
Using Structure to Explore the Sequence Alignment
Space of Remote Homologs
Andrew Kuziemko1,2, Barry Honig1,2, Donald Petrey1,2*

1 Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America, 2 Center

for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America

Abstract

Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its
structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to
generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A
central problem is that the alignment that is ‘‘optimal’’ in terms of the DP score does not necessarily correspond to the
alignment that produces the most accurate structural model. That is, the correct alignment based on structural
superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP
algorithm have been developed that generate alternative alignments that are ‘‘suboptimal’’ in terms of the DP score, but
these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence
alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual
fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for ‘‘modelability’’,
we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can
currently be modeled by homology can be greatly extended.
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Introduction

Most protein sequences do not have an experimentally

determined structure and at least 40% do not even have a

sequence homolog with a known structure [1]. Nevertheless, the

current Protein Data Bank (PDB) [2] is thought to represent

structure space nearly exhaustively [3–5]. Therefore, for most

proteins, a structural homolog that can serve as a ‘‘template’’ for

modeling at least part of its structure is likely to exist. However, the

degree of sequence similarity will generally be too low to allow a

template to be detected or for an accurate sequence alignment to

be found [6]. A central problem is that current alignment methods

based on dynamic programming (DP) [7] generate the unique

‘‘optimal’’ alignment (the alignment producing the highest score

based on a residue-residue similarity score and a gap penalty),

while the ‘‘correct’’ alignment (producing the most accurate

model) is not guaranteed to be optimal in terms of this score at low

sequence identity ranges.

Numerous variations of both the residue-residue similarity score

and gap penalty have been developed to address these issues.

Individual residue-based scoring functions have been replaced

with more complex profile-profile [8–10] and environment-

dependent methods [11–13]. Recognizing that affine gap penalties

typically over-penalize long gaps, several studies have described

the probability of a gap as a function of its length or location in the

structure with the goal of penalizing it appropriately [14–19].

Threading methods [20,21] incorporate an energy term into the

alignment procedure, but they face the drawback of not being

compatible with the traditional DP algorithm [22].

Even with these more sophisticated approaches, there are still

many issues that will confound the generation of an accurate

alignment. Moreover, it is generally necessary to consider an

ensemble of alternative alignments in order to produce an accurate

model at low sequence identity ranges. Such ensembles are

frequently called ‘‘suboptimal’’ since by necessity they have lower

scores than the optimal alignment produced by DP. A variety of

suboptimal sequence alignment schemes have been reported.

Waterman [23] produced an ensemble of alternative alignments

by changing the dynamic programming algorithm to return all

alignments with scores within a small difference, d, from that of the

optimal alignment. However, the difference between the DP scores

of the correct alignment and the optimal sequence alignment can

be significant, especially for remote homologues. Increasing d until

it encompasses the correct alignment often produces an unman-

ageably large ensemble. Keeping d small returns a more

reasonable number, but the alignments tend to deviate negligibly

from the optimal alignment.

Saqi and Sternberg [24] adapted this approach to return a more

diverse ensemble by penalizing an alignment that is similar to one

previously determined. John and Sali [25] used genetic algorithm

operators to splice and re-combine alignments in order to achieve

the same goal. Chivian and Baker [26] produced alternative

alignments by systematically varying the parameters in their

optimal alignment method. Each alignment in their returned
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ensemble was therefore ‘‘optimal’’ (ie. highest-scoring) under a

different set of conditions. One problem faced by all suboptimal

methods is how to adequately sample the gigantic space of

possibilities. Jaroszewski et al [27] sought to explore the size of

alignment space by examining pairs of small and medium-sized

proteins (seven or fewer template secondary structures). Even

though only ‘‘significantly different’’ alignments were enumerated

by disallowing gaps in template secondary structures and ignoring

alignment variations in loop regions, tens of millions of alternative

alignments were required in some cases to generate the correct

one.

We describe here a new method to generate suboptimal

alignments, S4 (Sampling Shifts in Secondary Structures), that

takes an approach that is fundamentally different from the

standard dynamic programming algorithm. In validation tests

that we describe below, we show that S4 is highly effective at

producing an accurate alignment within a set of 100 top-ranked

alternatives and can almost always produce such an alignment

within a set of 1000 alternative alignments. The utility of the S4

approach is most evident when the query/template sequence

identities are low, but S4 also improves accuracy when the

homology is clear. Our results are shown to constitute a significant

improvement over DP-based alternative alignment methods,

which we show is due to unique features of the algorithm, in

particular to the effective use of the 3-dimensional structure of the

template. The ability to generate a small set of alignments likely to

contain the correct one suggests that S4 offers the possibility of

significantly improving the accuracy of homology models,

extending the number of sequences that can currently be modeled

based on existing structures in the PDB.

Results

A flowchart for the S4 algorithm is shown in Figure 1. The

method starts by searching the DP matrix for a set of short,

ungapped alignments bounded by individual template secondary

structure elements (SSEs). The rationale is that whatever sequence

similarity may exist between query and template will more likely

be in SSEs than loop regions. To generate a global alignment,

pairs from a high-scoring set of ‘‘primary’’ fragments are

connected with lower-scoring ‘‘secondary’’ fragments. This is a

crucial feature of S4. In particular, we find that correctly aligned

fragments can generally be identified within a very small set of

primary fragments, significantly reducing the combinatorial

complexity of the alignment problem. This characteristic,

combined with the requirement that alignments containing the

fragments be structurally plausible (see Materials and Methods),

improves accuracy in regions where the relationship between the

query and template is less clear. The constraints also allow S4 to

remove many alignments from consideration through the

application of filters that identify geometrically or energetically

unreasonable alignments based on knowledge of the template

structure. Filters are also applied to check for redundancy in order

to ensure that the alignments represent unique regions of

alignment space. (A detailed description of each step of the S4

algorithm and the filters applied is provided in the Materials and

Methods.)

