages

in movement generation, for example during the planning stage

[1], during the execution of movements [2,3], and in the

processing of sensory estimates [4]. Such variability or noise is

the consequence of many processes at all spatiotemporal levels of

the sensorimotor system arising, for example, in signal propagation

due to synaptic fluctuations that affect the regularity of spike trains,

or in the transduction of a continuous signal into discrete spike

sequences [5]. This variability has been shown to depend on the

signal amplitude, for example the magnitude of contractile force or

velocity. It has become widely accepted that subjects aim to

minimize signal-dependent noise [6,7].

Over recent years sensorimotor noise and its role in motor

control has received increasing attention from several lines of

study. For example Trommershäuser, Maloney and colleagues

have focused on rapid pointing tasks where variability in pointing

accuracy was analyzed with respect to different penalties and

rewards [8,9]. Several studies have shown that human performers

take their variability and the risk induced by their own

uncontrolled variability into account. Their research has been

guided by the framework of decision theory and emphasized the

cognitive decision making and planning when performing a motor

task. Van Beers and colleagues have looked at variability of

reaching tasks as an entry to understand visual and proprioceptive

information contributing to motor solutions [3,10]. Variability and

noise is also central in the work on stochastic optimal feedback

control by Todorov and colleagues and this computational

approach has been applied to increasingly more diverse tasks

[11,12,13,14]. A recent study by Nagengast, Braun, and Wolpert

highlighted that this optimal control framework may need to be

differentiated to address inter-individual differences in risk

attitudes, i.e., individuals’ preferences to deal with risk and

penalties [15].

Our research on variability and noise complements and extends

these lines of research in several aspects. The present study

examines performance of a motor skill where redundancy in the

task presents different opportunities for dexterous performance.

To be explicit, redundancy in the task permits that an infinite set

of executions leads to the same result, both for zero-error solutions

but also all other non-zero task solutions. This redundancy has

been frequently illustrated in a multi-joint pointing movement

where an infinite number of joint-angle combinations lead to a

given accuracy in the endpoint position. In our single-joint
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throwing task an infinite set of states at the moment of ball release,

position and velocity of the arm movement, leads to zero-error

performance. However, not all solutions are the same with respect

to risk and sensitivity to error. Mathematical analysis of the task’s

redundancy presents the platform for an analysis of subjects’

variability over repeated executions.

Repetitions of the ‘‘same’’ movement will lead to variations not

only as a consequence of the ever-present noise in the

sensorimotor system but also due to the geometry of the null

space of the task that endows different solutions with different

degrees of tolerance or sensitivity to errors. Hence, the observed

variability is not necessarily random, but rather its distribution

may express strategies of the central nervous system. Our analysis

will focus on distributional aspects of execution with respect to

the geometry of the null space or solution manifold determined

by the task. Related approaches such as decision-theoretic,

optimal control models, or the UnControlled Manifold (UCM)

method have provided support that the variability over multiple

repetitions is structured. For example the UnControlled Manifold

(UCM-) approach [16], frequently applied to variability in joint

space with respect to its mean endpoint position or force

contributions of fingers with respect to summed force output

has provided support that variability in directions parallel to the

null space is larger than variability orthogonal to it [17].

Interestingly, this structured variability is also the consequence

of the optimization of control cost in the optimal feedback control

models [13]. While the goal of the UCM-analysis resembles our

approach, some critical differences exist in how the problem is

posed, how variability is analyzed and, consequently, the

obtained result [18,19]. The present study illustrates our

approach and how it permits specific predictions about strategies

with a view to a desired task result.

One critical difference between our approach and the UCM-

method and optimal feedback control is that they have only

focused on the covariance structure of the distribution with respect

to a solution manifold. In contrast, our work developed an analysis

of variability that differentiates between three different contribu-

tions to optimal task performance. This TNC-method allows the

quantitative analysis of Tolerance, Noise and Covariation [19,20,

21,22]. The component Noise is straightforward and refers to the

amplitude of the random distribution. Covariation is indicated when

the data are aligned with the solution manifold, conceptually

identical to what the UCM method and also optimal feedback

control focused on. Our quantification, however, does not rely on

the analysis of the covariance structure which is stricken with

sensitivity to coordinates [18].

Unique to our analysis is the concept of Tolerance that evaluates

movement strategies with respect to the error that deviations

from the ideal solution incur, i.e., tolerant solutions are least

sensitive to error and perturbations. It should, however, be

pointed out that this concept is not equivalent to local sensitivity

as Tolerance is defined over the neighborhood defined by the

subject’s variability. Note also that maximizing Tolerance is

different from the goal of ‘‘maximizing hit rate’’ in a single trial

by processing feedback to decrease error. Rather, it is defined

over a set of performances and quantifies to what degree subjects

are sensitive to their own errors and take predicted cost of a set of

trials into account. Previous experiments have shown how

Tolerance is the first component that is reduced with practice

[20,22]. The present study shows how a task analysis can

generate predictions that permit direct evaluation of whether

subjects seek out error-tolerant strategies, i.e., strategies that allow

maximum variability at the execution level but with minimal

penalty in the result.

To this end we examine a throwing task called skittles in which

a subject throws a ball suspended to a vertical post to hit a target

skittle at the other side of the post. The task is redundant such that

an infinite set of variations can have the same result. In the

experimentally controlled task two execution variables, angular

position and velocity at release of the ball, fully determine its

result variable, the ball’s trajectory and its error from hitting the

skittle. The key characteristic is that the number of execution

variables is larger than the number of result variables; hence, an

infinite number of angle and velocity combinations can lead to the

same distance error. The results with zero error form a set called

the solution manifold. Hence, this task is representative for any goal-

oriented skill where a redundant number of execution variables

fully determine the result.

