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Abstract

Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor
dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent
approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of
events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional
architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into
functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on
manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be
subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that
sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms
act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales
are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the
context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the
contributions of functional modes and operational signals from the output, which appears to be possible only when
examining the output phase flow (i.e., not from trajectories in phase space or time).
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Introduction

The organization of human function
Human (and animal) function is thought to emerge from the

embedded dynamics of the organism in its natural and social

environment [1,2]. Its phenomenology thus includes overt

behavior (for instance motor behavior) as well as processes

internal to the organism. By implication, human function

comprises multiple interdependent (i.e., coupled) dynamics

operating on a diversity of time scales. The ensemble of dynamics

and interactions amongst them constitutes a functional architec-

ture. A common theme in biology and the life sciences is that

(‘complex’) function is decomposable into elementary functional

units (or building blocks) that can thus be considered as the basic

components of functional architectures. Functional units should

preserve some of their properties invariant among different

utilizations (which identifies them as units). As building blocks,

they are brought into meaningful relationships (such as concate-

nation in time) resulting in longer sequences. Consequently, the

resulting complex processes exhibit a meaningful hierarchical

structure spanning distinct time scales. For instance, movement (or

motor) primitives [3–6] and motor programs [7,8] have been

proposed as building blocks of complex and sequential move-

ments. In birdsong notes and syllables (groups of notes) are

thought to compose hierarchical sets with a crucial role in their

production [9] and perception [10]. ‘Temporal primitives’ have

been linked with related lexical items in speech perception [11]

and are identified elsewhere [12] as ‘‘articulatory gestures that

constitute the phonemic elements of both speech generation and

perception’’ and thus ‘‘the primitives underlying linguistic

communication’’ (p. 188). Cognitive linguistics [13,14] supposes

that language and cognition are based on so-called conceptual

schemas and cognitive mechanisms (as e.g., metaphors and blends

[15,16]) to compose conceptual structures as complex as

mathematics [16]. In all these instances, ongoing cognitive (in its

broadest sense) function results as elementary units are somehow

put into a meaningful relationship.

Two approaches, symbolic computation and connectionism,

have dominated cognitive modeling over the last decades. Both

define static information representations and focus on operations

(‘computation’) for the generation of complex function. Symbolic

computation explicitly represents information in terms of orga-

nized symbols that are combined via syntactic rules [17]. In

connectionist models, parallel computation occurs via patterns of

activation distributed across the network’s nodes [18–20]. Hybrid

cognitive architectures combine symbolic representations with

connectionist learning algorithms [21]. Common to these

approaches is that they define functional units as static patterns

or ‘states’ onto which cognitive architectures converge in the

process of information processing (in this context; the generation of

complex function) [22]. Even when dynamics beyond point

attractors is included (as in recurrent neural networks [23–25]),
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it is usually broken down into a succession of discrete states

(encoding past context) or transients inside a basin of attraction

[25] and treated as such. Identifying functional units as static

patterns or states, however, is clearly at odds with one of the

cornerstones of biology, namely the process. The notion of a

process signifies change; basic functional units should thus contain

temporal evolution.

In the approach below we explicitly focus on the dynamical

phenomenology of human function instead of on computation.

Accordingly, we first propose a general framework in which

functional modes—dynamical building blocks into which processes

are grounded [26]—capture the geometry of elementary process-

es’ dynamics. Functional modes are brought together into

meaningful organizations unfolding in time via a ‘selection’

mechanism that ‘turns processes on and off’. Some functional

modes operate autonomously, while others require that quasi-

instantaneous ‘kicks’ initiate their functioning. Crucially, so-

defined functional architectures embed dynamics that operate on

the time scale of the basic functions (adhering to the functional

modes) as well as a dynamics whose corresponding time scale is

defined over the entire eschewing process (adhering to the

selection mechanism). A third characteristic times scale pertains

to the (typical) involvement of the brief ‘kicks’. In other words, the

architecture comprises a time scale hierarchy. Next, we construct

an autonomous functional architecture providing proof of concept

and illustrating the approach in the context of handwriting. In this

specific realization we implement the time scale hierarchy of the

functional architecture through a Winner-Take-All (WTA)

competition dynamics [27–29] on one level of organization, and

a dynamical sequencing mechanism on another. We want to

stress, however, that while the outline of the functional

architecture is general, the implementation is but one realization

of numerous possible ones.

Functional architectures
The cornerstones of our functional architecture are (i) their

constitution as low-dimensional phase-flow governed spatiotem-

poral patterns (functional modes) describing processes; and (ii) a

hierarchical multi time-scale organization allowing for pattern

competition of the functional modes. Due to a competition of

processes one functional mode dominates during a particular time

window.

The notion that human function emerges in terms of low-

dimensional spatiotemporal dynamic patterns is key to coordi-

nation dynamics [30,31] and, more generally, synergetics [32].

The latter, a physical theory of self-organized pattern formation,

postulates that in the proximity of (pattern) instabilities (brought

about by critical values of control parameters) the dynamics is

separated into fast and slow variables. The fast variables can be

adiabatically eliminated by expressing their dynamics as a

function of their slow counterparts, in which case the former

are ‘enslaved’ by the latter (the ‘slaving principle’). That is,

reduced system descriptions for the collective dynamics (order

parameters) can be derived. Low-dimensional order parameters

thus provide functional representations of high-dimensional

system. Synergetics has been successfully applied to the

perception of ambivalent patterns [33,34] as well as to behavioral

coordination [35]. Coordination dynamics models the dynamical

phenomenology of the emerging patterns in experimental

paradigms of bimanual [36,37], sensorimotor [38], and social

coordination [39], and learning [40] as low-dimensional,

nonlinear dynamical systems via a few (usually one or two) order

parameters (see [30] for an overview).

Consistent therewith, we adopt the notion that human function

is constituted by meaningfully structured low-dimensional pat-

terns, the ‘Structured Flows on Manifolds’ (SFMs; see Figure 1)

[41,42]. Accordingly, during the engagement in a specific

function, the functional dynamics adiabatically collapses from an

inherently high-dimensional space onto a functionally relevant

subset of the phase (state) space, the manifold. On the manifold, a

phase flow is prescribed and a trajectory evolves for the duration of

the functional process. SFMs aim at linking the dynamics of large-

scale brain networks interacting with bodily and environmental

dynamics (high-dimensional systems) to low-dimensional phenom-

enological descriptions of functional (or behavioral) dynamics.

Hence, functional processes are ‘encoded’ in terms of structured

phase flows, mathematical (structured) entities that unambiguously

and quantitatively describe the evolution of autonomous, deter-

ministic, and time-continuous systems in their phase (state) space

(see [43] for an introduction). Phase flows not only encode a

system’s past and future states (given any initial condition and in

the absence of stochastic influences) but also its stability and

response to perturbations. The vector field describing a flow

establishes causal relationships among the system’ states by

assigning at each state a vector determining the next state.

Furthermore, the phase flow topology uniquely determines a

system’s qualitative behaviour, i.e., it encodes the invariant

features of a dynamical process relative to quantitative variation,

thus identifying all functional possibilities within a class in a model-

independent manner. Indeed, structured phase flows (on low-

dimensional manifolds) satisfy the requirement that the dynamics

be meaningfully structured, referred to elsewhere as dynamical

constituency [44]. In planar systems (systems of two dimensions),

common phase flow topologies include point attractors and limit

cycles (commonly used to model discrete and rhythmic functions,

respectively) and separatrices, that is, structures that locally divide

the phase flow into opposing directions, endowing the system with

threshold properties and (potentially) multistability [45]. Such 2-

dimensional flows have led to (confirmed) counter-intuitive

predictions on false starts [46], the discovery of a discontinuity

in Fitts’ law [47], and the establishment of a taxonomy of discrete

and rhythmic movements [48]. For systems of higher (still

relatively low) dimensionality, the dynamic repertoire may contain

Author Summary

In most established approaches to cognitive modelling,
cognitive events are treated as ‘discrete’ states, thus
passing by the continuous nature of cognitive processes.
In contrast, some novel approaches explicitly acknowledge
cognition’s temporal structure but provides no entry
points into cognitive categorization of events and
experiences. We attempt to incorporate both aspects in
a new framework, which departs from the established idea
that complex (human) behaviour is made up of elementary
functional ‘building blocks’, referred to as modes. We
model these as mathematical objects that are inherently
dynamic (i.e., account for change over time). A mechanism
sequentially selects the modes required and binds them
together to compose complex behaviours. These modes
may be subjected to brief inputs. The ensemble of these
three ingredients, which influence one another and
operate on different time scales, constitutes a functional
architecture. We illustrate the architecture via cursive
handwriting simulations, and investigate the possibility of
recovering the contributions of the architecture from the
written word. This appears possible only when focussing
on the dynamic modes.

Organization of Complex Behaviors
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a large variety of functional modes that are in principle adequate

to account for elementary processes.