Improvement in alignment accuracy
S4 was tested on a set of target sequences from the CASP [28]

experiments (T0129–T0359). Potential templates for each target/

query sequence were identified by structurally aligning the native

structure to other proteins in the PDB using the ska program

[29,30]. Templates were then selected based on a set of criteria

(see Materials and Methods) to ensure that an alignment existed

between the template and query structure that would produce a

model with a TM-score [31] .0.5, and also that S4 would not be

run on sequences longer than 350 residues. The resulting test set

contained 3,342 query sequence/template pairs and was heavily

populated by those with low sequence identity: over 90% of all

pairs had less than 20% identity and more than 60% had less than

10% identity. Overall, there were 137 queries with an average of

24 templates each that satisfied all the criteria. The queries

represented at least 65 different SCOP folds (some targets are not

classified in SCOP).

We define the correct alignment to be the structure-based

sequence alignment between the query and template and evaluate

the performance of S4 by comparing it to three DP-based

approaches, HMAP [10], hhalign [32], and SP3 [33]. We also

compare against a DP-based suboptimal alignment method [23].

We calculate the accuracy of an alignment in different ways. While

an alignment algorithm should ideally be able to reproduce the

structure-based sequence alignment residue-by-residue, several

issues make this an overly sensitive measure of success. For

example, consider a situation in which a template contains a helix

with an axis that is at an angle with respect to that of the

topologically equivalent helix in the query. Because of such

differences between the template and query structures, no

alignment in this region can be considered strictly correct even

though there may be residues in the query and template that

occupy roughly equivalent positions in space. The same difficulty

occurs in the alignment of loop regions and also in b-strands,

where b-bulges can affect alignment accuracy. However, it is

clearly desirable for an alignment algorithm to pair residues in

topologically equivalent SSEs, even if this pairing does not exactly

correspond to the structure-based sequence alignment because of

conformational differences.

Because of these issues, we use three measures that reflect a

variety of characteristics. We first use a measure called ‘‘inter-

alignment distance’’ (IAD). As described in Materials and

Methods, IAD corresponds to the average deviation of the

position of residues in a given alignment from their correct

position in the structure-based alignment. An IAD of 2 implies

that, on average, each residue is shifted by two away from its

Author Summary

It has been suggested that, for nearly every protein
sequence, there is already a protein with a similar structure
in current protein structure databases. However, with poor or
undetectable sequence relationships, it is expected that
accurate alignments and models cannot be generated. Here
we show that this is not the case, and that whenever
structural relationship exists, there are usually local sequence
relationships that can be used to generate an accurate
alignment, no matter what the global sequence identity.
However, this requires an alternative to the traditional
dynamic programming algorithm and the consideration of
a small ensemble of alignments. We present an algorithm, S4,
and demonstrate that it is capable of generating accurate
alignments in nearly all cases where a structural relationship
exists between two proteins. Our results thus constitute an
important advance in the full exploitation of the information
in structural databases. That is, the expectation of an accurate
alignment suggests that a meaningful model can be
generated for nearly every sequence for which a suitable
template exists.

Using Structure to Explore Alignment Space
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position in the correct alignment, but also implies that topolog-

ically equivalent SSEs in the template and query have been

correctly paired. Thus IAD is a measure of overall alignment

quality. To calculate how well the correct alignment is generated

on a residue-by-residue level, we use a measure that we call FDS2,

adapted from the FD measure of Sauder et al. [34]. This measure is

simply the percentage of residues that are within 2 from their

position in the correct alignment, with the restriction that this is

calculated only in regions corresponding to template SSEs. This

restriction results in a more informative alignment metric, since

measuring accuracy in the structurally equivalent—but confor-

mationally dissimilar—loop regions of remote homologs imposes a

correspondence of residues that is not necessarily meaningful.

Finally, to determine whether the models produced from the

alignments are actually useful, we directly compare models to the

native structure using the TM-score [31].

Figure 2 plots IAD for the best alignment generated by S4 and

the single optimal alignment produced by HMAP, hhalign, and

SP3. Points in the figure represent individual query/template pairs

and are ordered according to the IAD of the optimal alignment

generated by the different methods (i.e., moving left-to-right in the

graph corresponds roughly with query/template pairs that range

from higher to lower sequence identity). Figure 2 illustrates a

central difficulty with most DP-based alignment methods. That is,

at the higher range of sequence identities, most methods produce a

reasonably accurate alignment, but there appears to be a threshold

beyond which an accurate alignment becomes impossible when

considering a single, optimal alignment. On the other hand, S4

generates an alignment with improved accuracy at all sequence

identity levels and the improvement is quite dramatic at lower

identities when the optimal alignment is severely flawed.

Table 1 presents this explicitly, showing IAD values for the

different methods averaged over all pairs in several ranges of

sequence identity. In the 0–5% identity range, the average IAD for

the optimal alignment is over 13, implying that many topologically

equivalent SSEs are not correctly paired. In contrast the average

IAD for the best S4 alignment found in the top 1000 is 2.3,

indicating that S4 is able to find good alignments even in the low

identity regime. We note that this is true whether or not the

template is identified as a significant hit by the individual methods

(E-value,10 for HMAP, E-value,0.001 for hhalign and Z-

score,20.5 for SP3). In Figure 2, the IAD’s for the best S4

alignments are colored in light or dark green if the template for

that case was identified as significant by the corresponding

alignment method, and in red for those templates that are not

considered significant.

