
LsrR Quorum Sensing ‘‘Switch’’ Is Revealed by a Bottom-
Up Approach
Sara Hooshangi1,2, William E. Bentley2,3*

1 College of Professional Studies, The George Washington University, Washington, DC, United States of America, 2 Fischell Department of Bioengineering, University of

Maryland College Park, College Park, Maryland, United States of America, 3 Institute of Bioscience and Biotechnology Research, University of Maryland, College Park,

Maryland, United States of America

Abstract

Quorum sensing (QS) enables bacterial multicellularity and selective advantage for communicating populations. While
genetic ‘‘switching’’ phenomena are a common feature, their mechanistic underpinnings have remained elusive. The
interplay between circuit components and their regulation are intertwined and embedded. Observable phenotypes are
complex and context dependent. We employed a combination of experimental work and mathematical models to decipher
network connectivity and signal transduction in the autoinducer-2 (AI-2) quorum sensing system of E. coli. Negative and
positive feedback mechanisms were examined by separating the network architecture into sub-networks. A new
unreported negative feedback interaction was hypothesized and tested via a simple mathematical model. Also, the
importance of the LsrR regulator and its determinant role in the E. coli QS ‘‘switch’’, normally masked by interfering
regulatory loops, were revealed. Our simple model allowed mechanistic understanding of the interplay among regulatory
sub-structures and their contributions to the overall native functioning network. This ‘‘bottom up’’ approach in
understanding gene regulation will serve to unravel complex QS network architectures and lead to the directed
coordination of emergent behaviors.
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Introduction

Biological phenomena are frequently controlled by an entangled

web of protein and gene networks that constitute regulatory

pathways. A large number of such pathways take advantage of

environmental cues and signaling molecules to regulate cellular

activities. However it is not always clear how biological systems are

able to support accurate signal propagation over a sufficiently

large dynamic range within the cell. One important factor in

determining the fidelity of a signal, in any biological system, is the

connectivity of the network, e.g., the interactions among the

constituent genes, proteins and metabolites. Recent studies

indicate that certain patterns of local connectivity such as negative

and positive feedback motifs are more frequently found in natural

systems [1,2].

Despite their individual abilities to influence the flow of

information, negative and positive feedback loops are often

coupled together in natural systems. One example is the Xenopus

embryonic cell cycle where a negative feedback loop and a pair of

positive feedback loops control the operation of a robust tunable

cell cycle oscillator [3]. Several synthetic oscillators have also been

built to demonstrate the robust behavior that results from the

interaction of various feedback motifs [4–6].

In this paper, we examined network connectivity in a natural

network which also employs a combination of negative and

positive regulation and, at the same time, provides cell-cell

communication among bacterial cells. Here, an auto-regulatory

network is coupled with a double negative motif to provide a

population based response known as bacterial quorum sensing

(QS). We examined the network connectivity and followed the

propagation of the native signal molecule, autoinducer-2 (AI-2), in

this system. Different regulatory motifs of the network were first

studied in isolation by constructing mutant strains and were then

combined to represent the system as a complete network. Using a

combination of experimental work and mathematical modeling,

we isolated the mechanisms of AI-2 transport into the cells and

investigated how the interplay of the different feedback mecha-

nisms orchestrates the overall cell-cell communication and

population based regulation. Our experimental work predicted

the existence of a new regulatory element that was not previously

suggested. We tested our hypothesis by building a model based on

the experimental results that also incorporated the new regulatory

element. Our predication was captured well by the model and we

were able to simulate both the intact network and all the sub-

systems using our new proposed network architecture. Important-

ly, we revealed the mechanistic basis for the LsrR-mediated

genetic ‘‘switch’’ of E. coli QS circuitry. In the native system, the

switch is buried but still effective. Our modeling results

demonstrated the basis for and biological importance of a well-

regulated network wherein a balance between the strengths of

different feedback motifs is required for the proper functioning of

the overall system.
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Results

The QS mechanism in E. coli
In general, QS can be described as a density-dependent cell-cell

communication process among bacteria that is mediated by the

transmission and propagation of chemical signals known as

‘‘autoinducers’’ [7–9]. Autoinducers are synthesized within the

cell cytoplasm, secreted to the outside and accumulate in the cells’

immediate surroundings [10]. At a point associated with a

‘‘quorum’’ of cells, where the cell density and hence the

concentration of the exported autoinducer reaches a threshold,

the signaling molecules are transported back into the cells or are

bound to cognate cell surface receptors, where they initiate

coordinated changes in gene expression [11]. Several classes of

signaling molecules and QS mechanisms have been identified [12].

The focus of this work was to investigate the transduction of

autoinducer-2 (AI-2) which is the dominate form of cell-cell

communication in E. coli and S. Typhimurium. AI-2 is also suggested

to be a ‘‘universal’’ signal molecule due to the presence of its

terminal synthase in over 80 genera [8]. Figure 1 summarizes the

AI-2 processing mechanism in E. coli (for more detailed

description, see [13]). During cell growth, AI-2 is synthesized

through a multi-step enzymatic pathway and transported out of

the cell membrane of individual bacterial cells [14,15], Figure 1A.

