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Abstract

The responses of neurons in sensory cortex depend on the summation of excitatory and inhibitory synaptic inputs. How the
excitatory and inhibitory inputs scale with stimulus depends on the network architecture, which ranges from the lateral
inhibitory configuration where excitatory inputs are more narrowly tuned than inhibitory inputs, to the co-tuned configuration
where both are tuned equally. The underlying circuitry that gives rise to lateral inhibition and co-tuning is yet unclear. Using
large-scale network simulations with experimentally determined connectivity patterns and simulations with rate models, we
show that the spatial extent of the input determined the configuration: there was a smooth transition from lateral inhibition
with narrow input to co-tuning with broad input. The transition from lateral inhibition to co-tuning was accompanied by shifts
in overall gain (reduced), output firing pattern (from tonic to phasic) and rate-level functions (from non-monotonic to
monotonically increasing). The results suggest that a single cortical network architecture could account for the extended range
of experimentally observed response types between the extremes of lateral inhibitory versus co-tuned configurations.
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Introduction

The firing properties and receptive fields of neurons in sensory

cortex are heterogeneous and can vary both quantitatively and

qualitatively with changing stimuli. The diverse responses are well

exemplified in the primary auditory cortex (A1), where firing

ranges from phasic (only at stimulus onset) to tonic (for the

duration of a stimulus [1,2], changes monotonically or non-

monotonically with intensity [3,4], and is often evoked selectively

with complex stimuli [5]. Many receptive field properties are not

simply inherited from presynaptic input from the thalamus but are

shaped by interaction of local excitatory and inhibitory neurons in

cortical circuits [6,7,8]. The processes governing these interactions

are under some debate but are postulated to depend on the

network architecture, which may range from the lateral inhibitory

network configuration where excitatory inputs are more narrowly

tuned than inhibitory inputs, to the co-tuned configuration where

both are tuned equally. A1, because of its tonotopic organization,

is an ideal system for examining how sensory stimuli are

represented in the temporal and spatial interaction of principal

cells and interneurons [9,10]; c.f. [11].

Intracellular recordings in vivo have begun to explore mecha-

nisms underlying the diversity of neuronal receptive field

properties (for review, see [12]). Though some studies indicate

that evoked excitatory and inhibitory conductances are co-tuned

[13,14], others using very similar conditions have found that co-

tuning is only approximate or that there is significant lateral

inhibition [15,16], and that the balance may shift during postnatal

development [16,17]. Moreover, many of the response properties

such as two-tone suppression and intensity tuning are more

consistent with some degree of lateral inhibition [4,5,8,12,18,19].

There is a similar debate in the visual system as to the extent to

which lateral inhibition in cortex underlies extrareceptive field

properties [20,21].

The cortical circuitry and synaptic properties that underlie co-

tuning and lateral inhibition are poorly understood. Lateral

inhibition could result from greater sensitivity of inhibitory cells to

input, greater convergence of presynaptic (e.g., thalamic) input

onto inhibitory versus excitatory cells, or broader spread of

intracortical inhibition versus excitation. Canonical circuits

typically consist of excitatory pyramidal (P) cells and fast-spiking

(FS) interneurons. In layers 2/3 and 4, both P and FS cells receive

direct thalamic inputs [22,23,24]. FS cells are distinguished from

other interneurons by non-adapting high frequency firing [25],

morphology [26,27,28], and synaptic dynamics [29,30], suggesting

a distinct functional role in sensory information processing.

Here, we performed simulations in a large network model and

with rate models to determine how the excitatory and inhibitory

drive to P cells changes with stimulus. The patterns of connections

and synaptic properties between excitatory P and FS inhibitory

cells were based on experimental data. The simulations indicated

that the same network generated both lateral inhibition and co-

tuning: shifting between them is accomplished simply by changing

the spatial distribution of the thalamic input. Therefore, a single,

hardwired network potentially is consistent with many of the

diverse response patterns previously reported in vivo.

Results

Model parameters
The broad goal was to build a detailed model of the pattern of

stimulus-driven cortical activity. For simplicity, the parameters of
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the model were taken from published [31,32,33] and unpublished

(Levy and Reyes, in preparation) experimental data. We stress,

however, that the main result - that lateral inhibition and co-

tuning coexist in the same network - is robust and does not depend

on details of the network connectivity, provided that the inhibition

is strong enough (as shown below).

Neurons in sensory cortex are connected to their neighbors with

a relatively low probability. The connection rates decrease with

distance between cells, as the local axonal and dendritic

arborizations are confined within several hundred mm of the

soma. In cortical layers 2/3 and 4, the thalamorecipient layers of

auditory cortex, our experimental data on connection probability

versus distance between somata for each connection type (PRP,

PRFS, FSRP) were fitted with a Gaussian function (Fig. 1A,

right; Methods, equation 1), which was chosen for computational

efficiency and to put our findings in the context of the theoretical

literature (c.f. [34]). The radial spread of connectivity (s), i.e., the

euclidean distance between cell bodies in the plane of the slice, was

145 mm (PRP), 92 mm (PRFS, FSRP) with peaks of 0.10, 0.30,

0.39, respectively (Fig. 1A, right). Using these connection profiles,

we constructed a network sheet of 1606160 P and 32632 FS cells.

The synaptic and intrinsic membrane properties were also

based on experimental data [31,32,33,35]. Measured values for

synapse strength (peak amplitude of excitatory and inhibitory

postsynaptic potentials (EPSPs/IPSPs) and short-term plasticity

were used as parameter values for the phenomenological model of

short-term synaptic plasticity in the simulations (Table S2;

[36,37]). The synaptic pathways examined here exhibit strong

short-term depression (governed by U and trec, Supporting Text S1

and Table S2). Unitary synapse strength, unlike connection

probability, was not correlated with distance between cells (c.f.

[32,38]). Therefore the unitary synaptic amplitudes (A, Table S2)

for each cell type applied at all distances.

The intrinsic membrane properties of P and FS cells used in the

simulations are listed in Table S1. We used the adaptive

exponential integrate and fire model with variables adjusted

appropriately to reproduce the P and FS cell firing behaviors

(Fig. 1C; [39]; see Methods).