In summary, phase flows can be viewed as functional units that

incorporate the properties of low-dimensionality, class-defining

invariance together with within-class variation, executive stability

(i.e., performance maintenance in the presence of perturbations),

meaningful structure (dynamical constituency), and composition-

ality (i.e., they can be embedded into a larger functional

organization. We will use the term functional modes to refer to

phase flows incorporating this set of properties, and refer to the

ensemble of modes that an actor has to his/her proposal as the

dynamical repertoire.

The second feature of the functional architecture, i.e., its multi-

time scale character, is founded on the fact that complex processes

arise in an organism-environment context that inherently covers

multiple scales, as the above mentioned examples suggest. Indeed,

multiscale architectures have proven a promising choice to

describe behavioral, cognitive, or brain dynamics [49–53]. Armed

with functional modes as essential building blocks, we propose

additional dynamics (called operational signals) on time scales slower

and faster than that of the modes. The slower process effectively

binds functional modes together into sequences. More precisely, a

given functional mode emerges via a competition process [27–29]

to temporally dominate the functional dynamics, after which it

destabilizes and gives way to another mode. The transient

dynamics between modes can be triggered either by ‘internal’

events (as in pre-constructed sequences) or by ‘external’ ones (such

as perceptual events). The modes’ temporal attractivity guarantees

functional robustness, whereas transitions between modes flexibil-

ity for meaningful changes. Further variability in the functional

dynamics may potentially arise via additional dynamics operating

on times scales faster than (or similar to) that of the modes.

Accordingly, human function is organized in multilevel dynamical

hierarchies.

In sum, functional architectures combine invariant features

(phase flows) with those that vary across distinct instances of a

functional mode’s appearance in an agent’s behavior (via multi-

scale operational signals involved; e.g., due to different contexts).

For instance, syllables are (largely) invariant units but their

embedding in words and phrases depends on context. See [26] for

a classification of operational signals based on time scale hierarchy,

computational evidence for the ‘efficiency’ of composing complex

behaviors out of simpler ones, and functional architectures in

particular.

Figure 1. Multiscale dynamics: slow operational signal and SFM emergence. Panel A: The slow operational signals {jj} converge through a
fast transient to a specific jj node resulting (here) in the emergence of a cylindrical manifold. Panel B: The functional dynamics {ui} collapses fast (also)
onto the manifold where it executes a slow spiral flow. The jj node’s stability is sustained for the duration of the flow execution. Subsequently, the jj

node destabilizes, followed by the related manifold and the dynamics moves away, again through fast transients. The density of data point is
inversely proportional to the time scale of the dynamics.
doi:10.1371/journal.pcbi.1002198.g001
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Functional architectures for serial behavior
We formulate a functional architecture for serial processes (see

[54] for a classic study and [55] for a review), and exemplify it in a

specific implementation for cursive handwriting. Handwriting is a

typical human behavior involving parallel functions that are

related to processing across multiple levels: the linguistic, semantic

or word, graphemic, allographic or letter, and stroke level [56,57].

Observations of a principal periodicity in normal cursive

handwriting of ,5 Hz [58] and a slower one ,1 Hz (3–4

characters) [59] supports the presence of multiple time scales in

cursive handwriting.

As pointed out above, the architecture sequentially ‘selects’

functional modes via a competition process among the slow

operational signals. In our handwriting example, the modes

code for specific characters (or parts thereof). For a word to

arise (functionality), specific modes (characters) have to

dominate the functional dynamics at an appropriate serial

order. We model the serial order behavior using a variation of

Competitive Queuing models (CQ) [60–63], a class of state of

the art models for serial behavior (for a recent review including

behavioral and brain data, see [55]). CQ is based on parallel

representations of learned sequences; at each stage of a given

sequence, the participating elements compete for their activa-

tion following an order of priority. We opted for a CQ variation

as these models allows for competition dynamics, which has

been successfully used in the context of handwriting and related

kinematical phenomena [64]. The CQ is not a defining

ingredient of our architecture, however.

The architecture models the interaction of processes acting

on different time scales. A dynamical repertoire accounts for

the generation of cursively written characters and a slower

competitive dynamics (operating on the word-generation scale)

activates the corresponding modes at appropriate times. These

mechanisms are feedback coupled from the output trajectories

to the slow competition. An additional instantaneous opera-

tional signal, which is (sometimes) used for movement initiation

by providing a meaningful perturbation, is coupled to the

modes’ and competition dynamics. Word generation thus

emerges autonomously from the multi-time scale, high-dimen-

sional system, which is constructed out of simpler constituent

ones.

Below, we present the mathematical formulation of the general

functional architecture (Methods), after which we provide proof of

concept via simulations of a specific architecture generating a

desired cursively written word (Results). Subsequently, we show

how our framework can be used to identify functional units (i.e.,

how to decompose human function into its generating compo-

nents). As will become evident, the latter is not trivial due to the

multi-scale hierarchy generating observable trajectories. By

implication, the slow dynamics is an envelope of the functional

modes’ dynamics, rendering the resulting process non-stationary

[65,66]. The difficulty of the functional decomposition is reflected

in attempts to identify programming units in serial behavior [54],

cursive handwriting, in particular. Based on word presentation –

movement initiation reaction times, movement time scaling

relative to the number of hypothesized units (strokes, letters,

graphemes, or syllables) and their individual movement times,

interletter times, and errors or measures of disfluency, syllables

[67–69], complex graphemes [70] such as digraphs [71], letters

[72,73], and single or pairs of up and/or down strokes [74] have

all been ascribed this role. As we will show, however, the

decomposition into functional units based on the system’

functional output is likely compromised due to the generating

system’ multi-scale character.

Methods

Functional modes
We first briefly review the formulation of Structured Flows on

Manifolds (SFM) [41,42,75,76] which reads

t _uui~{g uif g, sj

� �� �
uizmf uif g, sj

� �� �
_ssj~{sjzh uif g, sj

� �� �
u[RN ,s[RM ,NvvM

ð1Þ

where the so-called ‘smallness’ parameter m is constrained as

0,m,,1, g(.) defines the manifold, f(.) describes the subsequent

flow on it, and h(.) represents the fast dynamics that rapidly

collapses onto the manifold; here and below t is the time constant

of the fast contraction onto the manifold. Due to m being small, the

dynamics collapsing on the manifold is much faster than that

pertaining to the phase flow. The flow is constrained on the

manifold for an appropriate attractive function g(.). Unlike the

center manifold theory [77], which is a local theory valid around

instabilities only, systems of the form of equation (1) need to

contain an inertial manifold [78], a global structure used in the

reduction of infinite dimensional dynamical systems to finite

dimensional spaces. Systems exhibiting inertial manifolds have to

be dealt with on a case-by-case basis. SFM can be generated by

distributed multi-component systems such as networks of firing-

rate neural populations if multiplicative couplings and small

connectivity asymmetries are present [41]. The former provide the

necessary non-linearities whereas the latter allow for the

emergence of the flow on the manifold. Ongoing work [75,76]

attempts to encode SFM into networks of spiking neural

populations.

Here, we consider SFM as the macroscopic functional dynamics

that emerges from interactions in a high-dimensional system (an

agent) under environmental constraints and perturbations. After

adiabatically eliminating the fast variables sj (by solving

sj~h uif g, sj

� �� �
for sj), the dynamics of a functional mode is

described as:

_uui~{g uif g, sj uif gð Þ
� �� �

uizmf uif g, sj uif gð Þ
� �� �

~{g uif gð Þuizmf uif gð Þ

~F uif gð Þ

u[RN ,NvvM

ð2Þ

Thus, we consider a functional mode F({ui}) as a (transiently

emerging) N-dimensional functional dynamics in {ui} space

originating from a ({ui},{si})-space of much higher dimensionality

M.

Multi-scale functional architectures
In its most general formulation, we can describe a functional

architecture through its flow F(.) in phase space potentially

subjected to additional operations (for a detailed treatment see

[26]):

t _uuif g~F uif g,s tð Þð Þ ð3Þ

where {ui} are the system’s state variables and s(t) is a time-

dependent operational signal that, if constant in time ( _ss(t)~0),

renders the process autonomous. In that case, F({ui}) is identified

as the SFM of a particular functional mode. The dynamical

Organization of Complex Behaviors
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repertoire is the set of functional modes available to an agent; it

represents the ensemble of elementary functions that appear in

relatively invariant manner across different instances of the agent’s

behavior. In contrast, the operational signals are task-specific

dynamics that operate upon the modes in a context-dependent

fashion.

Operational signals may evolve on various time scales relative to

the functional modes and can in principle span a continuum of

scales. Let tf = t/m and ts denote the time scales corresponding to

a particular functional mode and operational signal s(t),

respectively. Following [26], we distinguish four different instan-

tiations of time scale separations. In cases in which s(t) acts much

faster than the functional mode (i.e., ts,,tf), s(t) operates (quasi-

instantaneously) upon the mode and we denote it as d(t). In cases

where s(t) acts on a time scale similar to that of the functional

mode (i.e., ts<tf), s(t) may be said to operate the functional mode,

and we write it as g(t). In cases in which s(t) acts much slower than

the functional mode (ts..tf), we write it as j(t). Finally, in cases

in which s(t) can be considered as time-independent (i.e.,

s(t)<constant during the process; i.e., tsR‘), the mode is

autonomous.