The increasing bacterial population results in the accumulation of

AI-2 within the extracellular milieu. Once the concentration of AI-

2 reaches a critical ‘‘threshold’’ it is transported back into the cell

[16,17], triggering a coordinated genetic response, Figure 1B.

A ‘‘bottom-up’’ approach reduces the network
complexity

Like many biological phenomena, the complexity of the

interactions within the QS process, makes the detailed study of

this system challenging. We used a ‘‘bottom-up’’ approach to

reduce the complexity of the network by separating it into smaller

sub-systems (modules) and examining each sub-system in isolation.

A more comprehensive picture of the overall network behavior

and their interactions could then be elucidated by combining the

findings of these modules. We began by separating the AI-2

synthesis/export module from the AI-2 uptake/regulation module

shown in Figure 1. Since AI-2 synthesis has been modeled in

previous work [13], we focused on understanding the mechanisms

of AI-2 transport back into the cell and its transduction/actuation

potential. Experimentally, the two modules could be separated by

removing one of the AI-2 synthase genes, luxS, from the genome

and halting the in vivo AI-2 synthesis. AI-2 was then synthesized in

vitro and its concentration estimated by measuring free thiol groups

[18]. The synthesized AI-2 was then added to the system at

different concentrations and dose response curves were deter-

mined. There are two significant advantages to using this in vitro

approach. First, the separation of these two modules simplifies our

analysis by eliminating cross-interaction between in vivo synthe-

sized AI-2 and AI-2 that is transported in from the outside. The

synthesized AI-2 was treated as an external input added into the

system in defined concentrations and hence the exact amount of

AI-2 present in the initial system was known. Second, this is a

more quantitative approach to study QS mechanisms when

compared to studies that rely on measurements of in vivo

synthesized AI-2. In vivo AI-2 studies typically performed using

an indirect cell-based assay employing Vibrio harveyi biolumines-

Author Summary

Quorum sensing is a mechanism by which bacterial cells
communicate within a population. One particular form of
communication in E. coli is through a universal signaling
molecule known as autoinducer 2. Although the impor-
tance of this form of cell-cell interaction has been
recognized in the formation of biofilms and virulent
infections, the mechanisms by which this form of
communication is regulated is still not well understood.
In this paper, we presented a method of unraveling these
mechanisms by using a combination of experimental work
and mathematical models. We took apart the network
architecture and isolated the different components. The
examination of these isolated sub-networks provided us
with a better understanding of the underlying mechanisms
that control and regulate bacterial quorum sensing. We
were also able to predict new network interactions with
the help of our mathematical models. This bottom up
approach, combined with our modeling efforts, proved
effective in unraveling the mechanisms of quorum sensing
in E. coli.

Figure 1. The AI-2 QS mechanism in E. coli. During cell growth, AI-2 is synthesized within the cell cytoplasm and transported out of the cell
membrane of individual bacterial cells. As the cell density increases, more AI-2 is accumulated within the extra-cellular milieu until the AI-2
concentration reaches a critical ‘‘threshold’’ and at this point it is transported back into the cells.
doi:10.1371/journal.pcbi.1002172.g001
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cence [19] which has a high level of day-to-day variability and its

irregularities have been noted [20,21]. As a result, we suggest that

our approach is a more quantitative method for the purposes of

characterizing network interactions within the QS system.

Examining the luxS knock-out module
The regulatory elements pertinent to the AI-2 uptake

mechanism have been identified in a number of previous studies

[15–17,22] and are summarized in Figure 2A. External AI-2 is

transported back into the cell through at least one known

transporter, Lsr, encoded by the lsr-operon. The lsr-operon in E.

coli encodes 6 genes that are responsible for the AI-2 uptake and

modification mechanisms. The first four genes (lsrA, lsrC, lsrD, and

lsrB) encode the import apparatus and the last two genes (lsF, lsrG)

are putative AI-2 processing genes [17,22] that eliminate the

activated form of AI-2 (phospho-AI-2 or AI-2-P) from the

cytoplasm in a similar manner to that of S. Typhimurium with a

highly homologous system [15]. Experimental evidence also

indicates that in the absence of the Lsr transporter, AI-2 is can

be transported into the cell via an as yet uncharacterized pathway

[15]. To account for this unidentified transport mechanism, we

included an alternative pathway (denoted ‘‘Alter’’) in our scheme

(Figure 2A). Upon entering the cell, AI-2 is phosphorylated by a

cytoplasmic kinase, LsrK, and the phosphorylated AI-2 interacts

with a transcriptional regulator, LsrR [23]. LsrR inhibits

transcription of the lsr-operon by binding to the lsr-operon

promoter site. LsrR also acts an auto-regulator by binding the

lsrR promoter site and inhibiting its own transcription [17].