This study examined the hypothesis whether subjects are

sensitive to their motor variability and find error-tolerant solutions

that minimize the effect of this variability on their performance

result (Hypothesis 1). Yet, in the present task successful throwing

actions can be executed with a large range of different velocities.

As it is commonly assumed that higher velocities are associated

with higher costs, such as signal-dependent noise or some form of

energy or effort, it can also be hypothesized that subjects seek

solutions with the lowest possible velocity (Hypothesis 2). Two

experiments with different task configurations will test these two

hypotheses.

Methods

Ethics Statement
Prior to data collection, subjects were instructed about the

experimental procedure upon which they signed an informed

consent form in agreement with the Institutional Review Board of

the Pennsylvania State University.

Participants. A total of 18 graduate students (11 male, 7

female, 22 to 30 years of age) from the Pennsylvania State

University volunteered to participate in the two experiments (9

participants in each). They all reported themselves to be right-

handed and had no neurological disorders. They were informed

about the purpose of the experiment, but were naive about the

nature of the manipulations in the experiment.

Author Summary

It is widely recognized that variability or noise is present at
all levels of the sensorimotor system. How the central
nervous system generates functional behavior with a
sufficient degree of accuracy in the face of this noise
remains an open question. This is specifically relevant
when the motor task is redundant, i.e., where many
different executions can achieve the same task goal. Using
an experimentally controlled throwing movement as
model task we examined how humans acquire movement
strategies that are tolerant to intrinsic noise. Based on a
new computational approach that parses variability based
on an analysis of task redundancy, we tested two
hypotheses: 1) Subjects are sensitive to noise and seek
solutions that are tolerant to this noise. 2) Subjects avoid
solutions with high velocities and the costs associated with
high velocities. Analysis of the distributional properties of
variability in two experiments revealed that humans select
those strategies that maximize error-tolerance. These
findings have significance for fundamental understanding
of the central nervous system and for learning in the
context of rehabilitation.

Neuromotor Noise
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The Model Task
The task for the present study is similar to the game skittles or

tetherball where the person throws a ball suspended as a

pendulum around a pole to hit a target at the opposite side of

the post. The trajectory of the ball is fully determined by the

angular position and velocity at release of the ball and the

mathematical relationship is modeled using basic mechanics [22].

After release, the ball trajectory describes an elliptic trajectory

around a center post from which it is suspended (centripetal force

field). Performance results or errors are quantified by the minimal

distance between the ball trajectory and the target skittle.

Figures 1A and 1B shows a top down view as subjects saw it

during the two experiments, respectively. A successful hit with zero

error meant that the center of the ball went through the center of

the target. In case they did not hit the skittle, the error was

calculated as the minimum distance between the trajectory and the

center of the target.

In both examples two of the three trajectories illustrate how

different combinations of the two execution variables can lead to

the same result (error = 0), i.e., the task is redundant. The

Figure 1. Workspace, execution space and solution manifold. A: Workspace with the position of the center post and target skittle in
Experiment 1. Two ball trajectories exemplify how different release variables can lead to the same result with zero error (trajectory 1, 2, dashed lines).
Trajectory 3 shows a trajectory with non-zero error. B: Workspace with center post and target as used in Experiment 2. Three select trajectories
exemplify the redundancy of solutions as in panel A. C: Execution space and solution manifold of target and center post configuration in Experiment
1. White denotes zero-error solutions, increasing error is shown by increasingly darker grey shades, black denotes a post hit. The release variables of
trajectory 1 and 2 correspond to points 1 and 2 on the solution manifold, the variables of trajectory 3 correspond to the point 3 in a grey-shaded area
(error = 30cm). D: Corresponding execution space and solution manifold. The three points correspond to the three trajectories of panel B.
doi:10.1371/journal.pcbi.1002159.g001

Neuromotor Noise
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redundancy relation between execution and result variables is

captured in the execution space (Figure 1C and 1D) where every

throw, defined by the variables angle and velocity, corresponds to

one point. Different levels of success, quantified in the error, are

displayed by different grey shades. Perfect hits with zero error are

displayed in white and form the one-dimensional solution

manifold; solutions with increasing error are shown by increasingly

darker grey shades; black denotes a post hit. As the two

constellations exemplify, different positions of the target and the

center post create very different execution spaces and solution

manifolds.

Experimental Set-Up
Participants stood in front of a back projection screen operating

a lever arm that simulated the throw (Figure 2). The height of the

lever was adjustable for each person so that his/her forearm was

placed horizontally with the elbow joint aligned with the axis of

rotation. At the distal end of the manipulandum, the participant

grasped a ball and closed a contact switch with his/her index

finger. Extending the index finger corresponded to opening the

grasp to throw the ball; this opened the switch and triggered the

release of the ball on the visual display. The rotation of the

manipulandum was measured by a potentiometer (Vishay

Spectrol, CA) with a sampling rate of 650 Hz. The participant

could stand to the right or left of the vertical fixation, throwing in

clockwise or counterclockwise direction, depending on the task.