Of course, there is an inherent difficulty in comparing the

performance of a method which generates an ensemble to a

method which generates a single alignment. In fact, the optimal

alignment is the most accurate in many cases (about 30% of the

time for hhalign and 21% for SP3) and is more often than not in

the top 5% in a set of 1,000 alignments ranked by IAD. The

average rank is ,200 however, so there is generally room for

improvement, and our main point here is not that the optimal

Figure 1. The S4 algorithm. An alignment matrix is depicted with the template sequence and its SSEs on the horizontal axis and the query
sequence on the vertical. (1) The algorithm begins by finding high-scoring primary fragments (black, see text for a definition of high-scoring), one
primary fragment for each template SSE (not all shown here). (2) To fill in the gaps between primary fragments (such as PF1 and PF2), ‘‘secondary’’
fragments (gray) are identified. Secondary fragments are chosen based on different criteria: if they are in an SSE that neighbors a primary fragment
and on a similar diagonal (Adjacent); if they satisfy alignment rules, such as filling a gap in a b-sheet, (Core, see Materials and Methods); or simply
being high-scoring (Score). (3) Starting at the N-terminus, the algorithm enumerates all connections to downstream primary and secondary
fragments, resulting in a large ensemble of ‘‘fragment alignments’’. Alignment rules are tested (see Materials and Methods) whenever any fragment is
added to an alignment. (4) The number of fragment alignments is reduced by filtering with thresholds based on statistical energies, core contacts and
a redundancy measure (see Materials and Methods). (5) To generate a final global alignment from a set of fragments (e.g. the green line, a boundary
is defined around each remaining fragment alignment (dashed lines) within which the traditional a DP-based suboptimal algorithm is used to find an
ensemble of full alignments. DFIRE then selects the alignment with the lowest/best energy to represent the set of fragments. (6) The process
continues until it has returned the top N alignments, ranked by their residue similarity score.
doi:10.1371/journal.pcbi.1002175.g001
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alignment shouldn’t be used, but that an ensemble is necessary to

generate an alignment that makes an accurate model, especially

for highly remote/query template pairs. In practice, the optimal

alignment would always be part of such an ensemble.

To determine the extent to which the improvement in

alignment quality of S4 relative to the optimal alignment is due

simply to the increased number of alignments generated, we also

compared S4 to two versions of the conventional DP-based

Waterman algorithm for generating alternative alignments [23],

which have been implemented in-house as part of HMAP [10].

Figure 3 shows the results. As discussed above, while the IAD is

effective at measuring overall alignment accuracy, it does not

define the fraction of residues that are within a specified distance

from their position in the correct alignment, and thus in Figure 3

we use the FDS2 measure. We also compare to two versions of the

DP-based suboptimal alignment algorithm. A problem with the

strict implementation of this algorithm is that alternate alignments

can be generated that are not meaningfully different because

variations in loop regions produce essentially equivalent models.

Thus, we also implemented a modified algorithm which ignores

such alignment variations. In the Figure the standard implemen-

tation of the algorithm is referred to as ‘‘unconstrained

Waterman’’ and the modified version is referred to as ‘‘constrained

Waterman’’ (see Materials and Methods and Figure S6 in Text S1

for more detail).

Figure 3 depicts the best FDS2 in the ensemble from each

method as a function of the FDS2 of the optimal alignment. The

vertical distance above the dotted line represents the improvement

over optimal for the best alternative alignment generated. S4 is

seen to significantly outperform the DP-based optimal and

suboptimal algorithms, particularly when the optimal alignment

is flawed. Even the best alignment out of the top 100 S4

alignments is significantly better than the best out of 1000 from the

other DP-based methods. A further improvement in accuracy can

be obtained by modeling the ensemble of 1000 alignments and

using the pG score [35,36], to select the top 100 alignments based

on the quality of the models they produce. Figure 3 also shows the

same data as a function of sequence identity. Again, we see that S4

offers a significant improvement compared to all DP-based

methods for aligning remote homologs, even when using an

ensemble one-tenth as large.

Evaluation of models from S4 alignments
The results shown in Figure 2 suggest that S4 generates

alignments that are much improved over DP-based optimal

methods, but since the IADs of the best S4 alignments are not 0

(i.e., the S4 alignments are not identical to the correct alignment)

an important question is whether these improved alignments

produce improved 3-dimensional models. To examine this, we

made models from the optimal alignment, the correct, structure-

based alignment and all alignments in each S4 ensemble for each

pair in the data set. The models were then compared to the native

structure using the TM-score [31] with results shown in Figure 4.

It is evident from the figure that many of the models produced by

S4 constitute a significant improvement over the one produced by

dynamic programming. The improvement in model quality is

most dramatic when the model produced by the optimal

alignment is inaccurate. Notably, the best models from S4 are

often quite close to the accuracy of the model from the correct

alignment. The line labeled ‘‘S4 90%’’ represents the 90th

percentile cutoff within each segment, indicating that S4 produced

a model for 10% of the pairs that was as accurate as possible, i.e.,

as good as the model produced by the correct, structure-based

alignment.