Phospho-AI-2 reportedly binds the LsrR protein and prevents

inhibition of the lsr-operon, hence alleviating repression and

increasing Lsr transporter production. An increase in the levels of

the Lsr transporter expedites AI-2 uptake and creates a positive

feedback loop where higher concentrations of AI-2 within the cell

result in an increase in AI-2 uptake.

Figure 2B depicts the dose response curves for 7 different

experiments in which various concentrations of AI-2 were added

to growing cultures of E. coli cells that lacked the luxS gene.

Expression levels from lsr-operon promoter, which indicate LsrR

activity, were measured using a b-galactosidase (b-gal) assay, as

described in the Materials and Methods. As expected, higher AI-2

levels resulted in higher expression rates from the operon. As cells

reached the stationary phase, the expression levels of all cultures

decreased as the in vitro AI-2 levels and the cells’ metabolic activity

also decreased.

From single knock-outs to double knock-outs
To better understand the role of each of the regulatory elements

presented in Figure 2A and explain the experimental results of

Figure 2B, our next step was to systematically remove each of the

three key regulatory elements within the AI-2 uptake module and

reduced the network into three sub-modules. Each sub-system was

constructed by removing either lsrR, lsrK or lsr-operon genes from

the genome of strains that already lacked the luxS gene. In each of

these mutant strains we observed the expression level of the lsr-

operon promoter as the output. In accordance with previous

experimental work [17]) and our experimental observations (data

not shown), the deletion of any of these genes has no affect on the

cell growth. Once these sub-systems were analyzed in isolation, the

individual sub-system responses were compared with the overall

network response that was seen in Figure 2B. Our analysis, which

is summarized in the following sections, predicted the existence of

an additional lsr-regulatory mechanism and a new AI-2/protein

interaction that had not been hypothesized (or identified) until

now.

Sub-network 1: lsr-operon/luxS knock-out
The construction of the first sub-system involved the removal of

the entire lsr-operon from a bacterial strain that already lacked the

luxS gene, as shown in Figure 3A (experimental details of gene

deletion are provided in Materials and Methods). In this sub-

network, AI-2 is not transported into the cell via the Lsr-operon

transporter but it can still enter the cell using the alternative

Figure 2. The AI-2 uptake mechanism. A) The previously proposed network architecture of the AI-2 uptake is depicted. AI-2 is transported back
into the cell through the transporter Lsr-operon and an unknown mechanism denoted ‘‘Alter’’. Once AI-2 is inside the cell, it is phosphorylated by
LsrK and the phosphorylated AI-2 (AI-2-P) interacts with the LsrR repressor. LsrR is a negative regulator that inhibits both the transcription of the lsr-
operon and its own. AI-2-P can bind the LsrR protein and prevent the inhibition of the lsr-operon promoter. An increase in the levels of the Lsr
transporter creates a positive feedback loop where higher concentrations of AI-2 within the cell result in an increase in AI-2 uptake. B) Temporal
expression levels of the lsr-operon promoter for various concentrations of AI-2 ranging from 0 to 40 mM in luxS knock-out strains. Higher AI-2
concentrations result in higher expression rates from the lsr-operon. As the cells reach the stationary phase, the expression levels decrease for all
doses.
doi:10.1371/journal.pcbi.1002172.g002
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Figure 3. Separating the AI-2 uptake into sub-networks. A) The first sub-network is made by the removal of lsr-operon from luxS knock-out
strains. As the concentration of AI-2 increases, more AI-2-P is available to bind LsrR resulting in higher transcription from the lsr-operon promoter. The
maximum expression level is reached by hour 5 when most of AI-2 is taken up by the cell. Hereafter, external AI-2 is depleted and the expression
levels of all dose responses decline as cells enter the stationary phase. B) The second sub-network is made by the removal of lsrR gene from the
bacterial genome. The expression of levels of lsr-operon is still somewhat dependent on AI-2 despite the fact that there is no LsrR to repress the lsr-
operon. C) The lsrK knock-out represent the third sub-network where in the absence of the LsrK kinase, LsrR completely represses the lsr-operon.
doi:10.1371/journal.pcbi.1002172.g003
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pathway [19]. The AI-2 which enters the cell via the Alter

pathway, is phosphorylated by LsrK (AI-2-P), binds the LsrR

protein and prevents the repression of the lsr-operon promoter by

LsrR. We experimentally monitored the flow of AI-2 by measuring

the lsr-operon activity over time. Figure 3A shows the temporal

responses of lsr-operon expression levels from 7 different cultures

where various concentrations of in vitro AI-2 were added to the

growing E. coli cultures. As the concentration of AI-2 increases,

more AI-2-P is available to bind LsrR resulting in higher

transcription from the lsr-operon promoter. This accounts for

the higher expression levels observed for cultures that are induced

with higher AI-2 concentrations. By 5 hr, most of AI-2 is taken up

by the cell and the lsr-operon expression reaches its highest level.