The external input to the network was from the auditory

thalamus, i.e., the ventral division of the medial geniculate body

(MGv). For simplicity, each input was modeled as a sequence of

spikes arriving at a specified frequency (train duration = 100 ms;

Fig. 1B). The firing of the thalamic neurons was phasic-tonic

(Fig. 2B, bottom; see Methods) as was observed in intact animals

[6] though other patterns produced qualitatively similar results

(data not shown). The firing rate of thalamic neurons and the

number of thalamic cells synapsing onto each cortical cell in the

network were Gaussian distributed in space (parameterized by the

maximum number of inputs Nmax each neuron can receive and by

the standard deviation s (in mm; see Methods). Cells in the center

of the network received the most inputs (Nmax = 50–150); i.e., the

thalamic afferents were maximally active here because the

stimulus was assumed to represent the preferred frequency for

the center cell. The amplitudes, time course, and short-term

dynamics of thalamic inputs were adjusted separately for the P and

FS populations (Fig. 1C; Table S2), based on experimental data

from auditory cortex [8,40]; Schiff and Reyes, unpublished data).

The thalamic inputs to both P and FS cells exhibited short-term

depression (Table S2).

Shifts in excitatory and inhibitory balance with changing
stimuli: Simulations

Several salient features emerge from the simulations. In general,

the P and FS cells tended to fire most at the onset of the stimulus

(Fig. 2A, top, middle; rasters are compiled from 50 sweeps and

arranged according to neurons’ radial distance from the center of

the 2D network). As observed in awake animals, the P cell firing

was more transient than that of thalamic inputs (Fig. 2B; [6]). The

transient nature of the P and FS cell firing was due to depressing

thalamic inputs (Fig. 1C). The firing pattern of P cells was further

shaped by the spatiotemporally complex combination of excitatory

input from the thalamus, inhibitory input from FS cells, and

excitatory input from neighboring P cells. The normalized contour

plot of the synaptic conductances (Fig. 2C, top) shows that the

spatial distribution of input to the P cells is variable: the thalamic

input (gray) was restricted to the neurons near the center, while the

inhibitory inputs from FS cells (red) and recurrent excitatory

inputs (cyan) appeared later and were broader.

The timing and relative magnitude of the synaptic components

can be seen by focusing on the inputs to the P neuron at the center

of the network (* in Fig. 2C, top & middle). A slice through the

center of the contour plot shows that the (non-normalized)

thalamic input arrives first, causing the initial firing in both the

P (Fig. 2A, top) and FS (Fig. 2A, middle) cell populations. After a

short delay, the inhibitory input (red, Fig. 2C, middle) from the FS

cells appeared followed by the excitatory input from other P cells

(cyan). Inhibition was transient due to a combination of transiently

firing FS cells (Fig. 2A, bottom) and depressing IPSPs [33]. The

recurrent excitatory input from neighboring P cells (cyan) was

considerably weaker than the thalamic input (Fig. 2C, middle,

cyan vs. gray) largely due to the small unitary EPSPs [31] and low

probability of connection between P cells [31,35]. Within

approximately 50 ms after firing onset, only the thalamic inputs

remained.

Each synaptic component increased with the number, Nmax, of

thalamic inputs (Fig. 2E). The excitatory input from the thalamus

(gray) grew nearly linearly from the origin whereas both the

inhibitory input from the FS cells and recurrent excitatory input

from neighboring P cells appeared only when Nmax was sufficiently

large to cause the neurons to fire (Nmax ,20). The FS inhibitory

component rose steeply owing to the FS cells’ high frequency firing

responses to input.

Author Summary

The cerebral cortex contains a network of electrically active
cells (neurons) interconnected by synapses, which may be
excitatory (tending to increase activity) or inhibitory.
Network activity, i.e., the ensemble of activity patterns of
the individual cells, is driven by input from the sense
organs, and creates an internal representation of features
of the outside world. In auditory cortex, sound frequency
(pitch) is encoded by the physical location of activity in the
network. Thus, connections among cells at various
distances may blur or sharpen the frequency representa-
tion. Recent work in living animals has yielded conflicting
results: sharpening of responses via lateral inhibition in
some cases, versus balanced excitation and inhibition (co-
tuning) in others. It was previously unknown whether a
single cortical network architecture could account for this
spectrum of findings. Here, computer simulations based
on experimental data reveal that this is indeed the case.
Varying input to the network causes smooth transitions
between lateral inhibition and co-tuning, accompanied by
changes in the strength and timing of the responses.
Diverse input-dependent response patterns in a single
network may be a general mechanism enabling the brain
to process a wide range of sensory information under
various conditions.

Coexistence of Lateral and Co-Tuned networks
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The magnitude of the intracortical synaptic inputs to the P cells

also depended on the spatial extent of the thalamic drive. With

Nmax constant, widening the thalamic input from s= 40 mm

(Fig. 2C) to s= 110 mm (D, middle) activated more FS cells with

the result that the inhibition to P cells population increased

(compare to Fig. 2C, middle). As s increased, FS inhibition

(Fig. 2F, red) was initially smaller than but then exceeded thalamic

excitation (gray). The P cells still fired, albeit more transiently,

because the inhibition was delayed with respect to excitation (data

not shown). There was only a modest increase in the recurrent

excitatory input (cyan).

For the remainder, analyses will be restricted to the first 50 ms

after the stimulus onset. The firing rates and the changes in the

conductances were greatest in this interval. In addition, in vivo

recordings from auditory cortex using brief tone pips show that

neuronal firing is dominated by thalamic drive: contributions from

reverberatory network activity and other cortical areas are

substantially smaller [41]. Finally, inputs from low threshold

spiking (LTS) interneurons, another major class of inhibitory cells,

are unlikely to contribute significantly to firing. Experiments

suggest and simulations confirm (not shown) that the weak,

facilitating synaptic drive to LTS from the thalamus and local P

Figure 1. Model schematics. A, Left, Network is a sheet of neurons with a pyramidal (P) and a fast spiking (FS) cell layer. Arrows depict connections
between and across layers. Right, Gaussian connectivity profiles were fit to experimental data (not shown) for connection probability (abscissa) versus
intersomatic distance (ordinate). See Results for parameter values. B, The average number of inputs that any P or FS cell received from the thalalmus
was Gaussian distributed, with peak value of Nmax. Inset, example thalamic cell trains. C, Thalamic conductance input (bottom) and associated voltage
response (top) of representative P (left) and FS (right) cells. D, Post-stimulus time histogram compiled from spike trains of P cells in the center of the
network. Firing was quantified as the number of counts within a 50 ms time interval from the stimulus onset divided by the number of trials (bar,
filled portion of the histogram).
doi:10.1371/journal.pcbi.1002161.g001

Coexistence of Lateral and Co-Tuned networks
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neurons do not increase substantially during brief stimuli to affect

overall network activity [29,30,42,43,44]).