Functional modes (F({ui})) and operational signals (j(t), d(t))

compose functional architectures in the spirit of physics of pattern

formation [28,32], where spatiotemporal patterns are expressed as

a linear combination of a few dominating modes. The critical and

novel concept we introduce here is that the modes correspond to

elementary processes (expressed as SFM) rather than static spatial

patterns. Thus, at each moment in time, the expressed phase flow

is given as a linear combination of all functional modes available in

an agent’s dynamical repertoire:

t _uuif g~F uif g,tð Þ~
X

j

jj tð Þ
�� ��Fj uif gð Þz di tð Þf g ð4Þ

where {ui} are the state variables and Fj(.) is the j-th mode. jj acts

as a weighting coefficient for the j-th mode, is constrained to

positive values, and operates on a slower time scale than that of the

functional modes (even though transitions between modes

involving fast contraction on the respective manifold are fast).

That is, {jj} ‘select’ a particular mode Fj during its activation

phase (when jj = 1 and all other {jk} = 0, for k?j). Figure 1

sketches the resulting multi-scale dynamics as the transient

emergence of a spirally structured flow on a cylindrical manifold

for the time that the {jj} dynamics stays in the neighborhood of a

particular node.

Recall, next to the slow dynamics that changes the (expressed)

flow topology, the architecture provides for the optional

involvement of the instantaneous operational signal {di(t)} that

does not affect the flow and that acts as a functionally meaningful

(context-specific) perturbation. For example, the {di(t)} can move

the system beyond a threshold (separatrix) and initiate a significant

change in the trajectory’s evolution. To reiterate, the ensemble of

subsystems (Fj({ui}), jj,{di(t)}) operating on distinct time scales

(td,,tf,,tj) constitutes the functional architecture as summa-

rized in Figure 2. In the following sections we provide an

illustration of how the {jj} dynamics can be designed to organize

functional modes so that more complex functions emerge, in

particularly serial order behavior.

Functional mode competition
We require that the modes’ activations do not overlap and

implement a ‘Winner-Take-All competition’ (WTA) for the {jj}

dynamics:

tc
_jjj~ Lj{Cj

XN

k

j2
k

 !
jj

Lj§0,Cjw0

ð5Þ

where tc is a time constant ensuring that the competition evolves

fast, The competition evolves among modes with Lj.0, and its

outcome is determined by parameters {Cj} and {Lj}: the

‘winning’ jj is the one with L
C

� �
j
~ max

k

L
C

� �
k

n o
. The competition

dynamics has one unstable node at the origin, one point

attractor (the ‘winner’) at j�j ~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj

�
Cj

q	 

,j�k=j~0

	 

, all other

equilibrium points being saddles nodes (constraining the

dynamics for {jj}.0). (For a linear stability analysis of all

equilibrium points of this system, see Text S1; for the phase

space of a 2-dimensional WTA competition, see Figure S1

Supporting Information.) Thus, functional modes are organized

via mutual competitive interactions. Such a functional mode

decomposition based on a competition scheme follows previous

work on the Synergetic Computer [28], and is well established

in the literature of biological competition [27]. An alternative to

the WTA competition could be the winner-less competition

based on transient heteroclinic sequences [52,53], as also used

in [75].

Serial order dynamics
In order to model serial order, suitable dynamics has to be

designed so as to activate the appropriate functional modes

sequentially with the correct timing. Our here chosen implemen-

tation is inspired by Competitive Queuing models of serial

behavior [60–63] that combine parallel representations of

alternative ‘action plans’ with a competition process that selects

the action to be executed next. The competition is due to lateral

inhibition among the candidate actions; the order of activation

depends on a so-called primacy gradient (i.e., a gradient of

excitation across the sequence’s elements). Every executed action is

via inhibitory feedback excluded from the competition for the

remaining of the sequence. Accordingly, in our implementation, at

each stage of the sequence, the functional modes compete (via the

{ji}), one of them wins, dominates the output dynamics for the

duration of its activation and is subsequently inhibited, after which

the competition continues among the remaining available modes.

Equation (5) implements the competition among modes by means

of mutual inhibition. The order of activation depends on the {Cj}

parameters (the primacy gradient in this case); Lj.0 is the

condition for mode j to take part at a specific competition round.

Thus, parallel representations of the sequence (encoded in the

arrays of {Cj} parameters) are combined with serial processes of

WTA competition. The timely inhibition of an active mode is

achieved through a ‘bottom-up’ coupling (feedback) from the

output {ui} to the slow operational signal: _jjj~f
j

j Lj uif gð Þ,
�

Cj uif gð ÞÞ~f
j

j uif gð Þ.
Here we describe this bottom-up feedback in detail. We

introduce the index j[JK ’vK , indicating the specific order of the

sequence, starting with mode j = 1 and terminating at j = K9, while

running among the K9 modes (out of a repertoire of K modes in

total) that participate in a sequence J. The feedback is mediated by

a 2-dimensional differential equation per functional mode of J
(variables {nj} and {lj}, respectively; see below). First, {ui(t)} is

slowly integrated, ‘informing’ the competition dynamics about the

course of execution of a particular mode j via the linear differential

equation:

Organization of Complex Behaviors
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tn _nnj~{kexc
j Fexc lK ’ð Þnjzkinh

j Finh uif g,jj , lj

� �� �
ð6Þ

where tn is the time constant and kj
exc and kj

inh are time scale

parameters. Finh(.) and Fexc(.) are feedback functions, inhibitory and

excitatory, respectively. Finh(.) results in the slow increment of the

‘feedback integrating’ variable nj while mode j is being executed,

whereas Fexc(.) resets nj to 0 when the sequence is completed (or

equivalently, when the last mode K9 has been executed). Second,

the slow integration above triggers fast transitions of the ‘switching’

variables {lj}:

tl
_llj~{lj l2

j {1
	 


l2
j {S nj

� �	 

z

0:001sign lj

� �
S nj

� ��� ��{1
{ S nj

� �
{1

�� ��{1
	 
 ð7Þ

where tl is the time constant, S(nj) is a sigmoidal function

‘sharpening’ the effect of nj and limiting it to the interval [0,1],

and sign(.) returns the sign of its argument. lj transits fast to a

point attractor at lj = 0 when S(nj) R1 and, inversely to a point

attractor with |lj| = 1 when S(nj) R0. For intermediate values of

S(nj) (far from 0 and 1) the system is bistable; the above transitions

are thus characterized by hysteresis. (For more details on the

dependence of the phase space structure of equation (7) on

parameter S(nj) as well as the functional forms of the feedback

functions Finh(.), Fexc(.) ,and the sigmoidal S(.), see Text S1 as well

as Figure S2 of the Supporting Information) Finally, {lj} are

inserted into the competition equation (5) determining, as

mentioned above, the availability of a functional mode to

participate in the competition (or inversely its inhibition) via

parameters {Lj} as well as the outcome of the competition via

parameters {Cj}. The Ls transit fast between values 0 and 1

following:

Lj lj

� �� �
~

P
K ’

k~j
lkj j,j,k[J

1,k=[J

8<
: ð8Þ

Thus, a functional mode j participates in the competition (Lj = 1)

when neither j nor any of the subsequent modes in the sequence

are inhibited. The modes that do not form part of sequence J still

take part in the competition (Lk=[J~1) but fail short due to their

low {Cj} activations. The {Cj} transit fast to C0 (and vice versa)

from a value greater than C0 according to:

Figure 2. Functional modes and architecture overview. Interactions among functional modes Fj({ui}) result in one of them dominating the
output of the functional architecture for a period of time followed by the domination of another one via a fast transient. Three modes (associated
with different colors) of the available dynamic repertoire are shown. They all correspond to 2-dimensional phase flows on an ellipsoid manifold. Blue
represents a monostable phase flow, magenta a limit cycle flow, and green a bistable flow. Their vector field and a set of characteristic trajectories
starting from different initial conditions (small asterisks) are shown. The modes’ mutual interactions are depicted as bidirectional couplings (arrows)
among their associated weighting coefficients {jj(t)} (with which they have a multiplicative relationship). The resulting expressed phase flow F({ui},t)
(shown as a trajectory in the phase space and time) results from their linear combination at each time moment, while {ui(t)} is the respective time
series. {jj(t)} play the role of a slow operating signal (with respect to the inherent time scale of the functional modes, i.e., tj..tf). Finally, an
instantaneous (td,,tf) operational signal {di(t)} (in red) may have an additive contribution to F({ui},t), acting like a meaningful perturbation.
doi:10.1371/journal.pcbi.1002198.g002

Organization of Complex Behaviors

PLoS Computational Biology | www.ploscompbiol.org 6 September 2011 | Volume 7 | Issue 9 | e1002198



Cj lj
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~C0z

Pj{1

k~1

lkj j,C1~C0,j,k[J

CkwwC0,k=[J

8><
>: ð9Þ

Since Lj = 1 for all modes participating in the competition,

the winner j at each time moment is the one with Cj~

min
k

Ckf g~C0.