By 6 hr, external AI-2 is depleted and expression levels decline as

cells enter the stationary phase. We observed one surprising result

within this sub-system - that the levels of expression were higher

without the lsr-operon (Figure 3A) compared to what was observed

for the intact network (Figure 2B), at the same concentrations of

AI-2. The highest level of sub-network 1 was ,200 Miller units

compared to the overall system behavior (,70 Miller units).

Sub-network 2: lsrR/luxS knock-out
The second sub-system was built by removing the lsrR gene

from a bacterial strain that already lacked the luxS gene (shown in

Figure 3B). Without the presence of the repressor protein, LsrR,

the lsr-operon is not repressed and AI-2 can enter the cell via both

the lsr-operon and the alternative pathway. According to this

model depiction, the expression level of the lsr-operon is

independent of the AI-2 levels and we expected to see high levels

of expression from the lsr-operon irrespective of the concentration

of AI-2. Figure 3B represents the time response of three cultures

grown with different levels of AI-2. Contrary to our prediction, the

expression levels were not as high as, nor higher than, those seen

in Figure 3A. Further, the system appeared to have a slight

dependency on AI-2 concentration as higher levels of expression

were found for higher AI-2 concentrations.

Sub-network 3: lsrK/luxS knock-out
The last sub-system was built by removing the lsrK gene from

the isogenic parent strain. Without the LsrK protein and the

corresponding AI-2-P in the system, LsrR is free to fully repress

the lsr-operon. Therefore, we expected that the lsr-operon

expression levels should be low regardless of input AI-2

concentrations. Figure 3C represents the experimental data for 2

samples at both low and high concentrations of AI-2. In agreement

with our expectations, the expression levels were both low.

A simple mathematical model of the QS network
The result shown in Figure 3A and 3B indicated that the lsr-

operon mutant (Figure 3A) had higher expression levels than the

parent strain (Figure 2B) and that lsrR mutant response (Figure 3B)

had a slight dependency on AI-2 concentration (Figure 3B). These

observations suggested that the perceived network architecture as

presented in Figure 2A might not be an accurate depiction of the

overall system behavior. Other regulatory elements and possible

feedback mechanisms, not identified in previous studies, may be

involved in the AI-2 uptake/transduction process.

In order to account for such regulations, we constructed a

mathematical model of our network and its sub-systems. We

started by modeling the AI-2 uptake by the cell and its

downstream regulation that were depicted in Figure 2A. Table 1

and 2 summarize the details of this first model. The synthesis of

LsrR and Lsr-operon were each modeled by a single equation

(Eq.1 & 2, Table 1) where protein synthesis, decay, cooperative

binding and repression were all encompassed in a single equation.

AI-2 delivery to the cell was modeled by an active transport of AI-

2 by the Lsr-operon and also an alternative pathway that was

represented by a simple flux (Eq. 3, & 4, Table 1). Our

experiments have indicated that the presence of LsrK is essential

to the operation of this network and that in the absence of this

kinase the system is shut down. Moreover a kinetic analysis of

LsrK activity in a recent paper [24] has shown that the

phosphoralytion of AI-2 is rapid and is completed within a few

minutes. As a result, to simplify the network description we made

the assumption that all the imported AI-2 was phosphorylated

(denoted as Ap in the model). AI-2 interaction and binding to

LsrR was modeled as a formation of a complex and its eventual

decay (Eq. 5, Table 1). Initial concentration of all variables, except

AI-2, was set to zero (Table 2). AI-2 was modeled as an input to

the system and its concentration varied over a range of 1 to 40 uM

to match the in vitro AI-2 concentration used in our experiments.

A deterministic solution to the system of ordinary differential

equations presented in Table 1 was evaluated using the freely

available software COPASI [25]. In the deterministic framework,

COPASI calculates time course by using a LSODA integrator [26]

that will numerically evaluate a solution to the system. Since few

empirical data on the kinetic parameters of this system was

available, a parameter estimation routine was used to fit and

match the model to the experimental data shown in Figure 2B. A

global parameter estimation routine based on a least-squares

method and a direct search algorithm [25,27] was used to

minimize the distance between experimental data and this first

model. The parameterization routine (the range of parameters are

listed in Table S3) was performed on all the kinetic parameters

that are listed in Table 2 with the exception of protein decay which

was set to cell division time. This assumption is valid as the

proteins in this network are generally stable and have half-lives

that are much larger than the cell division time [17]. The cell

division time was set to 30 minutes based on previous experiments

performed in our laboratory and the understanding that mutations

do not affect cell growth [17,22]. Table 2 lists the kinetic

parameters that provided the best correlation to the experimental

result of Figure 2B. Figure S1 represents the dynamic response of

this corresponding first model for 10 AI-2 concentrations as

described in Text S1. As it is evidence from these graphs this

model is a good representation of the experimental data.

Table 1. Ordinary differential equations used in the first
model.