Transition between co-tuning and lateral inhibition
As mentioned above, the spatial profiles of inhibitory and

excitatory inputs to P cells in the co-tuned network are comparable

whereas in the case of lateral inhibition, the inhibitory input is

broader. Lateral inhibition and co-tuning could represent separate

circuits that differ in e.g., the axonal spread of their associated

inhibitory neurons and/or the degree of convergence of inputs

from the thalamus. The following simulations suggest, however,

that the same circuit can produce both configurations, depending

only on the spatial width of the thalamic inputs.

Lateral inhibition predominated when the spatial distribution of

thalamic input was narrow. For s= 40 mm (Fig. 3A, top), both the

inhibitory (red) and recurrent excitatory (cyan) inputs were

broader than the thalamic input. When combined and normalized

(3A, bottom), the excitatory inputs (thalamic + recurrent, black)

are substantially narrower than the inhibitory inputs (red),

consistent with lateral inhibition. The recurrent P input (Fig. 3A,

cyan) was small and contributed only to the foot of the total

excitatory distribution.

In the same network, co-tuning was generated when the

thalamic input was broad. When s was increased to 110 mm, the

distribution of both inhibitory and recurrent excitatory inputs

widened (Fig. 3B, top). However, the rate of widening was

proportionately less than the change in thalamic spread (see below

for mechanism). As a result, the width of inhibitory profile became

nearly equal to that of the composite excitatory width (Fig. 3B,

bottom), consistent with the co-tuned configuration.

Figure 2. Spatiotemporal profiles of firing and synaptic conductances. A, Spike rasters obtained with simulations on a 2 dimensional
network of P (top) and FS (bottom) cells. Rasters are arranged according to neurons’ symmetric radial distance from the center of the network. Each
line is from a representative neuron at a given radial distance and is compiled from 50 sweeps. B, Post-stimulus time histograms of P cell (top) and
thalamic cell (bottom) populations. C, top, Normalized contour plots showing spatiotemporal profiles of thalamic (gray), recurrent excitatory (cyan),
and FS inhibitory synaptic conductances (red) evoked in P cells. Temporal profiles of conductances evoked in a P cell at (*, middle) and away ({,
bottom) from the center. Thalamic input was narrow (s= 40 mm). D, same as in C but for a wider thalamic input (s= 110 mm). E, left, plot of peak
conductances (color code as above) vs the number of thalamic inputs Nmax for s= 40 mm. F, peak conductance vs s for Nmax = 60.
doi:10.1371/journal.pcbi.1002161.g002

Coexistence of Lateral and Co-Tuned networks
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A plot of the ratio of the inhibitory to excitatory profile widths

(Winh/Wexc, measured at half the peak; circles) shows that the

network shifted progressively from the lateral inhibitory configu-

ration (Winh/Wexc .1) to the co-tuned configuration (Winh/Wexc

,1) (Fig. 3C). These configurations generally changed very little

with Nmax (Fig. 3D), except for small values where inhibition was

not fully activated.

When the network was co-tuned, the balance between

excitatory and inhibitory inputs was maintained for neurons at

different distances from the center of the network where the

thalamic input peaked. The proportions of synaptic conductances

of cells in the periphery (Fig. 2D, bottom) were similar to those of

cells in the center (middle). When lateral inhibition was

predominant, the excitatory-inhibitory balance shifted so that

inhibition dominated in cells at the periphery (Fig 2C, compare

bottom to middle); for the most distant neurons, only inhibition

was present.

Robustness of simulations
The input dependent transition between lateral inhibition and

co-tuning was robust under in vivo -like conditions. To simulate

background synaptic barrages, white noise current was injected

into each P and FS neuron to produce membrane fluctuations

with a standard deviation of up to +/2 8mV, similar to what has

been observed in vivo [45,46]. The transition between lateral

inhibition and co-tuning still occurred, though the region of lateral

Figure 3. Spatial profiles of synaptic components. A, Top, spatial profiles of thalamic (gray), recurrent excitatory (cyan), and FS inhibitory (red)
conductances evoked in P cells at different radial distances (abscissa) from the center for s= 40 mm. Dotted line in inset shows where on the contour
plots the spatial profiles were obtained. Bottom, normalized profiles for composite excitatory (black, thalamic + recurrent) and inhibitory (red)
conductances generated in P cells B, Similar profiles for s= 110 mm C, ratio of inhibitory to excitatory spatial profile half-widths, winh/wexc, vs s for
Nmax = 60 and 100. D, winh/wexc vs. Nmax for s= 40 mm and 110 mm.
doi:10.1371/journal.pcbi.1002161.g003

Coexistence of Lateral and Co-Tuned networks
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inhibition was increased slightly (Fig. S1). Background firing would

also cause tonic depression of the synaptic potentials, the degree of

which differs between thalP, thalFS, PP, PFS, and FSP

connections. However, performing the simulations with the

calculated steady-state values for the depression at different

background firing rates [36,47] preserved the transition (Fig. S2).

The transition also did not depend on the exact details of the

connectivity scheme, because simulations using a rate-based model

(see below) with a number of non-Gaussian connectivity profiles

gave comparable results (Fig. S6).

It should be noted that inhibition must be stronger than the

recurrent excitation, as is the case for auditory cortex [33]. The

recurrent excitatory input has a spatial profile that is similar in

width to that of the inhibitory input (Fig. 3A). Hence, if the

amplitudes are comparable, excitation and inhibition cancel in the

periphery and lateral inhibition is not possible (data not shown).