The visual display (60 Hz update rate) was presented on a back

projection screen (1.80 m61.40 m) positioned 0.60 m in front of

the participant. On the screen he/she saw the virtual lever arm

moving in real-time that threw a ball to hit a target skittle on the

Figure 2. Experimental setup. Participants stand in front of the setup with their forearm resting on the horizontal lever arm. The rotation of the
arm is recorded by the potentiometer, when the finger opens the contact switch the ball in the virtual simulation is released. Online recordings of the
arm movements are displayed on the projection screen.
doi:10.1371/journal.pcbi.1002159.g002
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other side of the center post. The ball trajectory was computed

from the online measurements of angular position and the

numerically differentiated velocity at release according to the

model described in [22]. The ball’s trajectory was displayed for 1 s

after release, which was sufficient to provide visual feedback about

the success of the throw.

The data acquisition and the visual display were programmed in

Visual C++ (Microsoft, v6.0); the virtual display was implemented

by Open GL Graphics (Silicon Graphics, v1.2).

Experimental Procedure and Design
Participants were instructed to hit the target with the virtual ball

as accurately as possible. After a self-timed short break subjects

initiated the next trial. Typically, one trial including the break

between trials lasted approximately 6 s. The throwing movement

itself lasted approximately 350 ms. In Experiment 1 subjects

performed three sessions, each consisting of three blocks with 60

trials in one block, yielding a total of 540 trials; in Experiment 2

each subject performed five sessions, giving a total of 900 trials.

Between each block, participants rested for a few minutes. The

total duration of each session was approximately 15 min. The

sessions were collected on three and five consecutive days,

respectively. In session 1 participants were instructed to try

different release angles and release velocities to find successful

strategies that achieved reliable solutions. In the subsequent

sessions participants were instructed to no longer explore but to

continue with the strategy that had proven most successful. Note,

by strategy we do not mean that subjects necessarily have to repeat

a single solution, but rather stay in the ballpark of solutions. They

were encouraged to fine-tune their performance and avoid hitting

the center post as they would receive a large penalty.

A third control experiment was performed to examine whether

performance of the throwing action without a target resulted in

different levels of variability that depended on the release angle or

velocity. In this Experiment 3 six subjects were asked to perform

the same throwing movements, only that there was no target

skittle. The instruction to the subjects was to perform the throwing

movements at their preferred velocity but also at two higher

velocities and two lower velocities than preferred. The only

constraint was to avoid hitting the center post. Subjects performed

five blocks of 25 trials each, each block with one of the five

instructed velocities. The sequence of blocks was randomized

across subjects.

Target Configurations with Execution Space and Solution
Manifold

In Experiment 1 subjects saw the workspace as shown in

Figure 1A with the target located at coordinates (35, 125 cm) and

the center post with a radius of 33 cm located off center at (10.5,

260 cm). The target skittle (radius 1.50 cm) was located at (35,

125 cm). The ball radius was 2.50 cm. Figure 1C represents the

associated execution space with the nonlinear solution manifold

(error = 0 cm), shown in white. Although each solution on the

manifold is equivalent, different locations on the solution manifold

have very different sensitivity or tolerance to errors, as illustrated

by the changing curvature of the result function adjacent to the

solution manifold. For reference, if the trajectory only touched the

target, the error was 4 cm. If the ball hit the center post, the trial

was penalized with the relatively large error of 60 cm, shown in

black.

The execution space for Experiment 1 was so designed that

successful solutions could take on a relatively large range of release

angles and the curvature at the solution manifold showed a

pronounced change: smaller release angles showed higher

tolerance to error – the curvature of the result function was

shallow. Additionally, the most tolerant region transitioned

discontinuously to one associated with large penalty – strategies

that resulted in post hits. Solutions that allowed for a relatively

large dispersion were adjacent to solutions that are penalized

heavily – risky strategies.

In Experiment 2, subjects saw the workspace as shown in

Figure 1B. The target was located at the coordinates (5.0,

105.8 cm) and the post was slightly smaller (radius 25 cm) but

centered at the origin (0, 0). Figure 1D represents the associated

execution space with the solution manifold that was approximately

parallel to the velocity dimension, i.e. execution strategies were

only little sensitive to velocity. This sensitivity or tolerance to

variations in angle increased for higher velocities, although the

gradient was relatively small. Importantly also, the solution with

the lowest velocity was adjacent to the penalized post hits and

therefore posed a risky strategy.

Hypothesis Testing
To test the two hypotheses we performed simulations to render

quantitative predictions for tolerant solutions. For Hypothesis 1 the

error-tolerance T of all possible executions, i.e. angle-velocity (a, v)

pairs, was computed. As Tolerance T is defined for a given

distribution of data, we used the average standard deviations of all

subjects in the present two experiments, determined a posteriori

from all participants as a representative distribution. While an

estimate of variability based on previous experiments would have

served this purpose, a more accurate estimate was obtained from

the actual standard deviations. In Experiment 1 these standard

deviations were SDa = 11.70 deg and SDv = 40.49 deg/s, as

determined from the grand average over sessions 2 and 3. In

Experiment 2, these standard deviations were SDa = 9.44 deg and

SDv = 70.38 deg/s, calculated over sessions 2 to 5. These

dispersions defined the size of the neighborhood for each location

in execution space (ai,vj)where i = 1, 2, …360 denotes one bin in

the angle dimension, and j = 1, 2, … 360 denotes one bin in the

velocity dimension (see Text S1 for more detail). For each (ai,vj)
Tolerance was calculated as a weighted average error, T(ai,vj). The

weights over this matrix neighborhood were taken from a bivariate

Gaussian distribution. T(ai,vj) was assigned the weighted average

(see Text S1 for details).