Reaction Differential equation

Lsr-operon synthesis d OP½ �
dt

~
kop

1z
R½ �
k1

� �nOP
{kdeg OP½ � (1)

LsrR synthesis d R½ �
dt

~
kr

1z
R½ �
k2

� �nR
{kdeg R½ �{k3 Ap½ � R½ � (2)

AI-2 inside the cell d Ap½ �
dt

~kf Aout½ �zkimp OP½ � Aout½ �{k3 Ap½ � R½ � (3)

AI-2 outside the cell d Aout½ �
dt

~{kf Aout½ �{kimp OP½ � Aout½ � (4)

AI-2/LsrR interaction d ApR½ �
dt

~k3 Ap½ � R½ �{kdeg ApR½ � (5)

The system of ordinary differential equations used to model the system is
described here. This is based on the network topology depicted in Figure 2A.
doi:10.1371/journal.pcbi.1002172.t001
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We then used the same model parameters to simulate the

response of the sub-systems that are presented in Figure 3. The

result of these simulations (time responses are shown in Figure S2)

was not a good representation of the experimental data. In the

model, in the absence of Lsr-operon, the AI-2 uptake is

significantly impaired and LsrR is able to repress the operon

expression level to very low levels. Since our experimental results

of Figure 3A were unexpected, it was not a surprise that the model

also did not reproduce the experimental data and that we were

unable to simultaneously reproduce the experimental results

observed in Figure 2B and Figure 3. A global parameter

estimation routine revealed that, using the same model descrip-

tion, several parameters such as k1, k2 and nR needed to be

significantly changed in order to reproduce Figure 3A or 3B alone.

In order to rectify these discrepancies, several different network

topologies were considered as possible alternative configurations

for this system. For example the Lsr-operon transport and the

alternative pathway might work as mutually exclusive switches

where in the presence of Lsr-operon the alternative pathway is

shut down. There is also the possibility that LsrR has other

regulatory roles in the network that are not well understood. One

interaction that was hypothesized and showed promise in our

preliminary evaluations was the existence of a second regulatory

mechanism (in addition to LsrR) that controls the transcription of

the lsr-operon. In theory, an lsr-regulator protein may act as a

negative regulatory mechanism to repress the activity of the lsr-

operon promoter site. The original model (denoted first model)

was modified to include this interaction. The modification

involved introducing a protein named ‘‘REG’’ as a second

repressor in the system and adding a repression term within the

Lsr-operon synthesis equation. A new parameter estimation

routine was performed to correlate the model with both the

experimental result shown in Figure 2B and Figure 3 simulta-

neously. The new model allowed us to replicate the experimental

results in Figure 2B and 3A quite well (time courses shown in

Figure S3 and explained in Text S1) but it did not support the

weak dependency of lsr-operon expression on AI-2 that was

demonstrated in Figure 3B.

We looked for other possible scenarios that could account for

this apparent weak dependency on AI-2 in the absence of LsrR.

One possible explanation, as shown in Figure 4A, is that the lsr-

regulator [28], similar to LsrR, could bind AI-2-P and reduce the

repression of the lsr-operon in the presence of high concentrations

of AI-2. This could result in higher expression levels from the

promoter in the absence of lsr-operon (seen in Figure 3A) and an

increase in expression levels with the addition of AI-2 (seen in

Figure 3B). This is conceptually feasible, as described later, as

REG protein processing can both eliminate AI-2-P as a positive

regulator over long periods of time and it can also sequester AI-2-P

while it is bound.

Using the described network architecture (Figure 4A) we were

able to produce simulation results that matched all our

experimental results closely (see Figure S4 for time response

simulations). Table 3 describes the new set of equations in this

modified model and Table 4 lists all the kinetic parameters that

were used.

In order to show the comparison between the model and

experiments more clearly we plotted the promoter activity as a

function of the AI-2 concentrations at a single time point (time of

maxima in simulations shown in Figure S4 and experiments

shown in Figure 2 and 3) as shown in Figure 4B and 4C

respectively. This representation captures the effect of AI-2 on

individual sub-networks and at the same time allows us to

compare the different sub-networks within the network. Our

simulation results matched our experiments closely and indicated

the possible existence of the interaction between the lsr-operon, its

own promoter and the AI-2-P.

In vitro vs in vivo AI-2
After a close examination and deciphering of the AI-2 uptake

mechanism it was interesting to go back and compare our results

Table 2. Model species and kinetic parameters used in the first model.