Missing from the simulations are the inhibitory connections and

electrical coupling between FS cells, both of which have not yet

been fully characterized. Mutual inhibition among FS cells would

be expected to reduce their firing and hence decrease the net

inhibitory input to P cells. To mimic these effects, simulations were

performed where the threshold of the FS cells was set at 237 mV,

which is 10 mV above the control (Fig. S3). Though firing was

reduced by 50%, the shift between lateral inhibition and co-tuning

still occurred. The electric coupling between FS cells is likely to

have complex effects on the timing of action potentials [48,49,50]

and cannot be readily predicted without more information about

the patterns of connections and coupling strengths. Extensive

analyses and simulations are needed to fully characterize the

effects, which are beyond the scope of this paper.

Firing in the co-tuned and lateral inhibitory
configurations

Firing, quantified as the average counts in a 50 ms interval, was

greatest in the lateral inhibitory configuration (Fig. 4A, left). The

spatially narrow thalamic input (s= 40 mm) recruited few FS cells

such that the net inhibition was small (Fig. 2C). As the input width

increased to approach the co-tuned state (ss= 110 mm), the firing

decreased (Fig. 4A, left) due to increased inhibition (Fig. 2D,F).

Peak firing, which corresponds to that of the center cell, decreased

systematically with ss (Fig. 4A, right).

The firing sensitivity of neurons to input was correlated with the

extent of lateral inhibition. Increasing the number, Nmax, of

thalamic inputs from 60 to 100 evoked more firing, with a modest

change in the overall width of the profiles (Fig. 4B, left). To a first

approximation, firing increased nearly linearly with Nmax (Fig. 4B,

right). The slope of the relation was steep when ss was small

(40 mm) but became shallower with increasing ss (75, 110 mm).

Note that the slope change was not accompanied by horizontal

shifts in the curves, consistent with a pure divisive gain change

[51,52]. This modulation of sensitivity by ss is a novel form of

gain control.

To examine the interaction of multiple inputs, two Gaussian

stimuli (S1(x), S2(x)) separated by different distances (Dx, Fig. 4C

left) were delivered to the network. This simulates e.g., two-tone

stimuli, which produces side-band suppression of firing rate

[18,19]. The positions of the Gaussians represent the tone

frequencies along the tonotopic axis [9,10,53]. In the lateral

inhibitory configuration (middle), the evoked firing was greatest at

Dx = 0 and decreased with Dx to a level below that evoked with a

single stimulus (dashed line). When the network was co-tuned, the

firing decreased monotonically with Dx, eventually converging

with single stimulus firing (right).

Basis for the transition between co-tuning and lateral
inhibition

The mechanism underlying the shift between co-tuning and

lateral inhibition can be understood by using a reduced model to

examine the shifts in excitatory and inhibitory balance. The PFS

connections and the weak recurrent excitatory inputs from local P

cells were omitted. Under these conditions, the network reduced to

a feedforward network where the thalamic afferents synapsed onto

both excitatory and inhibitory cells, with the inhibitory cells in turn

synapsing onto the excitatory cells (Fig 5A). For the following, the

presynaptic thalamic synaptic current Ithal was Gaussian distribut-

ed in space and was parameterized by the peak current, Imax, and

spatial spread s (Fig 5B) as in the above simulations.

The spatial profile of the excitatory inputs (Iexc) to both

excitatory and inhibitory cells was inherited directly from, and

was therefore identical to, Ithal (Fig. 5B). On the other hand,

generation of the inhibitory input profile (Iinh) to excitatory cells

involved several steps since the inhibitory cells must be activated.

First, Ithal was transformed with a threshold-linear function

(Methods, equation 6; analogous to firing rate – current relations)

to obtain the spatial profile of inhibitory cell firing rate, Finh,. The

presence of the threshold precluded recruitment of weakly driven

inhibitory cells far from the center so that Finh,. was narrower than

Iexc (the so-called ‘iceberg’ effect, c.f. [13]). Second, to account for

the axonal spread of inhibitory cells to neighboring excitatory cells

[54], Finh was convolved with Pinh, the connection probability

profile between inhibitory and excitatory cells (Fig. 1A, right).

Finally, multiplying by a constant that has units of nA/Hz gave

Iinh.

The network shifted between co-tuning and lateral inhibition as

the spatial profile (Nmax and s) of Ithal changed. Plotting the ratio

of the widths of Iexc and Iinh (winh/wexc) as a function of Nmax

(normalized by rheobase current) and s (normalized by the

standard deviation, s inh, of Pinh) revealed the regimes (Fig. 5C)

observed in the full network (Fig. 2C,D). When s was small, winh

was broader than wexc, indicating the lateral inhibitory configura-

tion. As s increased, winh/wexc reached a regime where Iexc and Iinh

were perfectly co-tuned (intersection of the surface with unitary

plane) followed by a regime where Iexc was slightly wider than Iinh.

With increasing Nmax (here, Nmax is the maximum synaptic

current from the thalamus), the ratio was initially less than one but

grew as the inhibitory cells became more active. Taking a slice

through the winh/wexc surface (dotted line in Fig. 5C, top)

reproduces qualitatively the plot in Fig 3C. The model also

predicted the relative changes in the peak excitatory and inhibitory

current magnitudes (Fig. 5D) observed in the full network

simulations. A slice through the surface (dotted line) reproduces

qualitatively the plot in Fig. 2E.

The transition still occurred in absence of the I cell threshold

(Fig. S4). However, the presence of the threshold minimized the

input s needed for the transition. Without the threshold, even cells

far from the center were activated so that the width of Finh is equal

to Ithal. After the convolution with the axonal spread, wI/wE

asymptoted toward but was always .1 (Fig. S4). Larger values of

ss were needed to achieve the near-co-tuned regime.

For simplicity, the analyses assumed that the thalamic afferents

were distributed equally to excitatory and inhibitory cells. Whether

or not the P and FS cells have the same tuning properties in intact

animals is unclear. To determine the effects of unequal tuning,

the relative widths of thalamic inputs to P and FS were varied

(Fig. S5). The shifts still occurred though a broader (narrower)

input to inhibitory cells shifted the location of exact co-tuning

(winh/wexc = 1) toward larger (smaller) s values.