Figure 4 also shows that evaluating models can significantly

reduce the number of models that need to be considered. ‘‘S4 100

(pG)’’ represents the best model of the 100 top-ranked models in

the ensemble as determined by the pG score. The proximity of this

Figure 2. Accuracy of S4 compared to optimal DP-based
alignments. For each query/template pair in our benchmark set, we
plot two points: one representing the accuracy of the alignment
generated by a DP-based method (black squares) and one representing
the accuracy of the best alignment from an ensemble generated by S4
(green diamonds and red triangles). Accuracy is calculated using ‘‘inter-
alignment distance’’ (IAD, y-axis) from the correct, structure-based
sequence alignment and the query/template pairs are ordered along
the x-axis according to IAD of the DP-based alignment (lower IAD
implies higher accuracy). We take the best S4 alignment from two
different ensembles and compare to three DP-based methods indicated
in each graph (e.g., the graph labeled ‘‘hhalign vs. S4 1000’’ compares
hhalign to the best S4 alignment from an ensemble of 1000 and ‘‘SP3
vs. S4 100’’ compares SP3 to the best S4 alignment from an ensemble
of 100, etc.) The green diamonds represent query/template pairs where
the template was identified by the DP-based method. Red triangles
represent those pairs where the template could only be found by
structural comparison to the native structure. Each graph contains data
only for those query/template pairs for which an alignment could be
generated by the DP-based method (3,343 pairs for HMAP, 2,952 for
hhalign and 1,654 for SP3).
doi:10.1371/journal.pcbi.1002175.g002
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Table 1. Accuracy of S4 alignments at different levels of sequence identity.

Average IAD

ID Range (%) # Pairs S4 1000 S4 100 HMAP

0–5 567 2.3 4.3 13.6

5–10 1460 1.5 2.3 6.2

10–15 585 0.9 1.0 1.9

15–20 275 0.5 0.5 0.7

20–30 167 0.4 0.4 0.4

30–50 84 0.3 0.3 0.3

ID Range (%) # Pairs S4 1000 S4 100 hhalign

0–5 507 2.2 4.1 11.8

5–10 1273 1.5 2.1 6.2

10–15 629 0.9 1.0 2.6

15–20 314 0.5 0.5 1.2

20–30 160 0.3 0.4 0.6

30–50 76 0.3 0.3 0.3

ID Range (%) # Pairs S4 1000 S4 100 SP3

0–5 271 2.4 4.8 15.7

5–10 701 1.5 2.3 7.0

10–15 370 0.9 1.1 2.1

15–20 183 0.5 0.5 0.6

20–30 96 0.3 0.3 0.3

30–50 36 0.3 0.3 0.3

The average accuracy of S4 alignments compared to the DP-based optimal alignment programs HMAP, hhalign, and SP3, measured using inter-alignment distance
(IAD). The IAD for S4 is based on the best available in an ensemble of either 1,000 or 100 alignments.
doi:10.1371/journal.pcbi.1002175.t001

Figure 3. Accuracy of S4 compared to other suboptimal alignment methods. The graphs compare S4 to two versions of a DP-based
suboptimal alignment method (see Materials and Methods). In the first panel, the query/template pairs are grouped based on the FDS2 of the
optimal alignment (0.0–0.1, 0.1–0.2 … 0.9–1.0), and in the second panel the groupings reflect the sequence identity of the pair (0–5%, 5–10% … 30–
40%, 40–50%). In these graphs, a higher FDS2 correlates with a more accurate model. The data points represent the average FDS2 over all pairs in
each group, plotted as a function of the IAD of the optimal alignment. The averages are based on the best alignment in the ensemble generated by
each method for a query/template pair. For S4, we examined the different ensemble sizes given in the inset legend and used an ensemble of 1,000
for the Waterman based approaches.
doi:10.1371/journal.pcbi.1002175.g003
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line to ‘‘S4 1000’’ demonstrates that the pG score consistently

ranks the best model from the entire ensemble in the top 100. It is

important to be able to reduce the ensemble size in this manner

without removing the best models, if further processing of the

models is to be carried out (i.e., refinement, minimization, etc.)

Sampling of alignment space
Since they use the same scoring function, the improved

performance of S4 compared to HMAP seen in Figure 3 is not

due to better scoring, but to a broader sampling of alignment space

while also avoiding regions that would produce poor alignments.

The latter feature is achieved with the rules and filters discussed in

Materials and Methods. The ability of S4 to sample broadly

should manifest itself in greater sampling at both the residue and

whole alignment levels. Indeed, in Figure 5A, we see that S4

samples 3–5 times as many different query residues at each

template position compared to the DP-based methods with the

same ensemble size.

In Figure 5B, we choose the structure-based sequence

alignment as a reference and report the standard deviation of

the IAD for all alignments in an ensemble. A low standard

deviation indicates that many of the alignments in the ensemble

are clustered around a particular distance from the correct

alignment, which implies that they are in a narrow region of

alignment space. For DP-based methods that region will be

centered on the optimal alignment (see Discussion below). We see

in Figure 5B that S4 samples broadly within its small ensemble,

but can still return an alignment closer to the correct alignment

than the DP-based methods (see Figure 3).

Discussion

A specific example illustrates S4’s approach to sampling

alignment space. Figure 6 depicts a query/template structure

alignment along with a listing of their respective SSEs and several

ways they are matched in the alignments produced by different

methods. The query is the N-terminal domain of KaiA, a non-

enzyme circadian clock protein [37] and the template is a single

domain of DXR, which is a reductoisomerase [38]. The two

proteins are classified as belonging to different folds in SCOP [39]

and have less than 2% sequence identity.