Species Description Initial Condition/Range

t Time [0, 500] min

OP Lsr-operon concentration 0 M

R LsrR concentration 0 M

Ap Phospholyrated AI-2 within cell 0 M

Aout AI-2 concentration outside the cell [1,40] uM

Parameters Description Best fit value (first model)

kop Lsr-operon synthesis rate 2.3 uMol21 min21

kr: LsrR synthesis rate 2 min21

k1: Repression coefficient (Lsr-operon) 0.2 uMol

k2: Repression coefficient (LsrR) 0.1 uMol

k3: AI-2/LsrR binding rate 0.05 uMol21 min21

kf AI-2 flux for the alternative pathway 0.0001 uMol21 min21

kimp: AI-2 import rate by Lsr-operon 0.0005 uMol21 min21

nOP: Cooperativity coefficient (Lsr-operon) 4

nR Cooperativity coefficient (LsrR) 4

kdeg Protein decay 0.02 min21

Summary of the initial concentration of the species in the first model and the complete list of kinetic rates that provided the best fit to the experimental data shown in
Figure 2B.
doi:10.1371/journal.pcbi.1002172.t002
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Figure 4. Modifying the network architecture. A) A new model representation of the AI-2 uptake mechanism is proposed. Here REG protein acts
a negative regulator to repress the expression of the lsr-operon promoter. In the presence of high AI-2 concentrations, REG (like LsrR) binds AI-2-P
and the auto-regulation effect of REG decreases. B) The lsr-operon promoter activity is plotted as a function of AI-2 concentrations at a single time
point (hour 5) for all three sub-networks (lsr-operon, lsrR and lsrK knock-outs) and also for the intact network. C) Simulation results with the
appropriate parameter sets show close correlation of the proposed model to the experimental work.
doi:10.1371/journal.pcbi.1002172.g004
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with the responses of wild-type E. coli. We compared the lsr-operon

expression level of luxS knock-out cells (2/+ in vitro AI-2) with the

wild-type expression levels. Expression levels for the wild-type and

the high in vitro AI-2 supplemented cases were similar (Figure 5A,

left y-axis). For reference, we depicted the measured AI-2 activity

of V. harveyi within the extracellular milieu of the cultivated wild-

type cells on the same graph (Figure 5A, right y-axis). As expected,

AI-2 is accumulated and upon reaching a threshold, it is

transported back into the cell. The highest level of AI-2 activity

for the wild-type cells, measured through the AI-2 assay (see

Materials and Methods), was around 200 units of luminescence.

We then measured the activity levels of different in vitro AI-2

concentrations to find the level of in vitro AI-2 that yielded

expression levels as that in the in vivo synthesized AI-2 case

(Figure 5B). To our surprise, we noticed that an in vitro

concentration of only 4 mM gave similar AI-2 activity as the

wild-type. For the higher in vitro AI-2 concentrations we observed

greater luminescence (around 1,000 units of luminescence).

According to our results in Figure 2B, 4 mM of in vitro AI-2 can

only marginally de-repress the lsr-operon and the expression levels

of the promoter in this case are much lower than what is seen in

the wild-type strain. This is a very important observation as it

points out the possibility that AI-2 might not be completely

exported out of the cell in the wild-type cells and that the internally

made AI-2 might also contribute to the regulatory mechanisms of

AI-2 uptake [17,29]. Furthermore, in addition to being a signaling

molecule, AI-2 might have other regulatory and metabolic roles

within the cell. Further investigation of the internal AI-2 is

required to shed light on some of these observations.

Discussion

The AI-2 uptake mechanism, which is one of the two main

modules in the AI-2-mediated QS system in E. coli, was taken

Table 3. Modified model description.

Reaction Differential equation

Lsr-operon synthesis d½OP�
dt

~
kop

1z
½R�
k1

� �nOP

z
½REG�

k4

� �nOP
{kdeg½OP� (1)

Lsr-regulator synthesis d½REG�
dt

~
kop

1z
½R�
k1

� �nOP

z
½REG�

k4

� �nOP
{kdeg½REG�{k5½Ap�½REG� (2)

LsrR synthesis d½R�
dt

~
kr

1z
½R�
k2

� �nR
{kdeg½R�{k3½Ap�½R� (3)

AI-2 inside the cell d½Ap�
dt

~kf ½Aout�zkimp½OP�½Aout�{k3½Ap�½R�{k5½Ap�½REG� (4)

AI-2 outside the cell d½Aout�
dt

~{kf ½Aout�{kimp½OP�½Aout�
(5)

AI-2/REG interaction d½ApG�
dt

~k5½Ap�½REG�{kdeg½ApG� (6)

AI-2/LsrR interaction d½ApR�
dt

~k3½Ap�½R�{kdeg½ApR� (7)

Modified model that includes both protein REG regulation and also REG/AI2-P interaction.
doi:10.1371/journal.pcbi.1002172.t003

Table 4. Kinetic rates used in the modified model.

Parameters Description Best fit value (modified model)

kop Lsr-operon/Lsr-regulator synthesis rate 7 uMol21 min21

kr: LsrR synthesis rate 2 min21

k1: Repression coefficient (Lsr-operon) 0.2 uMol

k2: Repression coefficient (LsrR) 0.1 uMol

k3: AI-2/LsrR binding rate 0.05 uMol21 min21

k4 Repression coefficient (Lsr-regulator) 65 uMol

k5 REG/AI2 interaction 0.0001 uMol21 min21

kf AI-2 flux for the alternative pathway 0.01 uMol21 min21

kimp: AI-2 import rate by Lsr-operon 0.01 uMol21 min21

nOP: Cooperativity coefficient (operon) 4

nR Cooperativity coefficient (LsrR) 4

kdeg Protein decay 0.02 min21

The list of kinetic rates used in the modified model. Two new parameters (k4 and k5) are introduced in the modified model.
doi:10.1371/journal.pcbi.1002172.t004
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apart in this work and the sub-systems were analyzed in isolation.