In sum, the transitions of {lj}, {Lj} and {Cj}, occurring due to

feedback from the output, affect (the outcome of) the {jj}

competition, which in turn selects a different functional mode to

dominate the architecture’s dynamics at each stage of the

sequence. In fact, as the different ingredients of the functional

architecture are intricately coupled in various ways, the {jj}

competition is effectively influenced by all the relevant variables

constituting the architecture. As for the characteristic time scales of

each one of these variables and parameters, {nj} integrate the

output at a time scale much slower than the one of functional

modes (tv..tf), whereas the transitions of {lj}, {Lj} and {Cj}, as

well as the evolution of ‘individual competition rounds’ are fast

(tl,tc,,tf). The transition times notwithstanding, during the

execution of a particular functional mode the corresponding

variables and parameters remain relatively constant. Indeed, the

resulting trajectory of the {jj} dynamics, which passes sequentially

from the neighborhood of each mode of the sequence (where it

dwells for a long time during a mode’ activation), exhibits a time

structure that is defined across the entire sequence. As such, the

effective time scale that determines the serial dynamics (referred to

as tj above) is slow, following approximately the time scale (tn) of

the integration in equation (6) (tj<tv..tf). A glossary of all

variables and parameters, as well as the time constants (as used in

the simulations) rendering the architecture time scale hierarchical

can be found in Table 1.

Implementation of cursive handwriting
As proof of concept we demonstrate the application of the

functional architecture via a typical example of serial motor

behavior, namely cursive handwriting. Here, the state variables

are (x,y,z), whereas a repertoire of K = 37 functional modes is used

implementing characters (or parts thereof) modeled as 3-

dimensional SFMs. Please note that in choosing K = 37, the

dynamical repertoire is much larger than the number of modes

required to establish the task required (see below), as is typically

the case. The manifold, the surface of a cylinder with an ellipsoid

basis where dynamics unfolds along the x-axis, is chosen to be

common for all characters (for implementation reasons but

without loss of generality). Thus, the form of the functional

dynamics (exemplifying equations (2) and (4)) is:

t _xx~Fx y,zð Þ~m
XK

j

jj

�� ��f j
x y,t{1Fy y,zð Þ
� �� �

t _yy~Fy y,zð Þ~

XK

j

jj

�� �� r2
j { y{cj

� �2
{4z2

	 
 y{cj

� �
r2

j

" #)
fast transient to manifold

zm
XK

j
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�� �� z{
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� �
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y{cj{rj

� �
y{cjzrj

� �
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phase flow

zdy y,z,Fy,Fz,
XK{2
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XK

j
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phase flow
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j

jj

�� �� ! !)
instant operational signal
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where ri is the radius and ci the center of the manifold. y and z obey

Excitator-like dynamics [45] (except for two auxiliary linear point

attractor phase flows) that has been proposed as a unifying

framework for rhythmic and discrete movements. Depending on

whether fz
lc y,zð Þ~{mlc

e y{cj

� �
, fz

mn y,zð Þ~{mmn
e y{cj+rj

� �
, or

fz
bi y,zð Þ~{mbi

e z, the system exhibits a limit cycle (rhythmic

behavior), a point attractor with a separatrix (monostable system

with threshold properties), or two point attractors with a separatrix

between them (bistable system), respectively. The smallness

parameter m provides the time scale separation responsible for

the fast contraction on the manifold, while a second parameter

me
lc/mn/bi, guarantees the time scale separation that is necessary for

the threshold properties of Excitator phase flows. The form of fx
j(.)

yields the desired letter shapes. The modeling strategy consists in

modulating the velocity on the x-axis relative to the one on the y-

axis, according to the direction of velocity and the position of y, by

means of sigmoidal functions (see Supporting Information Text S1

for detail; Table S1 for parameter values). Finally, the functional

mode dynamics (properly scaled and positioned via rj and cj,

Table 1. Variables, parameters and time scale hierarchy.

Variables Parameters Time constants Time scale hierarchy

Functional modes functional dynamics {ui} m = 0.1, me
lc = 0.60,

me
mn = 0.15, me

bi = 0.45

t = 0.1, tf = t/m tf = 1

Operational signals instant ‘kicks’ {di} - td = 0.1tf td = 0.1

WTA competition {jj} competition parameters {Lj}, {Cj} tc = 0.1

Serial dynamics output integration {nj} feedback functions Fj
inh(.), Fexc(.) tv = 10tf = 10 tj<10 (tj<tv)

switching {lj} sigmoidal function S(.) tl = 0.1

Table 1 summarizes the state variables and parameters that form the functional architecture as well as the time constants that generate the characteristic time scale
hierarchy. All time constants scale with the time constant of the fast contraction onto the manifold t.
doi:10.1371/journal.pcbi.1002198.t001
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respectively) drives the dynamics on the handwriting workspace

(i.e., the xy-plane).

The dynamics of dy,z is a function of (y,z), (Fy, Fz) as well as

of{jj}. Its implementation is based on firing a d-‘kick’ when the

system approaches a point attractor (see Supporting Information

Text S1 for the generation mechanism). Together with fj({ui}),

they render the functional architecture autonomous (Figure 3

illustrates the couplings among the components of the architec-

ture). The joined contributions of dynamics faster (the {di(t)}

‘kicks’ and {jj} transitions) and slower (overall {ji(t)} dynamics)

than the functional modes constitute a time scale hierarchy (see

Table 1).

Simulations and calculation of phase flow variability
among trials

The functional architecture is simulated using the Euler-

Maruyama method with a fixed time step [79] and normally

distributed noise with zero mean and standard deviation s. The

code is implemented using GNU Scientific Library (GSL) [80] C-

code integrated with MATLAB. Noise has an additive contribu-

tion to the deterministic dynamics and ensures the robustness of

the output by facilitating transitions upon destabilization of a

previously stable mode to the next one. Although the effect of

noise was not studied systematically, we would like to emphasize

that the timing of the transitions depends on feedback rather than

on random fluctuations for intermediate amounts of noise, and is

thus adequately robust. The parameters were not systematically

regulated so as to optimize the output dynamics (a short trial-and-

error process was carried out based on visual inspection of the

output). The parameters to simulate the word ‘flow’ presented in

the Results were set as follows: noise standard deviation s = 0.001,

kj
inh = [6,12,5,5,2.67,6], and kj

exc = [12,11,10,9,8,7] for each mode

in the sequence, respectively The initial conditions for the

functional mode dynamics were x0 = 0, y0 = 0.1, and z0 = 20.1,

while those of {nj}, {lj}, and {jj} where chosen randomly from a

uniform distribution in the interval [0,1] for {nj} and {lj}, and

[0,1/K] for {jj}.

With regards to the analysis of simulated data, the word ‘view’

was generated in 100 trials with either the same initial conditions

or with initial conditions drawn from a small neighborhood of the

phase space with a uniform distribution. All trials where integrated

for the same time duration and sampled with the same frequency

resulting into data sets with an equal number of data points.

For the analysis, the mean and standard deviation of y(t), z(t),

dy(t)//dt, dz(t)//dt {jj(t)}, dy(t) and dz(t) were calculated for all trials

across each time point, referred to as mean and standard deviation

time series, and denoted as wm(t) and ws(t) respectively (where ‘w’

may be y, z, dy/dt, dz/dt jj, dy or dz). (x was excluded from this

analysis because it does not provide any relevant information

about the functional modes phase space geometry since

Fx,y,z uif gð Þ~Fx,y,z y,zð Þ is not a function of x). The mean time

series was used as a guide in order to estimate the phase space

trajectories as well as the flow as follows: For each trial and each

time point of the mean time series ym(t) and zm(t) (excluding short

segments at the beginning and end of the data sets), we searched

for the nearest neighbor of (the mean of) y and z in phase space

Figure 3. Interactions among the functional architecture’s components. The functional dynamics F({ui},{jj},{di}) is fed back to the slow serial
dynamics by means of inhibitory feedback, Finh({ui},jj,{lj}), and is integrated by the feedback integrating variable vj. vj causes timely fast transitions to
the ‘switching’ variable lj to which it is coupled via the sigmoidal function S(vj) and excitatory feedback Fexc(lK’). ls regulate the WTA competition of
the {jj} (via Lj({lj}) and Cj({lj})) that determine which functional mode will dominate the expressed phase flow F({ui},{jj},{di}) at each time moment. The
instantaneous operational signal {di({ui},{jj})} also receives feedback from output {ui} and is also coupled to the {jj}. Thus, the whole functional
architecture becomes an autonomous system. (The index j[JK ’vK runs among the K9 modes that participate in a sequence J out of a repertoire of K
modes, and also indicates the specific order of the sequence, i.e., the sequence starts with mode with j = 1 and terminates with j = K9. The index i runs
among the dimensions of the state variables).
doi:10.1371/journal.pcbi.1002198.g003
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(i.e., the one with the minimum Euclidian distance) in a time

window of Tw = 300 time points (smaller than half a movement

cycle) centered around that time point. Thus, the trials’ data sets

were rearranged such that their corresponding data points were as

close as possible in the y-z phase plane. Next, the remaining

variables of the data sets (dy/dt, dz/dt,{jj}, dy and dz) were

rearranged accordingly so as to correspond to the related (y, z)

point. We then calculated the mean and standard deviation of the

rearranged y, z, dy/dt, dz/dt, {jj}, dy and dz datasets across all trials

at each data point, denoted as wm and ws respectively (again, ‘w’

may be y, z, dy/dt, dz/dt jj, dy or dz). Notice that dy/dt and dz/dt,

calculated at intermediate steps of the integration algorithm, can

only approximate the deterministic phase flow as they contain the

additive stochastic contribution of noise to the dynamics, and that

the approximation of the integration algorithm is better for choices

of smaller time steps dt.