To translate these Tolerance values into an estimate of probability

by which subjects chose this strategy, T(ai,vj) was transformed by

an exponential function, the softmax activation function, to obtain

the expected results E(R) for each result R(ai,vj) [23]:

E(R)~exp (aT)

,X
ij

exp (aT)

The denominator is a normalization factor that scaled the values

of E(R) to the range [0,1]. The parameter a was fitted based on the

pooled data distributions using least square fits. This transforma-

tion paid tribute to the fact that the subjects’ probability of

choosing a given strategy did not scale linearly with the expected

Tolerance. Rather, solutions with small error were given high

preference, while solutions with intermediate and large errors were

much less preferred and thereby less probable (see Text S1 for

details).

For Hypothesis 2 – predicting preference for the velocity-

sensitive strategy – the initial Tolerance estimates for each (ai,vj)
were also transformed by the softmax activation function.

However, this transformation included an additive term that

Neuromotor Noise
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evaluated velocity v:

E(R)~exp (aTzbv)

,X
ij

exp (aTzbv)

Analogous to Hypothesis 1, the two parameters a and b were fitted

to the pooled data distributions using least square fits (see Text S1

for details).

Figure 3 illustrates the data distributions in both experiments

and the two quantitative predictions for both experimental target

constellations. The top two panels show the histograms of all

subjects’ data pooled, plotted on the respective execution space

(compare to Figure 1C and D). These histograms provided the

reference for parameterizing the softmax function for the

quantitative predictions. The two middle panels show the

predictions of Hypothesis 1. For Experiment 1 the maximum

value of E(R) with highest Tolerance was at a = 244 deg and v = 161

deg/s (indicated by the red circle). For Experiment 2 the different

target constellation rendered the maximum of E(R) and highest

Tolerance at the highest velocity for the given range: a = 282 deg

and v = 1000 deg/s. It should be pointed out that the slope was

very gradual and for higher velocities the change in E(R) was very

small. Note that the exponential transformation decreased E(R) for

intermediate or lower result values, thereby enhanced the contrast

between good and less good solutions. The two bottom panels of

Figure 3 show the simulation results for Hypothesis 2: For

Experiment 1 the predicted optimal strategy was at a = 229 deg

and v = 122 deg/s. While this optimum was close to the one of

Hypothesis 1, the gradient around it was much steeper. For

Experiment 2, the strategy with minimum velocity was at a = 83

deg and v = 142 deg/s. In this experiment, the two hypothesized

solutions were at opposite ends of the manifold.

Statistical Analyses of Data Distributions
To evaluate the subjects’ distributions several analyses were

conducted. First, to visualize each individual’s distribution in

execution space the covariance matrix of the execution variables

was calculated and shown by its 95% confidence ellipse. Three

parameters described the confidence ellipse: 1) the mean of release

angle and velocity determined the center of the ellipse, 2) the

eigenvectors were calculated to determine the orientation of the

ellipse, and 3) the square roots of the eigenvalues determined the

size of the semi-major and semi-minor axes of the ellipse. Given

that the confidence ellipse required a large number of samples the

data of all sessions, except session 1 were pooled. To test the two

hypotheses, a first simple test evaluated how many confidence

ellipses, i.e., subjects, overlapped with the predicted optimal value

of Hypotheses 1 and 2. This resulted in a simple count that was

compared with an expected frequency derived under the

assumption that there was no preference for any specific solution.

A second more thorough test examined each individual’s

distribution and compared it with the hypothesized distribution

at the respective location in execution space. To this end, the trial

distributions of each subject (360 trials in Experiment 1 and 720

trials in Experiment 2) were presented in execution space in a

matrix of 5x5 cells centered on the mean angle and velocity; the

matrix size was determined by the individual’s standard deviations.

The number of cells for the matrix was based on the

recommended !n, which suggested 18 cells for Experiment 1

and 27 cells for Experiment 2. To facilitate comparison of results

for Experiments 1 and 2 we chose 25 cells, or a 5x5 matrix for

both. The frequency distributions of the data were compared with

the predictions for E(R) from Hypotheses 1 and 2 using likelihood

estimates. Given that the predictions for Hypothesis 2 contained

two fitting parameters, it was evident that Hypothesis 2 had to fare

better. Hence, for the comparison of the two nested model fits, we

applied the Akaike Information Criterion AIC that evaluated the

goodness of fit in the face of different parameters.

Results

Experiment 1
Performance improvement. A first evaluation of the data

examined how performance errors decreased with practice over all

trials across all sessions (Figure 4A). For each estimate the data of 9

participants were pooled over 15 trials and each data point

represents the median with its interquartile ranges shown by the

error bars. Medians were displayed because the discontinuously

high penalties for the post hits would have unduly skewed the

means. The line represents an exponential fit to highlight the time

course of the change with practice. It can be seen that after large

errors in the first half of session 1 participants reached a relatively

constant level of performance that they maintained throughout the

rest of the experiment. The initially large errors were partly due to

the fact that participants were instructed to explore different

strategies until they found a strategy that achieved good hitting

success. In the subsequent sessions they were instructed to

continue and fine-tune their performance. Hence, the average

change in error in session 1 was large (12.02 cm) compared to

session 2 (0.56 cm) and session 3 (0.34 cm). Given this qualitative

difference in the amount of improvement, the data from session 1

were excluded from subsequent analyses.

Pooled distributions. The next focus was on the skilled

performance that participants had reached in sessions 2 and 3.