We separated our original network architecture into simpler

modules, examined each module separately and this led to the

speculation of new regulatory interactions within the network.

Several different interactions including the existence of other

active transports, a mutually exclusive switch like behavior of the

Lsr-operon transport and the alternative pathway and enzymatic

activity of other proteins that might degrade AI-2 were all

considered and examined in a preliminary test. One scenario that

showed promise was the case in which an lsr-regulator protein

would interact with the lsr-operon promoter site and act as a

negative regulator (based on the results obtained in Figure 2B and

3A). In addition the response of the lsrR knock-out strains

(Figure 3B) suggested a possible interaction of the lsr-regulator

protein with AI-2-P. These new interactions were incorporated

into the construction of a comprehensive system of ordinary

differential equations, details of which are summarized in

Tables 3–4.

Four types of regulations played an important role in

determining the outcome of this model i) the LsrR repression

of the lsr-operon (represented by k1), ii) the auto-regulatory effect

of LsrR on its own promoter sites (represented by k2), iii)

interaction of lsr-regulator (REG protein) with the lsr-operon

promoter site (represented by k4), and iv) AI-2-P binding to LsrR

and REG (represented by k3 and k5). The regulation of LsrR and

REG (negative feedback motifs) were coupled with the AI-2-P

binding of the LsrR and REG (where the binding acts as de-

repressing mechanism and hence has an overall positive feedback

effect) to give this network a combination of both negative and

positive feedback regulation. Our modeling results indicated that

only with in a specific range of kinetic rates we were able to

produce the desired response that correlated well with all the

experimental results. The best correlation between the model and

the experiments occurred when the relative affinity of the LsrR

for the lsrR promoter was of the same order as the LsrR affinity

for the lsr-operon promoter. This indicates that LsrR has similar

binding affinity for its own promoter and the lsr-operon promoter

site and that a competitive dynamics exists within this network

architecture to bind LsrR repressor protein. The degree of

regulation of the lsr-operon by REG protein was less than the

LsrR auto-regulation strength and the binding affinity of AI-2 for

the lsr-regulator was also lower than its affinity for the LsrR

protein. This indicates that LsrR plays a more significant role in

regulating the dynamics of the QS network suggesting that this

protein might be involved in other metabolic pathways within the

cell as speculated by others [29]. Our further analysis of the

system revealed that the in vitro AI-2 levels required to produce

similar effects on the system are very high compare to what is

expected based on the secretion of in vivo AI-2. This observation

suggests that AI-2 might have other regulatory roles within the

cells that are still unknown.

The two most important revelations in this work are: the

apparent negative feedback regulation on the lsr-regulator that is

as strong as or stronger than that of the LsrR protein, and the

uncovering of the strength of the Lsr ‘‘switch’’. Negative

regulation is a recurring motif in biological networks and

previous works have shown that this motif is able to reduce

transcriptional noise in single genes and cascades [30–32] and

increase the fidelity of signal transmission in biological networks

[33,34]. In our case, the mechanistic basis for the lsr-regulator’s

effect on repression is only partially explained. The regulator’s

processing of AI-2-P would understandably sequester and reduce

AI-2-P, enabling higher transcription of the lsr-operon. However,

our conjecture that an lsr-regulator is repressing the promoter site

via direct binding or other mechanism is supported by several

currently disjoint observations. First, we found LsrR binding to

both the lsrR and lsr-operon promoters were predicted to be

similar in strength. This suggests coordination between LsrR

proteins, which would be feasible if LsrR operates as a dimer [35]

and these sites are brought into proximity. Additionally, since the

data from the lsr-operon mutant are significantly higher than the

lsrR mutant, the net effect should be the recruitment of other

Figure 5. The effects of in vitro vs in vivo AI-2. A) A comparison between the lsr-operon expression level of luxS mutant cells (2/+ AI-2) with the
wild-type expression levels. Similar expression levels were observed between high AI-2 (green line) and the wild-type (red line). Black line (measured
on the second y-axis on the right) represents the AI-2 import profile for the wild-type strain. B) In vitro AI-2 activity was measured using the Vibrio
harveyi assay to find the corresponding AI-2 concentration that has similar effect as the wild-type. AI-2 level of around 4 mM give similar activity level
as the wild-type response.
doi:10.1371/journal.pcbi.1002172.g005
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factors, not currently considered. We hypothesize two such

scenarios: first, we have shown here the effects of in vivo AI-2 are

significantly different than imported and phosphorylated AI-2.