Results

Simulation of the functional architecture
In the following we provide proof of concept that complex

functions can be composed of elementary processes organized in

an autonomous hierarchy. In the corresponding cursive handwrit-

ing illustration, a word is generated via functional modes, each of

which ’’writes’’ a character. In other words, functional modes do

not code for the individual characters, but rather for the processes

involved in generating them. This subtle but fundamental

differentiation characterizes our approach towards the emergence

of functional dynamics. To be concrete, Figure 4 presents the

simulation of the word ‘flow’; it shows the output dynamics and

operational signals involved (panel A), and the feedback from the

output dynamics to the slow sequential {jj} (panel B). Four

principal functional modes were used, one for each character: ‘f’,

’l’ and ‘o’ are implemented using monostable phase flows requiring

one d-‘kick’ for the initiation of each movement cycle [45],

whereas ‘w’ is implemented as a limit cycle phase flow (no external

timing is required). Two auxiliary (linear fixed point) phase flows

are used at the beginning and end of the sequence setting

appropriate initial and final conditions. The word is robustly

generated repeatedly thrice after a short initial transient due to the

random initial conditions.

Notice in particular how Figure 4 illustrates the distinct time

scales of the interacting processes: As can be seen in Panel A, the

main time scale of the output dynamics pertains to a movement

cycle even though a longer (slower) time structure (at the word

scale) is present also. This slow time scale dominates the {jj}

dynamics. In contrast, dy,z is much faster than the output. (See

Figure S3, Supporting Information for the generation of dy,z). In

Panel B, the inhibitory feedback Finh
j can be seen to evolve at the

(main) time scale of the output, whereas the feedback integrating

variables vj, the absolute values of the ‘switching’ variables {lj} as

well as the WTA competition parameters {Cj} and {Lj} are slower

(except for fast transitions).

Class invariance and quantitative variations of functional
modes

As mentioned in the Introduction, phase flow topologies provide

the means to classify functional modes, and allow for quantitative

variation under qualitative invariance. In order to demonstrate

this feature, here exemplified by scaling a functional mode’s phase

flow with respect to the radius of the manifold (or movement

amplitude), we doubled the manifold’s radius of character ‘w’ is

(default r = 1) to r = 2, and halved it to r = 0.5. All dynamical

properties of the output, captured by the shape of its time series,

remain invariant (see Figure 5). This scaling of movement velocity

with movement amplitude illustrates the so-called isochrony

principle [81], which is a well-documented phenomenon in motor

behavior and handwriting, in particular.

Identifying functional modes and operational signals
We next investigate if and how complex processes arising in

functional architectures can be decomposed into their dynamical

components. Recall, the presence of multiple time scales [65,66]

and nonlinearities render this problem far from trivial. As outlined

in the Introduction, this difficulty is evident in the quest for

programming units of handwriting, and reflected in the numerous

different proposals thereto [67–74]. Under the assumption that

complex processes are composed of invariant functional modes

(except for transitions) and context-specific operational signals, one

would expect locally increased variability among trials’ observable

trajectories (i.e., pertaining to the functional modes) where

operational signals become effective. Moreover, if these opera-

tional signals induce transitions between modes and/or introduce

meaningful perturbations, these segments of increased variability

should generally be of a shorter duration than the characteristic

time scale of functional modes. We tested if these two predictions

can be used to separate the effects of operational signals on the

architecture’s output from the functional mode dynamics, in order

to isolate and identify the latter.

Thereto, 100 trials of the word ‘view’ were generated. Its

dynamics is composed of functional modes based on a monostable

phase flow with the point attractor at the position (y*,z*) = (2,0)

(character ‘v’), a bistable phase flow with point attractors at

positions (y*,z*) = (0,0) and (y*,z*) = (2,0) (character ‘i’), another

monostable flow with the point attractor at position (y*,z*) = (0,0)

(character ‘e’), and a limit cycle phase flow (character ‘w’) [45].

Regarding transitions in the corresponding phase space structure,

it should be noted that no topological changes (locally around the

point attractor) are present in the first and second transition (only

quantitative variation occurs), while, in contrast, in the third

transition a point attractor destabilizes via a Hopf bifurcation [43]

giving rise to a limit cycle. Here, we focus on segments of increased

variability (among trials) of the operational signals (corresponding

to segments of {jj} transitions or of application of d-‘kicks’) and

examine their effects on the output variability.

Figure 6 shows the means and standard deviation time series of

all architecture components. It appears that the d-‘kicks’ markedly

effect the mean and standard deviation of dy(t)/dt and dz(t)/dt as

brief additive contributions. On the contrary, {jj} variability,

although affecting the dy(t)/dt and dz(t)/dt standard deviation, this

is hardly distinguishable from the standard deviation’s variability

that is due to the (slightly) different initial conditions and/or

stochastic influences.

Crucially, when performing the same analysis to data sets that

have been rearranged so that the corresponding data points refer

to neighboring points in phase space within a small time window

(see above), the effect of the {jj} becomes evident as well. In

addition to the phenomena observable in Figure 6, Figure 7

reveals that an increased {jj} variability (occurring at the moments

of transitions between modes) goes hand in hand with an increase

in the standard deviation of dy/dt and dz/dt. These latter variables

(i.e., dy/dt and dz/dt) provide an approximation of the phase flow.

This phenomenon is caused by the variable changes of the flow

due to the {jj} variability ({jj} do not transit identically among

trials because of noise) rather than a topological flow change (see

Figure S4 of Supporting Information). Note also that the effect of

mode transitions cannot be identified unambiguously in the

variability of the phase space trajectory (ys and zs). (The analysis

Organization of Complex Behaviors

PLoS Computational Biology | www.ploscompbiol.org 9 September 2011 | Volume 7 | Issue 9 | e1002198



Figure 4. Simulation of the functional architecture generating the word ‘flow’. Panel A shows the generation of the word ‘flow’ and the
operational signals involved. The word is repetitively generated after a short transient (black solid line). Four principle functional modes are used, one
for each character (associated with solid blue, green, magenta and cyan lines, respectively), plus two auxiliary ones at the sequence’s beginning and
end (dotted dark and light brown lines, respectively). From top to bottom: three repetitions of the word in the handwriting workspace (the plane x-y),
the output trajectory in the 3-dimensional functional phase space spanned by state variables x, y and z, followed by their time series, and the time
series of the slow (WTA competition coefficients {|jj|}) and the instantaneous (dy,z ‘kicks’, light and dark red, respectively) operational signals. The {jj}
of the modes that do not participate in the word always have a value close to zero (red line). Panel B shows the feedback loop from the output
dynamics to the slow sequential one. From top to bottom: time series of the inhibitory feedback functions Fj

inh, the slow feedback integrating
variables vj, the absolute values of the (fast) ‘switching’ variables lj, and the WTA competition parameters Cj and Lj. These quantities vary on the time
scale of a whole word (except for Fj

inh that varies at the time scale of a movement cycle), even if they also contain fast changes during their
evolution. The parameter values for this simulation were as follows: noise standard deviation was s = 0.001, while kj

inh = [6,12,5,5,2.67,6] and
kj

exc = [12,11,10,9,8,7] for each mode in the sequence, respectively (only these parameters that have to be manually set prior to a simulation).
The initial conditions for the functional mode dynamics were x0 = 0, y0 = 0.1, and z0 = 20.1, while those of {nj}, {lj} and {jj} where chosen
randomly from a uniform distribution in the interval [0,1] for {nj} and {lj}, and [0,1/K] for {jj}.
doi:10.1371/journal.pcbi.1002198.g004
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was performed for noise with standard deviation ten times larger

(s = 0.01) as well, delivering results that are in general agreement

with the above presented ones, as illustrated in Figures S5-7 of the

Supporting Information).