Despite being classified as different folds, these two proteins

have high overall structural similarity and thus an alignment exists

that would generate an accurate model. The structural alignment

for this pair describes the proper correspondence of all eight of the

SSEs that are common between the template and query, as

depicted in the first two rows of the alignment shown in Figure 6.

The DP-based optimal alignment contains major flaws and only

four out of eight SSEs are in proper correspondence. The poor

performance of the DP-based approach is due more to issues with

sampling alignment space than to the absence of a detectible

Figure 4. Comparison of model quality. The data set was divided
into nine groups based on the quality (as measured by TM-score) of the
model from the optimal alignment. The divisions between groups were
0.0–0.2, 0.2–0.3, 0.3–0.4 … 0.9–1.0. The data points represent the
average TM-score over all pairs in each group and are plotted as a
function of the TM-score of the model based on the optimal alignment.
‘‘S4 1000’’ shows the average TM-score of the best models in the
ensemble for each pair. ‘‘S4 100 (pG)’’ is the best out of the 100 models
in the ensemble with the highest model evaluation scores. ‘‘S4 90%’’
depicts the 90th percentile of the best S4 models within each group.
That is, for 10% of the pairs in each group, S4 produced ensembles in
which the best model had a TM-score above the point on ‘‘S4 90%’’.
doi:10.1371/journal.pcbi.1002175.g004

Figure 5. Diversity of alignments in the S4 ensemble. In the top
panel we plot on the vertical axis the number of unique query residues
sampled at each template residue position in the S4, unconstrained
Waterman and constrained Waterman alignment ensembles. For
comparison, the optimal alignment sampling, which is necessarily at
most one query position per template residue, is also shown. In the
bottom panel, we instead plot the standard deviation of the IAD from
the correct alignment for each ensemble. A greater standard deviation
implies a larger portion of alignment space sampled. In both graphs,
the data points represent averages for query/template pairs grouped
on the horizontal axis according to sequence identity as in Figure 3. The
different ensemble sizes used for S4 are shown in the inset legend and
an ensemble size of 1,000 was used for the Waterman based
approaches.
doi:10.1371/journal.pcbi.1002175.g005
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sequence relationship between the two proteins. In fact, the eight

fragments representing correct correspondences of query and

template SSEs were all highly-ranked fragments (or ‘‘primary’’

fragments, in the terminology used in Materials and Methods) as

determined by the same HMAP scoring function. All eight correct

fragments were chosen within the first 58 (out of a total of 122

used). This local similarity between the profiles is consistent with

other local structural, functional and sequence similarities that

have recently been described between proteins that have

significantly different topologies [40,41].

Overall, out of an ensemble of 1,000 alignments, the best

alignment from S4 has an IAD of 0.56 and an FDS2 of 97%

compared to the correct alignment and the TM-score of the

corresponding model is 0.50 (compared to a TM-score of 0.57 for

the model built from the structure-based alignment). In contrast,

the best alignment generated by the constrained Waterman

approach (out of an ensemble of 1,000) had an IAD of 15.4. That

the improvement in accuracy of S4 is due to differences in

sampling can clearly be seen by calculating average IADs of the

alignments in each ensemble, but here with respect to the DP-

based optimal alignment instead of the correct alignment. The

constrained Waterman approach is ‘‘trapped’’ near this incorrect

alignment (average IAD of 0.3 and standard deviation of 0.8).

Even though S4 samples the DP-based optimal alignment, it also

searches far from this alignment (average IAD of 9.4, standard

deviation of 4.6, and a maximum IAD of 25.4).

Though we have shown that S4 generates accurate alignments

to almost every template appropriate for a given query sequence,

we have not discussed how to identify these templates or how to

select the correct alignment from the S4 ensemble. However, the

results shown in Figure 2 suggest that S4 can be a valuable

component of currently used homology modeling strategies. That

is, based on the results in Figure 2, most of the appropriate

templates that we identify based only on structural similarity to the

native structure are recognized as significant using the scoring

function associated with the different methods we compare to in

the figure. But for a significant majority of these templates an

accurate alignment is not possible, at least considering a single

alignment generated based on the techniques and information

used in the different alignment strategies. This severely limits the

number of templates which can be considered useful even if they

are recognized.

By building models from templates selected by other methods,

but based on alignments generated by S4, these templates can be

exploited assuming an accurate model evaluation procedure can

be applied. There is a wide array of such tools that range from

measures of the suitability for residues to be in a given

environment (e.g., Verify3D [42]), to statistical potentials such as

D-FIRE, Prosa, or Anolea [43], to all-atom molecular dynamic

simulations to estimate the thermodynamic stability of the model

(GROMOS [44]). The choice of the best method of evaluation is a

complicated one and goes beyond the scope of the current paper

where we have focused on S4 as an alignment tool. Nevertheless,

for a third of the cases used in our benchmarking, the model with

the lowest pG score differs negligibly from the best possible model

available from the ensemble (i.e., the best model and the model

selected based on pG have TM-scores with respect to the native

structure that are within 0.05 of each other). Further, it has been

shown that construction of 3D models followed by evaluation

using a statistical potential can be used to distinguish true from

false homologs when the sequence relationship is ambiguous

[35,45]. These results suggest that more accurate alignments

obtained using S4 should significantly expand the number of good

templates and models that can be found.