Returning to Figure 3A the plotted histograms show the trials of

sessions 2 and 3 pooled from all 9 participants plotted in execution

space; the space was divided into a 36x36 grid (defined over the

entire execution space). The distribution was clearly non-uniform

and clustered around a mode at an angle of 236 deg and velocity

136 deg/s. None of the zero-error solutions at higher velocities

and larger angles were used. Instead, this mode was close to the

maximally tolerant E(R) as predicted by Hypothesis 1 but also

close to Hypothesis 2 (Figure 3C, E). Note that the highest

frequency of trials was also close to the locations with the high

penalty, i.e., executions that lead to a post hit (shown in black). In

fact, a non-negligible number of trials were in the post hit region.

Hence, the pooled data seemed to favor maximizing tolerance and

minimizing velocity while accepting some risk.

Individual distributions. Figure 4B illustrates the

distributions of the 360 trials for each of the 9 participants

separately by their mean and 95% confidence ellipses. The figure

demonstrates that individuals showed overall smaller distributions

along the solution manifold with some subjects close to the

discontinuity and others well away from the risky strategy. Despite

the inevitable disparity across individuals, the maximum E(R)

predicted by Hypothesis 1 was within the confidence ellipses of 7

of the 9 participants. If there was no preference, all solutions

within the angle range of 2165 deg to 0 deg should have been

chosen with equal probability. Given that the average radius of the

9 confidence ellipses was approximately 25 deg, an ellipse covered

approximately 30% of the range of all solutions. The probability

that such a confidence interval contains the maximum E(R) is 30%

under the assumption that the centers of the ellipses are uniformly

distributed across all possible solutions. A binominal test revealed

that the observed distribution 7/2 is only expected with a

probability of p = 0.004 under these assumption.

Neuromotor Noise
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Figure 3. Histograms of all data and predictions for Hypotheses 1 and 2 for both experiments. A, B: Histograms of all subjects’ trials
plotted onto the execution space of Experiment 1 and 2 (see Figure 1B and D). The data are plotted onto a grid of 36x36 bins on the execution space.
C, D: Simulation of Hypothesis 1: The vertical dimension represents the expected result E(R) calculated as the Gaussian weighted averages over a
matrix of execution variables transformed by the softmax function. The most error-tolerant solution with maximum E(R), shown by the red circle, is at
a = 244 deg and v = 161 deg/s. In Experiment 2 error-tolerant solutions quantified as expected result E(R) are at an angle a = 282 deg, the optimal
strategy for E(R) is at the highest velocity v = 1000 deg/s. E, F: Simulation of Hypothesis 2: The expected result E(R) has its optimal value at the
minimum velocity a = 229 deg and v = 122 deg/s. In Experiment 2 E(R) shows its maximum value at a = 83 deg and v = 142 deg/s.
doi:10.1371/journal.pcbi.1002159.g003

Neuromotor Noise
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Figure 4. Descriptive results of Experiment 1. A: Time series of errors (median and interquartile range) averaged across 9 participants. The trials
were also averaged such that for every non-overlapping series of 15 trials the median was plotted with the corresponding interquartile ranges shown
by the error bars. The line represents an exponential fit to highlight the time course. B: Distribution of trials of individual participants in sessions 2
and 3 plotted in execution space. The 360 trials of each of the 9 participants are represented by the 95% confidence ellipses.
doi:10.1371/journal.pcbi.1002159.g004
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Hypothesis testing. In order to test the two hypotheses, the

data of each individual were correlated with the predicted values.

Figure 5 illustrates the two-dimensional correlation analyses with

three representative participants (P1, P4 and P8). The histograms

of the data are plotted in blue shades in the top row and the

histograms of the expected results E(R) for Hypotheses 1 and 2 are

displayed in orange shades, consistent with Figure 3, in the middle

and second and third row. (Note that the dark shades are not to be

confused with the post hits in Figure 3.) Importantly, the expected

results E(R) were re-calculated on the basis of the individual’s

standard deviations (the simulations for the hypotheses used the

subjects’ average standard deviations). Hence, the predictions for

the two hypotheses were optimized for each individual and

differed accordingly. Each individual’s data was tested against

E(R) at the respective location in execution space. For example,

Participant 19s data distribution shows a diagonal orientation

which mirrors the predicted orientations by Hypotheses 1 and 2.

(For better comparison the participants were numbered according

to their mean release angle to allow visual comparison with the

ellipses from left to right in Figure 4A.) Similar tendencies are seen

in P4 and P8 whose predicted distributions differ significantly from

P1 due to their different location in execution space (compare with

Figure 4A). Qualitatively, both hypotheses approximate the data

fairly well with a slight advantage for Hypothesis 2.

The statistical results of all participants are summarized in

Table 1. The table shows the log likelihood fits LL for all 9

participants together with the fitted parameters a and b of the

softmax function for each participant and the Aikaike Information

Criterion AIC. The comparison of the two fits for Hypotheses 1

and 2 shows slightly better values for Hypothesis 2 for all

participants. However, this is inevitable given that the model for

the two hypotheses were nested such that E(R) for Hypotheses 2

extended the model for Hypothesis 1. Hence, the only reliable

basis for comparison is AIC. Lower AIC values indicate a better

fit, discounting the fact that Hypothesis 2 had one more

parameter. Using this criterion, the fits for Hypothesis 1 were

better for all 9 participants.