In sum, the effects of {jj} transitions or d-‘kicks’ perturbations

can be located by focusing on the variability of the output phase

flow (approximated here by dy/dt and dz/dt) among trials. Both

phenomena are short lived due to their intrinsic time scales (fast

transients and instantaneous ‘kicks’, respectively) but can be

distinguished because the instant d-perturbations are evident in the

mean of dy/dt and dz/dt, which is not the case for the {jj}

transitions. Thus, when mode transitions are identified, a sequence

can be segmented into periods where different functional modes

dominate the dynamics. Subsequently, evident perturbations can

be disregarded as external influences on the functional modes.

Finally, the remaining dynamics within a time segment can be

considered as an approximately stationary process generated by a

particular functional mode. The latter can be recovered by

techniques of phase flow reconstruction such as the ones based on

Fokker-Planck formalisms [48,82,83].

Discussion

Functional architectures modeling the phenomenology
of human function

We presented a functional architecture comprising multiple

subsystems operating on distinct time scales: a dynamical

repertoire of functional modes modeled as SFMs, slower

operational signals organizing the modes via a Winner-Take-All

competition as well as faster ones acting on the modes as

meaningful events or perturbations. Crucial to our approach is the

idea that functional modes characterize prototypical processes. As

proof of concept, we illustrated our approach by generating a

cursively written word, a typical instance of serial behavior. Our

framework represents a theoretical perspective on process

execution and the organization of complex (human) function via

a hierarchy of interacting time scales. The approach we adopt,

based on modeling motor, perceptual as well as complex cognitive

functions in a deterministic, dynamical way, enhances explanatory

powers in the context of a specific scientific methodology: abstract

dynamics modeling the essentials of biological phenomenology

constrain mechanistic models of finer biological detail and suggest

possible classes of generating mechanisms; they then feed back to

the experimenter with further implications and intuitions based on

nonlinear dynamical systems’ theory. The presented functional

architectures operates on low-dimensional dynamical patterns

(functional modes) that explicitly model the specific dynamical

structure of an elementary human function (quantitatively as well

as qualitatively), and satisfy the requirement for dynamical

constituency [44] (viewed here as meaningful structure in the

phase (or state) space). By modeling functional modes as dynamical

processes instead of states, it may be possible to naturalize (human)

function while minimizing complexity reductions typifying tradi-

tional approaches [17,18,21]. Moreover, the hierarchy of time

scales, as a principle of organization, conciliates continuous

dynamics with the ‘discrete’ nature of a repertoire of distinct

functional modes.

Our approach presents similarities and differences with related

ones pushing forward heteroclinic sequences or chaotic attractors

to account for brain and cognitive dynamics. For instance, over

Figure 5. Phase flow scaling. The figure shows the architecture’s output generating the character ‘w’ with a different movement amplitude at
each column: from left to right, the radius of the cylindrical manifold is the default one (r = 1), two times larger (r = 2) and its half (r = 0.5). From top to
bottom: the architecture’s output in the handwriting workspace (the plane x-y), and the state variables’ time series (x, y, and z). The duration as well as
the profile of each stroke’s time series is almost identical for all values of the movement amplitude (the isochrony principle).
doi:10.1371/journal.pcbi.1002198.g005

Organization of Complex Behaviors

PLoS Computational Biology | www.ploscompbiol.org 11 September 2011 | Volume 7 | Issue 9 | e1002198



the last few years, Rabinovich and colleagues developed an

approach centering on (cognitive) change via the introduction of

heteroclinic cycles [52,53], which is similar in spirit to ours in

several ways, importantly so in focusing on the time structure of

cognitive processes. In a nutshell, in their approach the system

(cognitive agent) sequentially transits from one unstable equilib-

rium point (a saddle) to another. Due to the nature of the

equilibrium points, the transitions are typically fast and short lived

relative to the time spent in their neighborhood (i.e., time-scale

separation). A drawback of sequences built on equilibrium points,

however, is that their corresponding processes are functionally

rather constrained. True, while dynamical objects more complex

than (unstable) equilibrium points, such as limit cycles or even

chaotic attractors, can be placed at the nodes of a heteroclinic

sequence [84,85], this potential has to our best knowledge not yet

been applied to behavioral and cognitive modeling. The limitation

to transitions among equilibrium points limits the explicit

formulation of the ‘shape’ of given dynamical processes and

provides no obvious entry points to their classification. In contrast,

our hypothesized range of possible (low-dimensional) dynamical

objects (SFM) provides a natural entry point to the classification of

cognitive events [84,85]. Moreover, heteroclinic cycles become

slower and slower as a trajectory approaches a saddle point (or

subspace), and, importantly, the timing of transitions or the effect

of a week perturbation scale with the amount of noise so that

robust timing is difficult to achieve. In contrast, in the present

implementation, feedback ensures the robust timing of transitions

albeit at the expense of an increase in the architecture’s

dimensionality. The issue of robustness pertains to chaotic

attractors (as generated by recurrent neural networks [86,87])

too: Although they may exhibit dynamics of arbitrary complexity,

they are sensitive to initial conditions and thus fail to account for

the robustness of human functioning.

Our theoretical framework is complementary to the Bayesian

theory proposed in [49]. In a series of papers, hierarchies of

transient dynamics were developed in order to account for brain

[88], perceptual [50,51] and behavioral [89] phenomena. In those

studies generative models, based on non-linear dynamics, and

hierarchical organizations thereof were proposed that can be

considered as equivalent to functional modes and architectures

respectively. In perception the high levels of the hierarchy encoded

slow contextual changes in the environment as the underlying

causes of the faster sensory dynamics, the temporal structure of

which was captured by the lowest level [50,51]. In motor behavior

slow high-level dynamics were proposed as prior expectations

about proprioception, which enslaved the peripheral (faster and

low-level) motor system [89] to fulfill them. This Bayesian

approach, however, focuses rather on the statistical computation

that this dynamics implements in order to ‘tune’ the human and

animal brain to the causality structure underlying human–

environment interactions (as described by generative models and

hierarchies thereof) as well as on the basic principle governing this

computation (minimization of uncertainty quantified as free

energy [90]). Instead, our work focuses on the actual dynamical

Figure 6. Time series analysis. From top to bottom: means and standard deviations of y(t) (denoted as ym(t) and ys(t)) of dy(t)/dt ((dy/dt)m(t), and
(dy/dt)s(t)), of dy(t) (dy

m(t) and dy
s(t)), of z(t) (z m(t) and z s(t)) of dz(t)/dt ((dz/dt)m(t), and (dz/dt)s(t)), of dz(t) (dz

m(t) and dz
s(t)), and of {jj(t)} (jj

m(t) and jj
s(t)).

Means are plotted in blue and standard deviations in green except for the graph of {jj(t)} where colors correspond to different modes and where
means and standard deviations are plotted with a continuous and dashed line, respectively. Grey and pink shadings focus on the segments of
increased {jj(t)} and dy,z(t) variability, respectively. Notice the strong effect of d-‘kicks’ on the means and standard deviations of the state variables’
rates of change ((dy/dt)m(t), dz/dt)m(t) and (dy/dt)s(t), (dz/dt)s(t)). Instead, the variability of {jj(t)} (jj

s(t)) has a much weaker effect on (dy/dt)s(t) and (dz/
dt)s(t), and cannot be unambiguously distinguished from the rest of the (dy/dt)s(t) and (dz/dt)s(t) variability.
doi:10.1371/journal.pcbi.1002198.g006
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objects (and their interactions) that can provide us with dynamical

descriptions of human function’ phenomenology; in other words,

on what we can learn from the proposed generative models. The

two approaches, being complementary, could be combined in

fruitful ways in future work.

We illustrated our approach by generating an instance of serial

behavior, cursive handwriting, as proof of concept. Our model

shares common elements with a previously proposed CQ-model

for handwriting [64] that reproduced several phenomena observed

in the kinematics of human handwriting such as the 2/3 power law

as well as the isochrony principle [81]. Attributing different

functional roles to the sequence and character generators (serial

and functional mode dynamics, respectively) resembles the dual

(motor and cognitive) processors model for sequence production

[91,92]). In the latter model, the prime role of the cognitive

processor shifts (with practicing) from executing to initiating

sequences as the gradual development of motor chunks allows a

motor processor to execute them. However, there is no explicit

reference to the characteristic time scales of each one of these

processes.

The architecture’ dynamics (and particularly the functional

modes of the handwritten characters) were not constructed with

the particular aim to implement biologically realistic kinematics,

but to demonstrate the general principles of functional architec-

tures and focus on the interactions between their distinct time

scales. However, although biologically realistic dynamics for the

modes or a more sophisticated serial dynamics can in principle be

constructed based on experimental data, it would not change the

nature of our theoretical framework. Moreover, phenomena of

dynamics connecting subsequent characters [93], in other words,

character variability due to the context of neighboring characters,

were not addressed. Doing so either requires a bigger (and more

biologically realistic) repertoire of phase flows or the design of a

mixed parallel-serial [57,94] architecture with additional opera-

tional signals operating on a time scale similar to the one of the

functional modes (tg<tf) that would contribute to ‘sewing’

characters into words. However, the inclusion of phase flow

modifications at that time scale is the most costly in terms of

operational signal complexity [26].