Coexistence of Lateral and Co-Tuned networks
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Dependence of firing rates on Nmax and s
To determine the changes in firing rate associated with the

changes in network configuration, we performed simulations using

a rate-based model [55,56]. Input was a constant current with a

Gaussian spatial profile parameterized by Nmax (maximum

thalamic current) and s. In the LIN regime (s= 40 mm), firing

was confined to a narrow band (Fig. 6A, top) and was sustained

(bottom; firing rate profile shown for neuron in center). With

relatively broad input (s= 120), the spatial profile of firing rapidly

narrowed within 50 ms (Fig. 6B, top), reflecting the fact that firing

was transient (bottom). As above (Fig 3C,D; Fig. 5C,D), increasing

the input width (s) shifted the network from lateral inhibition

toward co-tuning (Fig. 6C, left) and produced an associated

increase in the magnitude of inhibition (right).

To document the changes in firing with stimuli, the average rate

(calculated over the first 50 ms of the firing profiles of the center

neurons, Figs. 6A,B, bottom) is plotted against Nmax and s (Fig. 6D).

As expected, firing was greatest when lateral inhibition predomi-

nated, and decreased for increasing s and decreasing Nmax. This

surface essentially describes the change in firing behavior as the input

to the network changes. Physiologically, Nmax and s of the Gaussian

may represent the change in e.g. thalamic input to primary auditory

cortex as the stimulus intensity increases (Fig. 7A, top).

To illustrate, we use sigmoid functions to simulate the changes in

Nmax (Fig. 7A, middle left) and s (right) that may occur with graded

increases in stimulus intensity [8]. The resultant Gaussians become

taller and wider as intensity increases (bottom). The solid and dotted

curves in the s vs. intensity plot (Fig. 7A, middle, right) represent

Figure 4. Firing responses of P cells. A, left, Average number of action potentials evoked in the first 50 ms of stimulus of cells at different radial
distances from the center (abscissa) for broad (s = 110 mm) and narrow (s = 40 mm) thalamic inputs (Nmax = 60). Right, plot of counts at the peak of
the profiles vs s for Nmax = 60 and 100. B, left, spatial profile of average counts for Nmax = 60 and 100 with s fixed at 40 mm. Right, plot of peak counts
vs Nmax for s = 40, 75 and 110 mm. C, left, networks stimulated with 2 inputs (S1 & S2), with S2 at different positions (Dx) in the network. Nmax = 60.
Middle, average counts evoked vs Dx for narrow input (s= 40 mm). Right, average counts vs Dx for broad input (s= 110 mm).
doi:10.1371/journal.pcbi.1002161.g004

Coexistence of Lateral and Co-Tuned networks
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two scenarios where thalamocortical afferent spreads are relatively

narrow (solid curve) and broad (dotted curve), respectively [57,58].

The changes in s and Nmax with intensity resulted in the

trajectories shown by the curves traversing the average firing rate

surface (Fig. 7B). When the input spread was narrow (solid black

curve, Fig. 7B, top), the peak firing rate climbed the steep region of

the response contour before rolling off toward the end, resulting in

a non-monotonic stimulus-response curve (bottom, solid; c.f.

[3,4]). With broader input (dotted curve), the trajectory was

shifted to the flatter part of the contour, yielding a monotonically

increasing response (bottom, dotted). Thus, monotonic and non-

monotonic rate intensity functions were obtained when co-tuning

and lateral inhibition, respectively, were predominant, as predict-

ed previously [8] and observed experimentally [59].

Discussion

Neuronal firing depends substantially on the interaction

between excitatory and inhibitory neurons. Previously, we showed

that both co-tuning and lateral inhibition may be needed to

account for the diverse firing properties observed in auditory

cortex and possibly in other sensory cortices as well [8]. The

neuronal architecture underlying both and whether or not they

could co-exist is unclear. Using network simulations based on the

connectivity data, we demonstrate here that the same network can

generate both co-tuning and lateral inhibition, depending only on

the spatial distribution of the input. As discussed below, switching

between lateral inhibition and co-tuning may be realized under

physiological conditions in two ways: distinct sets of afferents with

different axonal arborizations may innervate a given cortical area

or alternatively, the spatial spread of inputs to a cortical area may

be modulated by the stimulus.

The firing responses of neurons were markedly different in the

lateral inhibitory versus co-tuned configurations and reproduced

the heterogeneous response properties and receptive fields

observed in A1 with acoustic stimuli [1,2,3,4,19]. Depending on

whether lateral inhibition or co-tuning predominates, firing may

be phasic or tonic (Fig. 6), may change monotonically or non-

Figure 5. Activity in the feedforward network. A, Schematic of network architecture. Inhibitory cells innervate excitatory cells; both receive
spatially distributed inputs (Ithal) from a presynaptic population of cells. B, Procedure for calculating spatial profiles of excitatory (Iexc) and inhibitory (Iinh)
inputs to excitatory cells. C, top, ratio of Iinh to Iexc widths, winh/wexc, as a function of Nmax and s. Nmax is normalized (divided) by the minimum current
needed to evoke excitatory cell firing and s is normalized by the standard deviation of the inhibitory spread (sinh of Pinh in B). Intersection with unitary
plane (purple) gives values of Nmax and s where Iexc and Iinh are perfectly co-tuned. Bottom, plot of winh/wexc vs s at Nmax = 3 (corresponding to dotted
line at Top). D, Peak excitatory (gray) and inhibitory (red) current plotted against Nmax and s. Purple line corresponds to values of Nmax and s that
produced perfect co-tuning in C. Bottom, plot of peak excitatory (blue) and inhibitory (red) vs Nmax for s= 1.6 (corresponding to dotted line at top).
doi:10.1371/journal.pcbi.1002161.g005
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Figure 6. Variation of firing with input. Rate models were used to calculate the firing in the s s – Nmax space (see Methods). The network had a
single spatial dimension with connection profiles derived from in vitro data. A, B, spatiotemporal pattern of excitatory cell firing rates for narrow
input (s= 40 mm, A and broad input (s= 120 mm, B). Nmax = 20 for both panels. C, left, ratio of widths of inhibitory to excitatory current input to
excitatory cells vs. Nmax and s. Purple line denotes co-tuning. Blue and yellow circles correspond to values of Nmax and s used in A and B,
respectively. Right, peak excitatory (gray) and inhibitory (red) current (c.f. Fig. 5D). Purple line denotes perfect co-tuning. D, mean firing rate
(calculated over the first 50 ms) for the center excitatory cell vs. Nmax and s.
doi:10.1371/journal.pcbi.1002161.g006