Experiment 2
Performance. Figure 6A shows the medians and

interquartile ranges of the error pooled over 9 participants and

15 trials across the five sessions. As in Experiment 1, performance

improved fast in session 1 and reached a relatively steady level

after session 2. This is highlighted by the exponential fit to the

Figure 5. Two-dimensional histograms of two representative individuals’ data and the corresponding hypothesized distributions
for Experiment 1. The left panel shows the trial frequency, the middle panel shows the expected result E(R) of Hypothesis 1, the right panel shows
the predicted distribution of Hypothesis 2. As the units of the three distributions are different they were all normalized to the range between 0 and 1.
Note that the black color codes the lowest value and should not be mistaken for the high-penalty regions in Figure 3.
doi:10.1371/journal.pcbi.1002159.g005
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data. The changes in the median error decreased from 1.68 cm

(session 1), 0.51 cm (session 2), 0.35 cm (session 3), 0.07 cm

(session 4), to 0.14 cm (session 5). The following analyses pooled

the data of sessions 2 to 5 where performance had converged

towards what subjects regarded as their best solutions.

Pooled distributions. Returning to Figure 3B the histogram

plotted in execution space pools all trials of all participants in

sessions 2 to 5 onto a grid of 36x36 defined over the entire execution

space. As can be seen, the data were distributed across a large range

of velocities between 140 and 880 deg/s with the mode of the data

distribution at 544 deg/s. This mode is between the maxima

predicted by the tolerance hypothesis and the velocity hypothesis.

To scrutinize whether individual subjects favored either one or the

other strategy, we examined the individual distributions.

Individual distributions. Figure 6B shows the confidence

ellipses for each participant calculated from the data of the four

sessions (720 trials for each ellipse). The individuals’ means were

distributed across different velocities ranging between 240 to 775

deg/s with overlapping distributions. Only one participant’s con-

fidence ellipse came close to the peak of E(R) derived from Hypo-

thesis 1. Similarly, only one participant’s confidence ellipse enclosed

the peak predicted by Hypothesis 2. However, it needs to be kept in

mind that the gradient of E(R) across velocities was very small.

Hypothesis testing. We proceeded with finer-grained

analyses that examined the distributions of each subject with

respect to the two hypothesized distributions of E(R). As for

Experiment 1 the two hypotheses were recalculated based on each

individual’s distributions and all statistical tests were made locally

depending on the individuals’ chosen locations. Figure 7 shows

three exemplary participants’ histograms discretized into a 5x5

matrix in the execution space with the corresponding expected

results E(R) for the two hypotheses. Participant 2 (with the second

lowest mean velocity of 400 deg/s) shows a vertical data

distribution biased to higher velocities consistent with Hypothesis

1 (participants were numbered in sequence of their mean velocity

facilitating comparison with the individual data ellipses in

Figure 6B). Participants 3 and 7 had significantly higher mean

velocities and their distributions showed a tendency towards lower

velocities, consistent with Hypothesis 2, yet not as pronounced as

predicted.

Table 1 lists the results of these statistical comparisons. All 9

participants exhibited better fits for Hypotheses 2. However, the

AIC was higher for every participant, giving support that the

additional improvements of the log likelihood fit were insufficient

to give significance. Hence, the results of all participants rejected

Hypothesis 2.

Velocity-dependent variability. In the absence of support

for Hypothesis 2, we examined the data whether there was indeed

a cost to performances with higher velocities, i.e. higher variability

associated with higher velocities. To this end, we calculated the

Table 1. Results of likelihood analyses testing Hypotheses 1 and 2.

Experiment 1

Hypothesis 1 Hypothesis 2

Participant a1 LL AIC a2 b LL AIC

1 106 23.05 8.11 114 7000 23 9.99

2 168 23.12 8.25 200 6400 23.05 10.1

3 152 23.13 8.26 188 3600 23.1 10.2

4 100 23.18 8.36 140 3000 23.16 10.31

5 22 23.14 8.28 72 12000 22.99 9.98

6 26 23.14 8.27 66 8800 23.03 10.06

7 18 23.18 8.36 60 9400 23.05 10.11

8 22 23.08 8.16 66 13800 22.88 9.76

9 18 23.13 8.27 44 7200 23.07 10.14

Experiment 2

Hypothesis 1 Hypothesis 2

Participant a1 LL AIC a2 b LL AIC

1 2500 23.07 8.15 2500 0 23.07 10.15

2 1200 23 7.99 1200 22800 22.86 9.72

3 1400 23.15 8.29 1450 7800 23.13 10.25

4 1000 23.05 8.10 1000 0 23.05 10.1

5 1000 22.98 7.96 1100 10800 22.92 9.84

6 1000 22.95 7.90 1000 2400 22.95 9.89

7 1050 23.05 8.09 1050 0 23.05 10.09

8 800 23.05 8.09 800 1500 23.04 10.09

9 150 23.12 8.25 150 0 23.12 10.25

Likelihood analyses testing Hypotheses 1 and 2 for Experiments 1 and 2 (LL refers to the log-likelihood estimate). These analyses compared the 2D frequency
distribution of each individual on a 5x5 matrix with the expected result E(R) from Hypotheses 1 and 2 on the same matrix (see details in the text). The participants are
numbered according to their mean release angle in Experiment 1 and mean release velocity in Experiment 2 to facilitate visual comparison with their data shown in
Figures 4B and 5B, respectively.
doi:10.1371/journal.pcbi.1002159.t001
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Figure 6. Descriptive results of Experiment 2. A: Time series of errors over trials (median and interquartile range). The errors were averaged over 9
participants. The trials were also averaged such that for every non-overlapping series of 15 trials the median was plotted with the corresponding
interquartile ranges shown by the error bars. The line represents an exponential fit to highlight the time course. B: Distribution of trials of individual
participants in sessions 2 to 5 in execution space. The 720 trials of each of the 9 participants are represented by the 95% confidence ellipses.
doi:10.1371/journal.pcbi.1002159.g006
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mean and standard deviations of all velocities and angles in each of

the 3 blocks for all 4 sessions of all subjects. Plotting these standard

deviations of angle and velocity against their respective mean

velocities revealed that the data did not show a velocity-dependent

variability (Figure 8A). Neither variability of velocity, nor

variability of angle showed the expected increase with mean

velocity, as evidenced by the small and non-significant r2-values of

the linear regressions (SDAngle: r2 = 0.019, p = 0.427, SDVelocity:

r2 = .004, p = 0.723).