The output {ui(t)} of the architecture represents the observable

behavioral trajectory, in our specific implementation, the endpoint

trajectory (x(t),y(t),z(t)) of handwriting, whereas the operational

signals {jj(t)} and {di(t)} correspond to internal variables. Only

{ui(t)} allows for a direct mapping to behavioral observables,

observations of perceptual and other internal contributions must

be inferred. The implemented feedback loop that informs the

competition process about the evolution of an active functional

mode’s trajectory likely incorporates both sensory and internal (or

Figure 7. Phase space analysis. From top to bottom: means and standard deviations of y (denoted as ym and ys), of dy/dt ((dy/dt)m and (dy/dt)s), of
dy (dy

m and dy
s), of z (z m and z s), of dz/dt ((dz/dt)m and (dz/dt)s), of dz (dz

m and dz
s), and of {jj} (jj

m and jj
s). Colors, shadings and line styles are similar as

in Figure 6. The effect of d-‘kicks’ on the architecture’s output is as evident as in Figure 6 (notice also that (dy/dt)s and (dz/dt)s are almost identical to
dy

s and dz
s, respectively, in the segments with a d-‘kick’). The variability of {jj} (jj

s) that signals mode transitions, now has a significant effect on
standard deviations of dy/dt and dz/dt that approximate the phase flow. This effect cannot be identified unambiguously in the variability of the
trajectory in the phase space (ys and zs). At the first transition, the d-‘kick’ variability follows that of the {jj}, and their effects are easily separable.
Instead, at the second transition, the mean of the {jj} modulates the standard deviation of dz and thereby the one of dz/dt as well (because of their
overlapping in the data set). At the third transition no d-‘kick’ is involved; however, there is still a significant increase in (dy/dt)s and (dz/dt)s due to the
increase in jj

s.
doi:10.1371/journal.pcbi.1002198.g007
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‘planned’) effects; their relative contribution may well depend on

the extent to which the movement is automatized. In principle,

however, sensory feedback can be explicitly introduced at different

levels of the architecture. For instance, it can contribute to the

competition between modes, or trigger a fast perturbation to

initiate a movement at the correct timing. Sensory feedback can

also parameterize the dynamics of a functional mode at time scales

similar to the one of functional modes, for instance when a high

degree of precision is required.

We further investigated the possibility to identify the functional

modes underlying the sequence generation, an endeavor that an

experimentalist might find herself faced with. Our results suggest

that the various sources contributing to the variance in and across

instantiations of a process cannot be unambiguously delineated

when focusing on a process’ evolution as it unfolds in time. Rather,

they urge the experimenter to focus on phase space analysis in

order to identify the functional components of serial processes and

their interactions. Moreover, our results indicate that unlike phase

transitions that occur as the relevant state variable (e.g., relative

phase) transits from one stationary value to another, and that are

observed in behavioral and sensorimotor coordination [30] and

revealed by increased (phase space) trajectory variability, identi-

fying transitions between (possibly non-stationary) processes

requires analysis of the variability of the phase flow. To that

aim, more elaborate methods of phase flow reconstruction could

be considered, such as the one employed in [48,82,83] based on

Fokker-Planck formulations. However, important modifications or

extensions have to be made for those methods to be able to handle

non-stationary processes as well [82,83] and our results may

contribute to this end by probing to the importance of time scale

separations.

Neural correlates of functional modes and architectures
The cornerstone of our approach is the SFM concept, according

to which the dynamics of a high-dimensional system (such as the

embodied brain) temporarily collapses onto a low-dimensional

manifold containing a structured functional flow. This vision is in

line with reports of network dynamics, dynamical models as well as

biological data indicating that the ensemble dynamics of

populations of neurons may effectively reduce to a structured

flow in phase space (i.e., a functional mode). For instance, recent as

well as ongoing work in our lab progresses in designing large scale

neural networks of firing rate populations or spiking neurons

coding for SFMs and functional architectures [41,75,76]. Other

(computational) examples in which a network dynamics generates

low-dimensional topological objects in phase space are provided in

[95]. Real biological networks of spiking neurons have been

reported to generate heteroclinic sequences [96]. Also, central

pattern generators, i.e., relatively small autonomous neural

networks, are typically constrained to produce limit cycle

dynamics. An explicit example of the generation of a 3-

dimensional closed orbit in phase space generated in a central

pattern generator of the lobster stomatogastric ganglion can be

found in [96,97].

Evidence favoring biological realism for the operational signals

(slow and fast) can be found in the literature too. In that regard,

the time scale hierarchies of the organization of sensorimotor

interactions are proposed to be reflected in the hierarchical

organization of the nervous system, in particular the cortex

[49,88]. Structurally, the hierarchy is formed via convergence and

divergence of forward and backward connections, while their

differential functionality introduces a temporal (and spatial)

separation of scales of operation. Presumably, (local) processes in

the primary areas occur faster than the modulating influences

thereon from the higher levels. For instance, oscillation in the

human b and c band (corresponding roughly to 13–30 Hz and

30–100+ Hz, respectively) are thought to be associated with

feature integration (i.e., content related) while the slower h and a
band (corresponding roughly to 4–8 Hz and 8–13 Hz, respective-

ly) are presumably involved in top-down regulations adjusting the

faster processes in a context-dependent fashion [98]. The

instantaneous signals d(t) have been associated with timing (‘or

clock’) mechanisms [48,99]. In fact, the notion of brief pulses

initiating timed movements is well established in the psychological

literature [100,101], and is accompanied by a plentitude of neuro-

imaging studies aiming to identify the corresponding anatomical

substrate (for a review, see [102]) for which the cerebellum [103–

105] and basal ganglia [102] have been put forward as candidate

structures.

According to the ‘Good Regulator’ theorem (a central theorem

in Cybernetics due to Ashby and Conant [106]), any regulator that

is maximally successful and simple must be isomorphic with the

system being regulated. Whether this applies to the relationship

between the neural system (the ‘regulator’ in our case) and human

behavior as the SFM framework implies remains an open

question. However, initial results of ongoing experimental work

on EEG imaging in a behavioral paradigm of rhythmic versus

discrete movements [107] and existing literature [37,38,108–110]

are open for interpretation along these lines: In those studies, low-

dimensional behavioral patterns and transitions among them (here

{ui} and {jj} dynamics, respectively) were associated with

corresponding low-dimensional spatiotemporal modes in EEG

and MEG dynamics and their transitions. In particular, prelim-

inary results in [107] reveal that low-dimensional EEG patterns (at

the low frequency range) appear to be isomorphic to the

behavioral (movement) patterns. How these patterns relate to

the oscillations (and synchrony across them) in the a, b, and c-

ranges is still an open question. In any case, the potential

isomorphy of dynamics (more specifically phase flows) between

brain and behavioral signals offers an intriguing entry point

towards the understanding of representation in the human brain.

Implications for cognitive modeling, learning and
engineering

Our framework is compatible with embodied intelligence

approaches, since functional modes may be isomorphic to patterns

of closed sensorimotor loops or human-environment interactions.

The property of dynamical isomorphy or topological equivalence

of sensorimotor interactions offers a novel perspective to

phenomena such as motor equivalence [8,111] and sensory

substitution [112,113]. Motor equivalence refers to the fact that

humans can accomplish a given goal via different ‘motor means’ as

in using different effectors’ systems (writing with one’s foot), or, in

the present context, via different hierarchical organizations [26].

Sensory substitution is the phenomenon that sensorimotor

interactions utilizing a given sensory modality can be effectively

substituted by other interactions using another modality. Accord-

ing to our approach, what remains invariant among such different

behavioral or sensorimotor patterns would be the ‘shape’ of their

dynamics, that is, their meaningful structure in the phase space.

The argument holds even if one considers the so-called ‘cognitive’

topology [15,114] to be different than the mathematical one

[44,115].

We demonstrated how the appropriate choice of the functional

‘circuitry’ (i.e., serial dynamics) within the available dynamical

repertoire can lead to the emergence of more complex functions

such as serial order behavior. The latter is an example of how such

‘circuitries’ among functional modes can prescribe different causal
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relationships between them, forming a network of elementary

processes. Thus, a variety of functional architectures can emerge,

even conditional ones, mimicking the IF-THEN rules found in

traditional Artificial Intelligence or architectures with coexistence

of cooperative and competitive interactions among functional

modes. Moreover, although the proposed architecture is presented

in a closed form and executes a prescribed serial behavior, internal

(e.g., goals, affective inputs) or external (i.e., perceptual) cues could

bias the WTA competition via parameters {Lj}, {Cj}, thus (co-

)determining the flow within such a network of processes. In that

manner, arbitrary decision-making or behavioral sequences

(including perception-action coupling) can be modeled, such as

stereotypical interactive behaviors (e.g., browsing in the internet or

cooking). Additionally, a hierarchy of multiple levels of such

functional architectures could be designed in order to account for

a repertoire of even more complex functions necessary to model

more rich mental/cognitive constructions.