We have also demonstrated that unphosphorylated AI-2 plays a

role in modulating LsrR regulated gene expression [29]. In the

lsr-operon mutant, AI-2 is transported into the cell via alternative

pathway, presumably phosphorylated by LsrK, but not degraded

by LsrFG. This will alter the relative ratio of AI-2 and AI-2-P

which might influence lsr expression in an as yet undetermined

manner. Second, in ours [17] and Bassler’s previous report [16]

there is significant interplay between CRP and lsr expression, and

binding sites in the intergenic region were revealed. Perhaps the

lsr-operon and the AI-2-P state alter the effects of CRP in this

regulatory switch. We note that the presence of glucose

completely shuts off lsr expression and swamps the QS regulation

mediated by LsrR [17]. The second most important revelation

was that the LsrR ‘‘switch’’, in fact, is significantly stronger when

turned on in sub-networks than in the wild-type cells. In effect,

we have found the levels of AI-2 needed to toggle this switch and

hypothesize that it might be of use in guiding phenotype. Switch-

like behavior is a common phenotype of network topologies that

have some degree of positive regulation or feedback [36,37] and

in our case the binding of the repressor protein to AI-2-P

effectively plays this role and is the further evidence of the

existence of a switch.

Our work is the first study of QS wherein a combination of

double knock-outs and in vitro synthesized AI-2 have been used to

quantify gene regulation in the E. coli AI-2 system. We showed that

using a bottom-up approach and isolating the important

regulatory elements is an effective way to analyze a natural

biological network especially when positive and negative regula-

tions exist within the network architecture. We also showed that

the study of such isolated modules allows one to construct a

hypothetical model of the system and use simulations to predict the

existence of new regulatory mechanisms. Further analysis of this

network architecture will shed light on other regulatory pathways

within the metabolic networks of bacterial cells and may be used to

guide phenotypes in new ways as the quorum sensing switches

become incorporated into various biotechnological applications.

Materials and Methods

Bacterial strains and growth media
The bacterial strains used in this study are listed in Table S1.

Luria-Bertani broth [38] contained 5 g of yeast extract (Sigma)

liter21, 10 g of Bacto tryptone (Difco) liter21, and 10 g of NaCl

liter21. Media were supplemented with antibiotics at the following

concentrations: Ampicillin, 20 mg ml21; Kanamycin, 10 mg ml21

and Chloramphenicol 10 mg ml21.

Chromosomal deletions of lsrR, lsrK, and the lsrACDBFG
operon

The one-step replacement method described by Datsenko and

Wanner [39] was used to construct a luxS deletion in E. coli strains

LW8, LW9 and LW11. The phage lRed recombination system

was used to replace the luxS gene with a luxS::Crm PCR fragment.

pKD3 plasmid was used as PCR template with primers luxSHP1

and luxSHP1 (Table S2). The PCR products were then treated

with DpnI and introduced by electroporation into E. coli LW8,

LW9 or LW11 strains containing pKD46 plasmid. The strains

were then grown in 37uC for an hour. Recombinants were selected

on LB plates supplemented with Kanamycin and Chloramphen-

icol. The deletion of the genes was verified by PCR tests.

ß-Galactosidase assays
Cultures of E. coli were grown overnight in LB, diluted 100-fold

into fresh LB, grown to the OD600 below 0.05. The cultures were

incubated at 37uC with shaking at 250 rpm and grown for 1 hour.

AI-2 was then added to the system and samples were places back

in the incubator. Samples were removed at hour intervals for

determination of the OD600 and b-galactosidase activity using the

Miller method [40]. The Specific activity of b-galactosidase was

expressed in Miller units [40].

AI-2 activity assay
Cell-free culture fluids were prepared by centrifugation of the E.

coli samples culture at 10,000 rpm for 5 min in a microcentrifuge.

Cleared supernatants were filtered (0.2 mm size HT Tuffryn filters;

Pall Corp., Ann Arbor, Mich.) and stored at 220uC. These cell-

free culture media were tested for the presence of AI-2 by inducing

luminescence in Vibrio harveyi reporter strain BB170. The assays

were performed as outlined by [41].

Supporting Information

Figure S1 Time response of Lsr-operon. Lsr-operon

dynamics for different AI-2 concentrations is simulated and

presented.

(TIFF)

Figure S2 Time response of the subsystems. The

simulation result for subsystems. lsr-operon knock-out (left) and

lsrR knock-out (right) is depicted and compared.

(TIFF)

Figure S3 Time response of the subsystem for the
modified model. The simulation result for the second model

that includes the lsr-operon regulator. Intact network (left) and lsr-

operon knock-out (right).

(TIFF)

Figure S4 Time response of the final model. The

simulation result for the third model. Intact network (left) and

lsr-operon knock out (right).

(TIFF)

Table S1 Plasmids and strains. Bacterial strains and

plasmids used in this study are listed.

(TIFF)

Table S2 Primers. Primers used in this study have the

following sequences.

(TIFF)

Table S3 Parameter ranges. Range of parameters that were

explored during the parameter fitting process is listed in this table.

(TIFF)

Text S1 Model and simulation results description.

(PDF)
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