Figure 7. Response trajectories in the s– Nmax space. A, top, input to auditory thalamus (MGv) is relayed to cortex as a Gaussian activity profile
parameterized by Nmax and s. Middle, transfer functions for specific stimulus-response trajectories. Curves were Naka-Rushton functions (eqn 9) with
parameter values: M = 1000, n = 5, h= 0.4 (Nmax); M = 75, n = 4, h= 0.5 (s); the curve for broad s (dashed) was additionally shifted up by 75 mm. A
single graded stimulus generates concurrent increases in Nmax and s of the Gaussian input profiles (schematized at bottom). B, top, excitatory cell
firing rate (Fexc) vs. Nmax and s. Solid and dashed curves correspond to the transfer functions in A, middle. Gray line denotes perfect co-tuning (c.f. Fig.
6B,C). Bottom, Fexc vs. stimulus intensity.
doi:10.1371/journal.pcbi.1002161.g007
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monotonically with intensity (Fig. 7), and may or may not exhibit

sideband suppression (Fig. 4). Thus, the diverse response range

observed physiologically may stem from a single network

architecture.

Functional implications
The results of the simulations are robust under a variety of

conditions (see Supporting Text S1). The main observation is

maintained with different models (Fig. 3 vs Fig. 5 vs. Fig. 7) and

with different network and input parameters (Figs. S1-S3, S5).

Nevertheless, several caveats must be considered. One is that the

model applies only to cortical regions where graded changes in

response properties reflect the orderly arrangement of thalamic

afferents and FS cell arbors. These conditions appear to be met in

rodent A1; frequency tuning of neurons in the middle layers of A1

has been found to vary systematically, with substantial changes in

tuning over a few hundreds of mm on the rostrocaudal axis, and

thalamic afferents showed a comparable degree of tonotopic

organization in a recent study [60]; but see [11]. Likewise the

model could potentially apply to phenomena such as the graded

changes in orientation tuning within a single ocular dominance

column of primary visual cortex (V1 [61]).

Another proviso is that the FS-mediated inhibition must be

stronger than the recurrent, intracortical excitation. This condition

is met in auditory and somatosensory cortices where connection

probabilities and the unitary synaptic potentials are much larger

for FS to P than for P to P connections [33,52,62,63]. Prominent

inhibitory synaptic conductances are also evoked in vivo during

auditory stimulation [13,14,64]. In primary visual cortex, the role

of inhibition in shaping the tuning of cells remains controversial

[20,65]: strong transient inhibition has been evoked by electrical

stimulation of the thalamus [66] though generally not with visual

stimuli [67,68,69]; but see [70].

In addition, the model while incorporating many of the

measured parameters is necessarily incomplete because several

parameters - notably the spatiotemporal profile of thalamic inputs

to P and FS, and sources of noise under in vivo conditions - are yet

poorly characterized. Nevertheless, simulations where these

parameters are varied yield qualitatively, if not quantitatively,

similar results (Figs. S1–S5). The simulations also do not consider

other types of interneurons and potentially important inputs from

other cortical areas. Many of these issues can be circumvented if

only the synaptic events and firing within the first 50 ms after the

stimulus are considered. In the auditory system, as noted above,

brief tone pips (25–50 ms) are often used to characterize the tuning

and firing properties of neurons. As argued in the Results, the

synaptic inputs to P cells would be dominated by excitatory inputs

from the thalamus and inhibitory inputs from the FS cells.

Finally, in vivo whole-cell recordings from the auditory system of

mice and rats [13,71] have suggested that excitation and inhibition

are co-tuned, though there is some evidence that the co-tuning is

only approximate [15,16]. The apparent lack of lateral inhibition

may mean that the spatial extents of the thalamic afferents from

the medial geniculate are relatively broad so as to bias the network

towards co-tuning. Alternatively, the experimental conditions may

bias the network towards co-tuning. All of the in vivo experiments

thus far have been with anesthetized animals. The evoked

responses in awake animals are markedly different [5,72], and

are more consistent with the presence of lateral inhibition [8].

Conservatively, our findings are most comparable to the in vivo

studies in anaesthetized animals using brief stimuli. However, the

transition between lateral inhibition and co-tuning persists in the

presence of background noise (Fig. S1) and synaptic adaptation

(Fig. S2), more similar to conditions that obtain in the awake state

or with prolonged and/or natural stimuli.

With these caveats, the results of the simulations have several

implications. First, because the recurrent excitatory connections

are weak, the firing of P cells is determined primarily by a

feedforward configuration (thalamic to P, FS; FS to P). There is

some experimental support for this finding in auditory cortex in

vivo, because blocking recurrent excitation was found not to grossly

affect the tuning of neurons responding to brief stimuli [41].

During prolonged stimuli, there may be a greater contribution

from recurrent excitation; non-FS cells may also play a larger role

with prolonged stimuli, because physiological studies have shown

that PSPs to and from some non-FS cells facilitate [29,30,42], in

contrast to the depressing synapses between P and FS cells.

A second implication of the model is that the magnitude of

inhibition increases in parallel with the spread of thalamic input

(Fig. 5D and 6C). The resultant decrease in excitatory cell firing

(Fig. 4A) resembles that observed when auditory stimuli become

more broadband [59] or when the size of visual stimuli expands

beyond the classical receptive field [73,74,75,76].