Since S4 produces accurate alignments in nearly every case

where there is a structural similarity that leads to an accurate

model, this suggests that, using a model-building and evaluation

procedure, templates with scores that are outside the range of what

is usually considered significant for a particular method could also

be identified. Using the widely used tool PSI-BLAST as an

example, about half of the templates in our data set were identified

as significant (where we define this loosely as E-value,10). As

shown in Table 2, in these cases S4 can generate more accurate

alignments, in terms of the FDS2 score, than PSI-BLAST. Even

for those templates with E-values that are not typically considered

useful, (1023,E-value,10), S4 is able to find an alignment that is

more than twice as accurate and S4’s performance decreases only

slightly among the pairs that are not detected at all by PSI-

BLAST, which comprise over half the benchmark set. The results

shown in Figure 2 indicate that the same conclusion holds no

matter what the method used to identify templates. Moreover,

preliminary work using a protocol in which templates are selected

by PSI-BLAST, models are built from every alignment in the S4

ensemble and evaluated using the pG score as well as other criteria

suggests that good templates in this E-value range can be identified

with high precision.

As shown in Figure 5, the primary difference between S4 and

other alternative alignment methods is the manner in which

alignment space is sampled. The central advantages of S4’s

sampling are that it generates enough diversity in a small ensemble

Figure 6. Example of finding the correct alignment between
remote homologs. Top: The structural alignment of template DXR
(purple) and query KaiA (yellow). Close structural homology clearly
exists among the common portion (four structurally equivalent strands
and four structurally equivalent helices, loops are not represented for
clarity) despite a significant deletion of 4 SSEs in DXR (shown in grey).
Bottom: With helices depicted as rectangles and strands as arrows, the
top two rows depict the correct correspondence of template and query
SSEs based on the structure-based sequence alignment. The next row
shows the same correspondence is found in the best alignment in the
S4 ensemble. The last line shows the optimal alignment which pairs
four SSEs incorrectly.
doi:10.1371/journal.pcbi.1002175.g006
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so that an accurate alignment can be found, while limiting on the

number of potential alignments that need to be considered (,10

million, see Materials and Methods). In contrast, as we show in

Figure 5, DP-based sampling is highly local as a result of the fact

that DP must start with the optimal alignment and successively

generate other alignments in decreasing order based on their

score. This severely limits the amount of diversity that DP can

generate and ensures that many more alignments would need to

be considered (at least an order of magnitude and probably more)

when the DP-based score of the correct alignment is far below the

optimal. A low DP score is typical for the more remote query/

template pairs in our benchmark, since the correct alignments

frequently require long indels or pass through low-scoring regions

of the alignment matrix. Moreover, application of the structural

filters used in S4 would not be expected to improve this situation,

since there are a significant number of inaccurate alignments that

satisfy them. Again, if an inaccurate alignment had a better DP-

score than the correct one, a DP-generated ensemble would be

trapped near the inaccurate alignment, since the local sampling

inherent in DP would most likely not generate alignments that

break the structural rules in any manageably small ensemble.

While it appears necessary based on our results to consider an

ensemble in order to find an accurate alignment, especially for

highly remote query/template pairs, it is clearly beneficial to

consider the optimal alignment as well. As mentioned above, the

optimal DP-based alignment is the most accurate (in an ensemble

of 1,000 S4 alignments and 1 optimal alignment) for many cases in

our benchmark. An ideal modeling strategy then would be one

that generates an ensemble with S4 and simply adds the optimal

alignment to that ensemble. This would ensure the best of both

worlds at no increase in computational cost. Moreover, the S4

algorithm is independent of the underlying residue-residue scoring

function employed. In the work presented here, the HMAP

profile-profile method was used, but the sampling algorithm used

in S4 could be applied using any other residue-residue scoring

function. Therefore, if better scoring functions are available or if

future improvements to scoring functions are able to raise the level

of accuracy of the DP-based methods, S4’s performance using the

same scoring function should improve as well.

Materials and Methods

Template selection for CASP targets
To ensure that a meaningful structural relationship existed

within each query-template pair, several conditions had to be met:

the protein structural distance (PSD) [30] could not exceed 0.5

(corresponding to a maximum RMSD of about 3.5 for aligned

residues); the sequence identity was less than 50%; and a

‘‘pseudomodel’’ of the query built from the aligned portions of

the structure-based sequence alignment and based on the template

structure had to return a TM-score [31] of 0.5 or greater

compared against the native query structure. A pseudomodel is

constructed by simply copying the backbone and Cb coordinates

of residues of the template mutated to the identities of the

corresponding aligned residues in the query (unaligned residues

are ignored). Also, proteins of length greater than 350 residues

were not considered.

The Algorithm: Overview
The S4 algorithm is described in detail as six distinct steps below

(see Figure 1). Overall, the algorithm proceeds as follows. First

(Steps 1 and 2), short ungapped alignments entirely contained

within template SSEs (‘fragments’) are selected based on their

sequence similarity. Any subset of fragments, listed in order from

N to C-terminal, is called a fragment alignment. Next, all fragment

alignments are exhaustively enumerated and those that pass a set

of tests for modelability, are kept. Finally, full alignments are

constructed from fragment alignments. The full alignments are

generated by standard dynamic programming with the constraint

that DP is applied only to a narrow region (defined by the

fragment alignment) of the dynamic program scoring matrix. A

schematic for the different steps in the process is provided in Text

S1, as well as a specific example of how S4’s features lead to

improvement in alignment accuracy.