Given this unexpected result, Experiment 3 was added as a

control experiment. For each of the 5 blocks of 25 trials per

participant that were performed under the instruction to keep the

velocity similar, the mean of velocity and angle and its standard

deviations was calculated. Figure 8B shows the results for all six

participants plotting standard deviations of velocity and angle

against the mean velocity. The linear regressions were significant

with r2-values of .71 (p,.0001) and .63 (p,.0001), showing that

variability increased significantly with increasing velocity.

Discussion

Given the many spatial and temporal scales of the sensorimotor

system, it is not surprising that at the level of observed actions

there is always variability. Different sources for this variability have

been identified: Recording in single neurons in the cortex

Churchland and colleagues demonstrated that fluctuations in

neuronal activity in M1 and dorsal premotor cortex during

movement preparation accounts for half of the observed variability

in the velocity profiles of reaching trajectories [1]. Muscle

physiological studies demonstrated that the signal-dependent

magnitude of noise in isometric force production was induced by

twitch amplitude and the recruitment order of motor neurons

[24]. Other physiological underpinnings of variability are reviewed

in [5,7]. A behavioral study by van Beers and colleagues attributed

the observed variability to the actual execution of the reaching

movement arguing that the variability was a mixture of signal-

dependent and signal-independent noise [3]. Taken together, the

complex processes in the underlying substrate give rise to

fluctuations in observed behavior that are never completely

suppressed and, as it may be speculated, should not be suppressed.

Variability Due to Task Redundancy
These reviewed studies on sources of variability discussed the

presence or absence of variability in terms of its amplitude and

generally implied a random structure. While it is beneficial if this

noise amplitude is reduced, the nervous system has also found

other ways to reduce undesired variability in the behavioral

Figure 7. Two-dimensional histograms of two representative individuals’ data and the corresponding hypothesized distributions
for Experiment 2. The left panel shows the trial frequency, the right panel shows the expected result E(R) of Hypothesis 1, the right panel shows the
predicted distribution of Hypothesis 2. As the units of the three distributions are different they were all normalized to the range between 0 and 1.
Note that the black color codes the lowest value and should not be mistaken for the high-penalty regions in Figure 3.
doi:10.1371/journal.pcbi.1002159.g007
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outcome. If a given task is redundant, one such way is to channel

variability into directions that have little effect on the end result.

For example, the linkage of joints in the arm may covary without

necessarily affecting the outcome, as shown for example in pistol

shooting [25,26,27,28], dart throwing, Boule throwing [29] and

basketball throwing [30]. Much experimental evidence has been

accumulated for this phenomenon and covariance has been

generalized as a signature of synergies [31]. Channeling of

variability into ‘‘do-not-care’’ directions is also an important

consequence of stochastic optimal feedback control as applied to

motor tasks by Todorov and colleagues [32,33].

Our previous studies have similarly shown covariation in the

structure of variability, although our three-pronged approach

differentiated between magnitude and anisotropy of the data

distribution (Noise and Covariation). It also separated off Tolerance,

the aspect that figured centrally in the present study [20]. Core to

our task-based analysis is the distinction between execution and

result space: by mapping executions into results, the layout and

Figure 8. Standard deviations of velocity and angle plotted against their respective mean velocity. A: Data of all subjects in Experiment
2 (9 participants in 4 sessions with 3 blocks each). The linear regressions did not show any dependency of variability on the velocity. B: Data of
Experiment 3 where subjects performed the same throwing movement but without a target. While standard deviations did not scale with increasing
mean velocity in Experiment 2, velocity-dependent variability or noise was observed in this Experiment.
doi:10.1371/journal.pcbi.1002159.g008
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geometry of the results can be obtained. This not only offers a

quantitative understanding of the zero-error solutions but also of

their neighborhood and the curvature, i.e. their sensitivity to error.

In previous work we introduced Tolerance, a concept that allows

quantification of what is the optimal strategy for a given

distribution or variability [19,22]. The present study extended

this work by developing a priori predictions where and how

variability should be distributed if the nervous system chose error-

tolerant solution strategies.

Hypothesis 1: Subjects Maximize Error Tolerance
The first hypothesis was that in skilled performance actors are

aware of the limited resolution in their control and take their

variability into account when planning and executing a move-

ment. This hypothesis was tested by calculating the expected result

in a neighborhood around each solution, i.e. by quantifying the

degree of tolerance of a given movement strategy. This approach

differs from standard sensitivity analyses in linearized systems that

assess the effects of small deviations from a single solution.

Specifically, local linear stability analysis evaluates how (infinites-

imally) small perturbations destabilize a solution; relaxation time

provides a quantitative measure for how fast a system returns to

the stable solution. However, such an approach is ignorant to the

effects of slightly larger errors. Knowledge of an extended

neighborhood, however, is important when the system is nonlinear

and has discontinuities like the result space in the skittles task.