A third implication is that the thalamocortical terminal field

widths will determine whether a cortical area is biased towards co-

tuning or lateral inhibition. In rodent somatosensory and primate

visual cortices, the spatial distribution of thalamic axons varies 6

fold in the thalamorecipient layers [57,58]. In auditory cortex

there are few reports on the widths of thalamocortical terminal

fields, and none to our knowledge in rodents. However, frequency

layer organization in rat [77] and gerbil [78] auditory thalamus

shifts from narrow at the caudal end to broad at the rostral end;

similar shifts in laminar organization are observed in the cat

[79,80]. These thalamic pattern differences have been postulated

to underlie heterogeneous response properties of neurons within

an isofrequency band [59]; c.f. [77,81,82,83]. The model predicts

that if the distinct sets of inputs differ in their axonal arborization

widths, this variation alone is enough to support a wide range of

receptive field properties seen experimentally in rodent A1.

Fourth, whether the network is biased toward lateral inhibition

or co-tuning will also depend on the dendritic and axonal

arborizations of FS cells [62,84,85,86,87], which may vary along

with other properties of the specific sub-circuits targeted by broad

vs. narrowly distributed thalamic axons [88]. In somatosensory

cortex, the spatial distribution of FS cell processes is well

conserved, suggesting systematic shifts in network configuration

that parallel the changes in the distribution of thalamic afferents.

Finally, the fact that the relation between excitation and inhibition

is malleable in a single network potentially provides a mechanism for

modulating the response of the network to a variety of inputs and

behavioral states. Recently, for example, the magnitudes of feed-

forward and lateral inputs in visual cortex were found to be

modulated by stimulus contrast [89]. It would be of interest to

determine experimentally if the relative degree of co-tuning vs. lateral

inhibition can be triggered by changing the stimulus characteristics,

experimental conditions, or state of the animal. It will also be

interesting to see whether the reduced model presented here can

account for response properties obtained with complex sound stimuli

in awake animals [2,5,72], or whether additional elements such non-

FS inhibitory neurons, input from other cortical areas, and state-

dependent effects of neuromodulators are important.

Methods

Full network model
The network was a 2 dimensional sheet of 1606160 P and

32632 of inhibitory FS cells (Fig. 1A). The density of neurons was
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PLoS Computational Biology | www.ploscompbiol.org 10 October 2011 | Volume 7 | Issue 10 | e1002161



91125 neurons/mm3 and network was assumed to correspond to a

volume (x by y by h) of 1185611856200 mm before compression

to 2 dimensions (118561185 mm). In 2 dimensions, the probability

that a reference neuron at x0, y0 is connected to its neighbors xi, yj

is given by:

PC(d)~Ae({d2=2s2) ð1Þ

where d represents radial distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{x0)2z(y{y0)2

q
, A

represents peak probability, and s represents spread of connectivity

(see Results for values); fits to the experimental data (not shown)

were done using nonlinear-least squares regression. Probability

values predicted from the fitted curves did not differ significantly

from the experimental values (p.0.05, x2 goodness-of-fit tests).

The neurons were adaptive exponential integrate and fire units

(aEIF; [39]; see Supporting Text S1). The aEIF accurately

reproduces the firing patterns of cortical neurons with relatively

little computational cost, thereby allowing modeling large

networks efficiently. The parameters governing the firing behav-

iors (Table S1) were adjusted so as to produce firing patterns and

firing rate-current (F/I curves) that resembled those of the

experimentally recorded P and FS cells.

The postsynaptic conductance, gsyn, was described with an

alpha function:

gsyn(t)~kate{at ð2Þ

The parameters k and a were adjusted so that the amplitudes and

time courses of resultant EPSPs and IPSPs matched experimen-

tally measured synaptic potentials evoked in the two cell types (not

shown). Short-term depression and facilitation were implemented

using a phenomenological model [36,47]. For connections

between cortical neurons, model parameters (Table S1) were

adjusted to match the experimentally measured synaptic dynam-

ics. The amplitude and short-term dynamics of thalamic EPSPs

evoked in P and FS neurons were taken from data obtained in

mouse thalamocortical slices [40] Schiff and Reyes, unpublished)

and obtained from somatosensory thalamocortical slices [43,44].

The thalamic inputs to the network were drawn randomly from

a set of simulated spike trains (Fig. 1B, inset). For each train, the

spikes occurred repetitively at a specified rate F; the latency of the

first spike was Gaussian distributed (mean = 1/F; standard

deviation = 0.25/F) as was the latency of each successive spike.

With this procedure, the population spikes tended to cluster at the

onset of the stimulus but over time became more evenly

distributed as the spikes became less synchronous, resulting in a

histogram with a phasic-tonic firing profile (Fig. 2B, bottom). Both

the number (Nin) of inputs and frequency Fin of each input to the

network were Gaussian distributed in space (Fig. 1B) so that cells

in the center received the maximum number of inputs (Nmax = 25–
150) firing at the maximum specified rate (Fmax = 50 Hz):

Nin(x,y)~Nmaxe
{(x{xctr)2{(y{yctr)2

2s2 ð3Þ

Fin(x,y)~Fmaxe
{(x{xctr)2{(y{yctr)2

2s2 ð4Þ

where xctr and yctr are the center of the network. Nin and Fin were

adjusted so that the evoked firing rates of the P and FS cells were

in the midrange of their respective F/I curves. The spike trains

were used to calculate the composite synaptic currents generated

in each P and FS neuron. Representative synaptic conductances

and associated firing are shown in Figure 1C.

The evoked firing was quantified by calculating the number of

spikes that occur within a 50 ms time window after the onset of the

stimulus. This corresponded approximately to the peak of the post-

stimulus time histogram (PSTH) compiled from the spike trains

(Fig. 1D).

Calculation of excitatory and inhibitory tuning in
feedforward networks

The simplified network shown in Figure 5 consisted of

inhibitory cells that synapsed onto excitatory cells; both excitatory

and inhibitory cells received spatially distributed inputs from the

thalamus. The spatial connection profile of the inhibitory to

excitatory cells (Pinh(x)) and that of the thalamic synaptic inputs

(Ithal) to the excitatory and inhibitory cells are each Gaussian:

Pinh(x)~ke
{x2=2s2

inh ð5aÞ

Ithal(x)~Athale
{x2=2s2

thal ð5bÞ

where sinh and sthal are the standard deviations of the inhibitory

to excitatory connection profile and the thalamic input, respec-

tively. The spatial profiles of the excitatory (Iexc) and inhibitory

input (Iinh) were calculated as described in Results. The

transformation of thalamic input to obtain inhibitory firing was

given by:

Finh(x)~
m(Ithal(x){h); Ithal(x)§h

0; Ithal(x)vh

� �
ð6Þ

where h is the threshold current for firing and m is the slope of the

firing-current relation. Additional simulation details, including

parameter values, are in the Supporting Information.