The Algorithm: Selecting fragments (Steps 1 & 2)
Figure 1 shows a typical dynamic programming matrix with the

query sequence along the side and the template sequence across

the top. The template sequence is divided into columns defined by

its secondary structure elements. A diagonal contained within a

column is called a ‘‘fragment’’ and represents a short ungapped

alignment of the query to the template. To start the alignment

process, an initial set of ‘‘primary’’ fragments is identified as

follows. Each fragment, (i.e., every diagonal in every column) is

examined and is assigned a score that is the sum of the residue-

residue similarity scores of the aligned pairs it contains, calculated

based on the HMAP profiles [10] of the query and template

sequences. The fragment from each column with the highest

normalized score (the profile-profile similarity score divided by the

length of the fragment) is added to the list of ‘‘primary’’ fragments

(black lines in Figure 1). Each template SSE will contain at least

one primary fragment and usually several more.

For every pair of primary fragments we perform a recursive

search for ‘‘secondary’’ fragments to fill in the region defined by

the fragment endpoints, if the fragments in the pair belong to non-

consecutive SSE’s. For example, in Figure 1, two secondary

fragments are chosen for being the highest scoring secondary

fragments that are ‘‘adjacent’’ to primary fragments PF1 and PF2.

(An adjacent fragment is contained in a neighboring SSE and is on

the same or a nearby diagonal.) Other secondary fragments are

chosen by virtue of being high-scoring or in an SSE whose deletion

would violate the alignment rules (e.g., a missing core strand, see

below). This process continues recursively until all regions between

non-consecutive fragments in a subset have been filled in.

The Algorithm: Enumerating and filtering fragment
alignments (Steps 3 & 4)

A ‘‘fragment alignment’’ is a list of primary and secondary

fragments in order from the N- to C-terminal. Two examples of

fragment alignments are shown in Figure 1. The blue and green

Table 2. Accuracy of S4 alignments for templates identified
by PSI-BLAST.

Psi-Blast E-value # Pairs S4 FDS2 (1000) S4 FDS2 (100) Psi FDS2

EV,1026 902 95.6 94.9 83.4

1026,EV,1023 164 92.1 91.4 62.1

1023,EV,10 316 88.8 86.1 41.9

No Hit 1516 82.0 76.0 N/A

Alignment pairs have been separated into three regions: clear homology (E-
value,1026), intermediate homology (1026,E-value,1023), remote homology
(1023,E-value,10) and undetectable homology (template not among PSI-
BLAST hits). A default maximum E-value of 10 was used in PSI-BLAST for all
queries.
doi:10.1371/journal.pcbi.1002175.t002
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lines both run alongside two sets of four fragments (which share a

common first member). Fragment alignments such as these will

later form the basis of full alignments (constructed as described

below).

To enumerate all fragment alignments that are possible within

our set of primary and secondary fragments, S4 connects the N-

terminal pseudo-fragment (upper-left corner of Figure 1) to each

downstream primary fragment (either directly or through

subalignments of secondary fragments). This process progresses

to further downstream fragments until all alignments end at the C-

terminal pseudo-fragment (bottom-right corner of Figure 1). After

any connection between fragments is established, a set of

conditions must be met. If an alignment fails to meet one of these

conditions (described below), the enumeration process is discon-

tinued for that particular path. (Some conditions can only be

applied when the C-terminal is reached). It should be noted the

total number of possible fragment alignment can be calculated

efficiently during the above process, and no new fragments are

added once the total number of alignments exceeds 10 million.

Some of the conditions placed on the fragment alignments are

based on the properties of the alignment itself and some are based

on a 3D pseudomodel of the query. The conditions that must be

met by each alignment/pseudomodel are described below.

Coverage. We are generally not interested in alignments that

pair a very small number of residues. Therefore, only alignments

where at least 10% of the shorter sequence is aligned to the longer

sequence are retained. Since only residues in template SSEs are

counted in S4, this fraction represents a somewhat more stringent

condition than it may initially appear.

Contact order. The contact order for a pseudomodel is

defined here as the percentage of its SSE residues containing a Cb
that lie within 6 Å of a Cb from a residue in a different SSE.

Fragment alignments whose pseudomodel has a contact order less

than 65% of the contact order of the template itself are rejected.

Making this threshold relative to the template ensures that

‘‘extended’’ models will not be built from compact templates,

but if the template itself is extended, the fragment alignment will

be kept.

Strand pairing. There are two general rules governing the

pairing of beta strands in homologous proteins that can be used to

eliminate bad alignments [46]. First, a paired strand in the

template should not become unpaired in the pseudomodel.

Second, a core strand of a beta sheet in the template must be

present in the pseudomodel if its flanking strands are also present.

Loop lengths. Fragment alignments are rejected if there are

not enough residues in the query sequence to bridge the gap

between any two consecutive fragments. Specifically, we require

that 3:3| qf {qp

� �
wd tp,tf

� �
, where qp is the index of the final

query residue of the fragment preceding the loop, qf is the index of

the first query residue following the loop, and d(tp,tf) denotes the

distance (in Å) in the template structure between the Ca atoms of

the corresponding, aligned template residues. The factor of 3.3

was determined by studying a database of several hundred high-

resolution structures. It was found that the maximum distance

traversed by a loop was slightly over 3 Å per residue, which is, of

course, roughly the length of an individual amino acid. We used

3.3 to allow our algorithm to keep some pairings of fragments

whose loops would normally be ‘over-stretched’. The purpose of

this test was to remove only blatantly incorrect fragment pairings,

since loops that were just slightly over-stretched may be fixed when

the full alignment is found in Step 5 of the algorithm.