In any case both functional modes and their organizational

interactions would result out of a process of pattern formation

in structurally coupled agent-environment systems in an

autonomous self-organized manner reflecting the agents’ urge

to survive or, in other words, conserve its autonomous

organization (referred to as autopoiesis [1,2]). The proposed

framework suggests that different processes of adaptation or

learning are required for such complex function to emerge. The

acquisition of an initial repertoire of elementary functions

would precede processes constructing functional architectures

allowing for a multitude of complex behaviors. At the same

time, the initial repertoire could be extended with new

functional modes by composition of existing ones that would

either (or not) qualitatively change the constituent modes (see

[26]). The latter mechanism could provide us with the means to

model phenomena found in cognitive linguistics literature such

as conceptual metaphors and blends [14–16,114]. Those are

cognitive mechanisms responsible for transferring the causality

structure of a conceptual schema (constructed out of general-

ization over a class of sensorimotor interactions) to another that

is defined in a different conceptual space or domain, as well as

for the merging of such domains. In this process, the so-called

‘cognitive’ topology is preserved in order to allow for inference

in the target domain based on relationships in the source

domain. Another interesting question would be whether the

learning dynamics themselves could be described by trajectories

generated by distinct phase flows in a relevant phase space,

corresponding to qualitatively different learning strategies

[116].

Functional architectures, besides dealing with some of the most

interesting questions in modern science, the ones concerning

human function, can also lead to interesting engineering

applications in motor or sensory rehabilitation based on motor

equivalence and sensory substitution, as well as in Artificial

Intelligence and robotics where multi-time scale functional

architectures are already being implemented [117,118]. Com-

bined with their neural network implementations, a novel

paradigm of analog biologically inspired computation with

possible materializations in integrated circuits, such as Very-

Large-Scale Integration (VLSI) [119] ones, may emerge.

Supporting Information

Figure S1 Phase space of the WTA system. Panels A-C

show the phase space of a 2-dimensional WTA competition system

(j1,2.0) for different values of the ratios r1,2 = L1,2/C1,2 (L1,2 = 1

always). Red and green curves denote the _jj1~0 and _jj2~0

nullclines respectively. On their intersections there is always some

equilibrium point. Empty circles denote unstable nodes (this is

always the point (0,0)), filled circles point attractors and black

rhombs filled with red denote saddle nodes. Arrows describe the

vector field whereas blue curves are characteristic trajectories of

the evolution of the system (a small asterisk denotes the initial

condition). Panel A: C1 = 1 and C2 = 2, thus C1,C2 and j1 wins

the competition. There is a point attractor at the position

(
ffiffiffiffi
r1
p

,0) = (1,0) (all trajectories converge to it even the ones starting

near the j2 node), and a saddle node at (0,
ffiffiffiffi
r2
p

) = (0,1
� ffiffiffi

2
p

). Panel

B: C1,2 = 2. There is no definite winning ji. There is a circle of

point attractors because the two circular nullclines are identical.

The system can be in any of the states constrained on this circle. A

small deviation from this situation will result in the system flowing

slowly towards a winning ji. Panel C: C1 = 2 and C2 = 1, thus

C1.C2 and j2 wins the competition. There is a point attractor at

the position (0,
ffiffiffiffi
r2
p

) = (0,1) (all trajectories converge to it even

the ones starting near the j1 node), and a saddle node at

(
ffiffiffiffi
r1
p

,0) = (1
� ffiffiffi

2
p

,0).

(TIFF)

Figure S2 lj phase space dependence on parameter
S(nj). Panels from left to right sketch the derivative (red line) of lj

against itself for values of S(nj) 0.09, 0.5 and 0.85 respectively. The

phase space is 1-dimensional: the lj axis. Arrows on this axis

describe the vector field. Equilibrium points exist where the

derivative curve touches the dlj/dt = 0 line. Mutually facing arrows

indicate the existence of a point attractor. In the opposite case,

there is an unstable equilibrium point. For intermediate values of

S(nj) like S(nj) = 0.5, there are five equilibrium points: three point

attractors at points lj = +/21 and lj = 0, and two unstable points

separating them. When S(nj) approaches 0, such as for S(nj) = 0.09,

the previously unstable points disappear and lj = 0 destabilizes.

Thus, if the system is at that point, it will leave to go to a point

where |lj| = 1. On the contrary, when S(nj) approaches 1, such as

for S(nj) = 0.85, it is the lj = +/21 points that destabilize while

lj = 0 becomes a point attractor (the separating unstable points

again disappear). Thus, in this case the system, being in a position

where |lj| = 1, transits to lj = 0. Given that these two lj transitions

happen for different values of the parameter S(nj) (due to the

bistability for S(nj) values far from 0 or 1), the system exhibits

hysteresis.

(TIFF)

Figure S3 Generation of the instantaneous operational
signal dy,z. From top to bottom panels show d1, d2 and dcr (see

equations (C.1,2) of Text S1 of Supporting Information) time

series from the simulation of the word ‘flow’ presented in the main

text. Four d-‘‘kicks’’ are fired for each one of the repetitions of the

word. It is dcr (that receives input from the other components of the

architecture according to (C.2)) the one that triggers pulses for the

d1,2 excitable system which follows (C.1).

(TIFF)

Figure S4 Phase space analysis for a non-autonomous
slow operational signal and for s = 0.001. The figure has the

same lay out, notation, and color coding as Figure 7 of the main

text. {jj(t)} are non-autonomous and identical among trials where

the mean {jj(t)} (jj
m) of the autonomous architecture were used

The effects of the d-‘kicks’ on the output dynamics are still present.

However, since the non-autonomous and identical slow opera-

tional signal does not contribute any variability, the effect that had

on the variability of the phase flow is attenuated significantly. This

is the case even for the third transition, which occurs via a Hopf

bifurcation.

(TIFF)
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Figure S5 Time series analysis for s = 0.01. Figure

notation and layout is identical to the ones of Figure 6 of the

main text. One can observe the strong effect of d-‘kicks’ to the

means and standard deviations of the state variables’ rates of

change ((dy/dt)m(t), dz/dt)m(t) and (dy/dt)s(t), (dz/dt)s(t)). Instead the

variability of {jj(t)} (jj
s(t)) has a much weaker effect on (dy/dt)s(t)

and (dz/dt)s(t) only, which cannot be unambiguously distinguished

from the rest of the (dy/dt)s(t) and (dz/dt)s(t) variation. Results agree

with the ones shown in Figure 5 of the main text.

(TIFF)

Figure S6 Phase space analysis for s = 0.01. Figure

notation and layout is identical to the ones of Figure 7 of the

main text. The effect of d-‘kicks’ on the output of the architecture

is as evident as in the simulation of Figure S5 (notice also that (dy/

dt)s and (dz/dt)s are almost identical to dy
s and dz

s respectively at the

segments where there is a d-‘kick’). Moreover, the variability of

{jj} (jj
s) that signals mode transitions, has now a significant effect

to standard deviations of dy/dt and dz/dt that approximate the

phase flow. This effect cannot be identified unambiguously in the

variability of the trajectory in the phase space (ys and zs). At the

first transition, the d-‘kick’ variability follows, the {jj} one, and

their effects are easily separable. Instead, at the second transition,

judging from the shape of the time series, the mean of {jj}

modulates the standard deviation of dz and through it, the one of

dz/dt as well, because of their overlapping in the data set. Finally,

at the third transition, there is no d-‘kick’ involved, however, there

is still a significant increase in (dy/dt)s and (dz/dt)s due to the

increase in jj
s. Results agree with the ones shown in Figure 7 of the

main text.

(TIFF)

Figure S7 Phase space analysis for a non-autonomous
slow operational signal and for s = 0.01. Figure notation

and layout is identical to the ones of Figure S4. The effects of the

d-‘kicks’ on the output dynamics are still present. However, using

non autonomous js, identical among trials, makes the effect of

their variability attenuate significantly (although this attenuation is

weaker than the one for s = 0.001 shown in Figure S4). This is true

even for the third transition where a Hopf bifurcation happens.

(TIFF)

Table S1 Parameters of functional modes’ phase flows.
Table S1 shows the values of the parameters of equations (10) and

(D.1,2) of the main text and the Supporting Information Text S1

respectively, which make up the specific phase flows implementing

characters’ functional modes. Some of the characters require two

phase flows in order to be modeled, due to the fact that the

dimensionality of the phase flows was constraint to three

dimensions, for visualization reasons. Functional modes 36 and

37 just set the system to the position where z is 0 and y is 0 or 2

respectively (see equations (D.3) of Text S1 of Supporting

Information).

(DOC)

Text S1 Linear stability analysis of the Winner-Take-All
competition system and mathematical details for the
generation of the sequential dynamics, the d operational
signal and the characters’ shapes.

(DOC)
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