Firing rate model
The simulations in Figures 6 and 7 were based on an established

model [53,54]. The model assumes that the cell population is large

and firing is random, so that the calculation of individual spike

trains and cell-by-cell responses can be replaced by a simplified

expression for excitatory and inhibitory population firing rates

(Fexc, Finh, in Hz) in terms of position (x) and time:

texcdFexc(x,t)=dt~{Fexc(x,t)zSexc(
X

x

wee(x)Fexc(x,t){

X
x

wei(x)Finh(x,t)zwe(thal)(x)Fthal);
ð7aÞ

tinhdFinh(x,t)=dt~{Finh(x,t)z

Sinh(
X

x

wie(x)Fexc(x,t){wi(thal)(x)Fthal)
ð7bÞ
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The time constants texc, tinh (Table S3) for the population firing

rates reflected the relative membrane time constants measured for

P and FS in vitro (c.f. [8]). The synaptic weight functions wee, wei, wie

were each the product of three terms:

wee(x)~rexcAeePee(x); ð8aÞ

wie(x)~rexcAiePie(x); ð8bÞ

wei(x)~rinhAeiPei(x) ð8cÞ

where r is presynaptic cell density (Supporting Information, Table

S3), A is average unitary synapse strength in pA/Hz (table S4), and

P(x) is the Gaussian connectivity profile (eqn 1, for parameter

values, see Results). Thalamic firing rate Fthal was fixed at 20 Hz,

while the thalamic input weight functions we(thal), wi(thal) were the

corresponding average unitary synaptic strengths (Table S4)

multiplied by the Gaussian input profiles, parameterized by Nmax

and s as detailed for Figure 6. Nmax and s for thalamic input did

not differ between E and FS cells. Because only transient responses

were examined, the model did not incorporate short-term synaptic

plasticity, which influences network dynamics on longer time

scales [36]. The relationship of firing rate to total input current for

each cell type (Sexh, Sinh,), was modeled as a Naka-Rushton

function:

F (x,t)~
MI(x,t)n

hnzI(x,t)n ð9Þ

M, h, and n (Table S3) were fitted to average plots of non-adapted

firing rate versus injected current obtained from cortical P and FS

cells in vitro (not shown), using an iterative search procedure.

Supporting Information

Figure S1 Effects of background noise. Simulations were

performed with the network shown in Fig. 4 of the main text using

the same thalamic inputs (number of thalamic inputs Nmax =

100; s= 110 mm). White noise current was added to the cell to

produce voltage fluctuations in all neurons. A, dot rasters showing

firing of P (top) and FS (bottom), cell populations. Injected noise

amplitude was 1 nA (+/2 standard deviation). B, Temporal

profiles of synaptic conductances to P cells at the center of the

network from thalamus (gray), neighboring P cells (cyan), and FS

cells (red). C, Normalized spatial conductance profiles of

composite excitatory (black) and inhibitory inputs (red) to P cell

population for s= 40 (top) and 110 mm (bottom). D, ratio of

excitatory to inhibitory spatial halfwidths vs s for 3 noise levels.

(TIF)

Figure S2 Effects of background firing. Simulations were

performed using steady-state values of synaptic depression/

facilitation, assuming all neurons were firing spontaneously at

different frequencies prior to the arrival of the stimulus. A, Spatial

profiles of composite excitatory (black) and inhibitory (red)

conductances evoked in P cells for input s of 40 mm (left) and

110 mm (right). B, ratio of excitatory to inhibitory spatial

halfwidths vs background firing rate for s= 40 mm (circles) and

110 mm (squares).

(TIF)

Figure S3 Role of FS excitability in LIN-CON transition.
A, simulations with FS cells with lowered threshold (252 mV). i,
dot rasters of P cell cells evoked with s= 40 mm. Bottom shows

poststimulus time histgram. ii, normalized spatial profile of

excitatory (black) and inhibitory conductances evoked in P cells

with s= 40 mm (left) and s= 110 mm (right). B, FS threshold set

at 247 mV as in the main text. C, FS threshold set at -37 mV.

(TIF)

Figure S4 Role of FS threshold in LIN-CON transition.
A, calculation of spatial profile of excitatory and inhibitory input to

P cells is as in Figure 5 of the main text except that the threshold

for the inhibitory input was removed so that the transform (F/I

curve) is linear. B, without the threshold, the surface describing the

ratio of excitatory to inhibitory widths approaches 1 asymptotically

as s increases.

(TIF)

Figure S5 Effects of differences in spatial inputs to
excitatory and inhibitory cells. A–C, changes in the ratio of

inhibitory to escitatory widths surface as the thalamic input to

inhibitory cells was made broader than that to excitatory cells. See

Supporting Text S1 for details.

(TIF)

Figure S6 Transition between lateral inhibition and co-
tuning with non-Gaussian connectivity schemes. A, left,

plots of ratio of widths of inhibitory to excitatory current to P cells

(Winh/Wexc) versus input width (s), for Nmax = 10, 20, or 30, in the

rate-based model (c.f. figs. 6 and 7 of main text). Connectivity

profiles were uniform (box function, schematized in red, inset).

Perfect co-tuning is indicated by dashed line at Winh/Wexc = 1.

Right, spatiotemporal profile of normalized firing rates of P cells

for narrow input (s= 40, top) and broad input (s= 160, bottom).

B, corresponding data for connectivity based on a quadratic

model; C, binomially distributed connectivity.

(TIF)

Table S1 Parameters of adaptive exponential integrate-
and-fire cells.

(PDF)

Table S2 Parameters governing dynamic properties of
EPSPs and IPSPs.

(PDF)

Table S3 Network parameters for the firing rate model.

(PDF)

Table S4 Unitary response amplitudes for the firing
rate model.

(PDF)

Text S1 Additional methods and results.

(PDF)
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