Three other measures were used to eliminate fragment

alignments that are unlikely to produce good models: preserved

core contacts, query energy and template energy. For an

alignment to be kept, all three of these measures must have values

above the 66th-percentile for each measure and one of these three

values had to surpass the 90th-percentile. The measures are listed

below.

Preserved core contacts. A pair of residues in the template

structure is considered to be a ‘‘core contact’’ if both residues in

the pair are buried (60% or more of surface area inaccessible),

have Cb atoms that are within 6 Å and are both hydrophobic

(amino acid types A, F, G, I, L, M, P, W, V and Y). An alignment

that pairs hydrophobic amino acids in the query with template

residues in a core contact generates a preserved core contact.

Statistical energy of query residues. An implementation

of the DFIRE statistical potential [47] was used to evaluate each

alignment by using the Ca and Cb positions from the template

with the amino acid types of the aligned query residues. A pseudo-

Cb position was determined for glycine residues based on the Cb
position in alanine. Loop residues were not considered in either

the calculation of the statistical energies or in the tabulation of

inter-residue distances that form the basis of this implementation

of DFIRE. The value thus calculated, called the ‘‘query energy’’,

and the proximity of the alignment to the correct one were found

to be highly correlated.

Statistical energy of template residues. Similar to

evaluating the statistical energy of the pseudomodel, we calculate

the energy of the aligned template residues, which we term the

‘‘template energy’’. In effect, this is the statistical energy of a subset

of the template structure. The motivation behind this is to

recognize and remove alignments that pair query residues with an

unlikely combination of template SSEs. This often occurs when

the template is a multi-domain protein and the query is a single

domain. In these cases, the highest scoring fragments may be

spread out across multiple domains of the template in a structure

that does not resemble a folded protein. Calculating this value

allows S4 to eliminate many such alignments.

Redundancy. Lastly, to decrease the redundancy of the final

results, some fragment alignments are removed due to their

similarity to a higher-scoring alignment. Fragment alignments are

considered redundant if they align to the same template SSEs,

have all corresponding fragments within a shift of 4, and an inter-

alignment distance (IAD) of less than 1.

The Algorithm: Constructing full alignments (Steps 5 & 6)
At this stage in the process, no full alignments in the normal

sense have been created, only fragment alignments, which are just

lists of fragments. A round of alignment sampling using the full

sequences of the query and template is used to generate a final

alignment from each fragment alignment. In this final step,

alignments are restricted to a specific region of the dynamic

program matrix. The boundaries of the region extend 3 residues

above and below the fragments in each fragment alignment. The

loop regions are constrained only by the boundaries of the

surrounding fragments (dashed lines in Figure 1). Alignment

sampling is carried out using the constrained Waterman approach.

That is, we apply this algorithm in regions of alignment space that

we expect to be unique based on the structure of the template.

Again, a pseudomodel is constructed for each alignment which is

scored with DFIRE [47] as described above. The alignment with

the best/lowest energy is selected to represent the original

fragment alignment.

The S4 algorithm typically generates thousands of fragment

alignments. A single, full alignment is generated for each one,

starting with the highest-scoring, until N unique alignments have

been found, where N is the ensemble size chosen by the user. The

score of an alignment is simply the sum of the similarity scores of
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the paired residues in the original fragment alignment minus a flat

penalty for each inserted residue. The insertion penalty only

applies to residues inserted between template residues and is

therefore used to encourage insertions at the termini. Deletions are

not penalized since we found that structural considerations

enabled us to disallow unreasonable gaps without an explicit

penalty. A worked example illustrating each step is provided in

Text S1.

Inter-alignment distance (IAD)
We calculate the distance between any two alignments using a

measure similar to the gALD measure developed by Chen and

Kihara [48]. If we plot two alignments of the same two sequences

on the dynamic programming matrix (Figure 1, blue and green

lines) there is a region between them for which we can calculate

the area. Dividing this area by the length of the template yields an

average height of this region, which can be interpreted as the

average distance that a query residue in one alignment is shifted

from its position in the other. This average distance we have

termed the IAD and it should be considered to have units of

residues. This measure is quick to calculate and useful for

determining if two alignments occupy the same region of

alignment space.

The standard DP-based alternative alignment methods
The unconstrained Waterman and constrained Waterman in

Figures 3 and 5 are implementations of the method described by

Waterman. [23]. The ‘‘unconstrained Waterman’’ approach is an

unmodified version of that algorithm that that use the HMAP

scoring function and gap penalty and generates alternate

alignments by allowing the DP procedure to branch to an

alternate path at any point in the DP matrix where doing so will

lead to an alignment with a score within d of optimal. However, in

the constrained Waterman approach, branching to alternate paths

is allowed only when moving between SSE and loop regions (see

Figure S6 in Text S1 for more details). For both methods, it is

impossible to know which value of d will generate an ensemble of a

desired size. To generate the alignments for comparison, we

started with very small values for d and increased it until the

ensemble size exceeded 1000. We then sorted the alignments by

their DP-based score and kept only the top 1000.

Model building and model accuracy
Models were built with the program Nest [29] for all S4

alignments, the optimal HMAP alignment and the correct/

structure-based alignment. TM-score [31] was used to evaluate the

accuracy of the model compared to the native query structure.

Supporting Information

Text S1 Supplemental information for ‘‘Using structure to

explore the sequence alignment space of remote homologs’’.

(DOC)
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