Considering that in human performance perturbations or errors

have a sizable variance and the result space is nonlinear as in our

skittles task, it is appropriate to assess error sensitivity not only at a

point, but in a neighborhood around a chosen solution (for

discussion of such analyses in nonlinear systems see [34]). The

present study presented an analysis that quantifies error-tolerant

strategies by assessing an ‘‘area’’ of solutions determined from the

actual variability of subjects and evaluated the expected perfor-

mance for such variability.

Results of two different task variations supported that subjects

seek error-tolerant strategies. In Experiment 1 the data distribu-

tions of all nine participants were best fitted by the predictions of

Hypothesis 1. However, the results did not rule out that subjects

also minimized velocity as the solutions with the highest Tolerance

were close to solutions at relatively low velocities. Interestingly,

some individuals’ strategies were also close to solutions with high

penalty for hitting the center post. These inter-individual strategies

may reflect the individual’s attitude to risk, a topic that has been

investigated by [35].

The rationale and the results of our study are in overall

accordance with a series of experiments by Trommershäuser,

Maloney and colleagues [9,36,37]. Using a speed-accuracy

pointing task where the target area was bounded by a penalty

area (at different distances and with different penalties), the

distribution of hits was examined with respect to the expected

gain. Formalized in a decision theoretical framework where a gain

function is optimized based on the weighted sum of the gain and

the subject’s inherent variability, the results showed systematic

effects of the penalty on the distributions. The results therefore

supported the conclusion that selection of a movement strategy is

largely determined by the subject’s inherent variability. In contrast

to the present study, hitting success was binary (positive for the

target area and negative for the penalty area) while our focus was

on the continuous distance to the target, which was prerequisite to

the sensitivity analysis central to our study. Importantly, in these

experiments the reward or penalty was endpoint accuracy that was

directly visible to the subject on a monitor. In the skittles task the

variables at release were not visible and important variables

needed to be learnt via proprioceptive information across repeated

trials, not itself visible to the actor. Further, the solution manifold

and the sensitivity of its neighborhood are highly nonlinear and it

is unlikely that performers have a priori an internal model of the

result space.

Hypothesis 2: Subjects Prefer Solutions with Minimum
Velocity

Hypothesis 2 was formulated based on the widely accepted

findings that performance variability scales with movement speed

such that performance at higher velocities is more variable

[38,39,40]. Assuming movement velocity reflects the amplitude of

the motor control signal, this observation can be generalized that

variability increases with signal strength and velocity. Physiolog-

ically, this behavioral observation has been related to the

organizational properties of the motor unit pool such as

recruitment order and twitch amplitudes [24]. In addition, it has

also been commonly argued that subjects aim to minimize energy,

either mechanical or metabolic. In the case of skittles, it may be

hypothesized that subjects seek throws with minimum momentum

of the arm movement. Taking these arguments together the

hypothesis can be formulated that subjects should seek solutions

with the lowest possible velocities [6,41].

This alternative hypothesis was tested in Experiment 2 that was

designed to explicitly dissociate between the two hypotheses. The

target configuration was modified to create an execution space

that permitted a large range of velocities to achieve successful hits

where Hypothesis 2 clearly predicted the lowest possible velocity as

the preferred strategy. In contrast, error tolerance showed a

maximum at the highest velocities, although the gradient of E(R)

across the higher velocities was relatively small. The individual

subjects’ distributions did not provide support for Hypothesis 2

and the subject averages and confidence ellipses extended over a

large range of velocities. Consistent with this finding, analysis of

velocity-dependent variability revealed that across subjects the

variability did not increase with mean velocity.

Velocity-Dependent Variability and Redundancy
To further scrutinize the apparent absence of velocity-

dependent scaling of variability, an additional experiment was

conducted to test whether this finding was due to the goal-oriented

nature or the redundancy of the task. We speculated that if motor

solutions cluster along the solution manifold this may obscure the

otherwise reported increase in variability with movement velocity.

In Experiment 3 subjects executed the same movement but did not

aim for a target skittle. Hence, there was no solution manifold

constraining the actions. This result highlighted that task

redundancy introduces a solution manifold that presents a

constraint that may suppress the velocity-dependent variability.

This result is important as it qualifies the frequently adopted

general assumption that variability and noise increases with signal

amplitude.

As a final comment, it should be pointed out that our approach

is completely confined to the kinematic level of task performance.

Limb dynamics or other biomechanical considerations are not

taken into explicit consideration. This is justified on two counts:

First, the skittles task is performed by only a single-joint rotation in

the horizontal plane where the rotating joint is fixed to the axle of

the lever arm. Hence, neither intersegmental torques in the

executing arm nor gravitational influences are of immediate

concern. Second, much research on upper limb movements has

provided evidence that endpoint trajectories may be planned in

kinematic extrinsic coordinates [42,43]. The analysis uses angular

rotations of the manipulandum as defined in extrinsic coordinates

Neuromotor Noise
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with respect to the screen. That said, we did not address potential

biomechanical considerations that arise from the positioning of the

body with respect to the manipulandum or with what joint angles

the angular rotations were executed. Subjects were told to position

themselves in the most comfortable position, both with respect to

any biomechanical concerns and with respect to optimal vision of

the screen. At present, we refrained from including such additional

considerations as these would have required additional motion

capture.

In summary, two experiments examined a virtual throwing task

and presented an analysis that provided an a priori hypothesis

about which strategies actors should employ if they optimized

error-tolerance. Analysis of the relation between the variability in

execution to the result of the task performance revealed that actors

not only decreased their motor variability in execution variables

that mattered for the success of the task. The findings also gave

strong support that subjects were sensitive to their motor

variability and preferred strategies that optimized error tolerance.
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