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Abstract

Sensing extracellular changes initiates signal transduction and is the first stage of cellular decision-making. Yet relatively
little is known about why one form of sensing biochemistry has been selected over another. To gain insight into this
question, we studied the sensing characteristics of one of the biochemically simplest of sensors: the allosteric transcription
factor. Such proteins, common in microbes, directly transduce the detection of a sensed molecule to changes in gene
regulation. Using the Monod-Wyman-Changeux model, we determined six sensing characteristics – the dynamic range, the
Hill number, the intrinsic noise, the information transfer capacity, the static gain, and the mean response time – as a
function of the biochemical parameters of individual sensors and of the number of sensors. We found that specifying one
characteristic strongly constrains others. For example, a high dynamic range implies a high Hill number and a high capacity,
and vice versa. Perhaps surprisingly, these constraints are so strong that most of the space of characteristics is inaccessible
given biophysically plausible ranges of parameter values. Within our approximations, we can calculate the probability
distribution of the numbers of input molecules that maximizes information transfer and show that a population of one
hundred allosteric transcription factors can in principle distinguish between more than four bands of input concentrations.
Our results imply that allosteric sensors are unlikely to have been selected for high performance in one sensing
characteristic but for a compromise in the performance of many.
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Introduction

Sensing is fundamental to life. All cells detect chemicals in their

environment and modify their physiology in response to the

chemicals detected. Yet fluctuations in the concentrations of

extracellular chemicals and stochasticity in intracellular biochem-

istry confound the cellular ‘‘decision’’ of which physiological

change is most appropriate [1]. Sensing extracellular changes is

one of the first stages of such decision-making, but why different

biochemical networks use different sensing biochemistry is largely

unknown. In eukaryotes, signal transduction in some networks is

initiated by, for example, G protein-coupled receptors [2] and by

receptor tyrosine kinases [3] in others. Initiation can even occur

directly in the case of nuclear receptors [4]. In bacteria, the sensing

of extracellular changes can be relayed through two-component

signalling systems [5] or directly transduced into changes in gene

regulation through allosteric transcription factors [6].

Here we consider the advantages and disadvantages of one

of the simplest sensors, common in microbes, the allosteric

transcription factor. The activity of allosteric sensors is regulated

by their interaction with the molecules they sense. Thinking of

information transfer, we will refer to these molecular signals as

input molecules (to the sensing system). Such input molecules bind

to a site that is distinct from the DNA-binding site of the sensor.

Allosteric sensors are often considered to have two main

conformations [5,7,8,9,10,11] and stabilise into one of these

conformations upon binding an input molecule. The stabilized

conformation may lead to new gene expression and either favours

binding of the sensor to DNA if, for example, the sensor is a

transcriptional activator or disfavours DNA-binding if the sensor is

a transcriptional repressor.

In general, sensors require several different characteristics to

perform well. A sensor should generate outputs that are dis-

tinguishable through, for example, having a wide extent of possi-

ble outputs (a high dynamic range to use terminology from

engineering). For some systems, a sensor ought to respond only to

changes in the input that are sufficiently large: the input-output

response curve should be sigmoidal rather than hyperbolic. A

sensor should not be too ‘‘noisy’’ because changes in the output

should be related as best as possible to changes in the input and

not be generated by intrinsic fluctuations of the sensing

biochemistry if the sensor is to transfer information despite these

intrinsic fluctuations. It may also be beneficial if sensors filter any

fast dynamics of the input because such changes may be ‘‘input

noise’’ and unrelated to the slower extracellular change of interest.

A sensor ought to be able to detect small changes in the input by

amplifying these changes to large changes in the output: it should

have a high gain. Finally, the time taken to sense is important –

organisms with precise, but slow sensors may be outcompeted by

organisms that respond quickly if not always appropriately – as too

is the metabolic cost of synthesizing and maintaining sensors and

of the sensing itself.

For any particular biochemical network, it is challenging to

know which of these sensing characteristics is favoured. Fast

sensing may be important for responding appropriately to an

increase in temperature whereas slow but accurate inference of the
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state of nutrients in the environment may be preferred before

initiating sporulation. Using an established model of allosteric

transcription factors, we will determine how six sensing charac-

teristics change as the biochemical parameters of individual

sensors and the number of sensors alter. Our approach is inspired

by that of Detwiler et al. who studied G-protein signalling [12]. A

similar methodology has also been applied to small RNAs [13] and

to aptamers [14], but we extend the approach by using mutual

information to quantify interdependences between the character-

istics of a collection of sensors, each sensor having randomly

chosen biochemical parameters.

Our goal is to understand biological design. We wish to develop

biophysically plausible hypotheses to explain why one sensing

system might have, for example, hundreds of allosteric sensors that

are dimers and another have tens of sensors that are tetramers.

To do so, we should discover which biochemical parameters

predominantly determine which sensing characteristic and how

the different characteristics ‘‘play off’’ against each other. In

engineering, for example, a compromise must be reached between

the gain and the bandwidth when designing an amplifier [15]. We

will investigate whether analogous ‘‘rules-of-thumb’’ exist for

allosteric sensing. From the perspective of synthetic biology, we

also wish to know which parameters to manipulate to determine

particular sensing properties and whether all regions in the space

of characteristics can be reached with biophysically realistic values

of parameters.

We begin with the Monod-Wyman-Changeux (MWC) model of

allostery [10] and consider six characteristics of allosteric sensing:

the dynamic range and the Hill number of the average response,

the intrinsic noise, the capacity, the mean static gain and the

average response time. We wish to uncover the trade-offs between

these characteristics and understand the constraints they pose on

allosteric sensing.

Results

The MWC model of a sensor
The classic description of an allosteric sensor is the MWC model

[10], which forms the basis of our analysis. We assume that sensors

can exist in two conformational states, which differ in their

quaternary structure and properties of interaction. We will call

these states the T state, or the inactive state, and the R state, or the

active state. In the absence of any input molecules, the sensor has

an intrinsic bias towards the T state.

The sensor detects a signal by binding to input molecules. Such

molecules bind preferentially to the R state and so counteract the

intrinsic bias towards the T state (Fig. 1A). Consequently, an

individual sensor will spend more time in the R state when bound

by an input molecule than when unbound, and the equilibrium

between R and T states of the population of sensors that are

unbound by input molecules will also shift to favour more R-

sensors. Both effects encourage the binding of additional input

molecules.

We considered sensors that consist of a number of identical

subunits, each with its own allosteric binding site. Our analysis,

though, applies for any kind of protein with allosteric binding

sites that have identical properties when interacting with the same

type of input molecule. Following Monod et al. [10], we assumed

concerted transitions: all subunits change simultaneously. The

active and inactive conformations are therefore properties of the

sensor as a whole and not just of the individual subunits.

Transitions between the R and T states can occur regardless of

how many molecules of the input are already bound to the

sensor, but the behaviour of the system is largely unchanged if

they are assumed to only occur when the sensor is not bound by

input molecules. Transitions between the R and T states when

the sensor is bound do not change the concentrations at equilib-

rium because the product of the kinetic rates in the cycle

R0?T0?T1?R1?R0 (Fig. 1A) is the same as the product of the

rates in the cycle R0?R1?T1?T0?R0 (at equilibrium, the

average time taken to go round the cycle should be the same in

each direction). Hence, the kinetic rates fL, bL, fR, bR, fT, and bT in

Fig. 1A are sufficient to completely determine the concentrations

of the various states at equilibrium, even in the presence of

additional transitions between the R and T states.

We defined the activity of a population of sensors by the fraction

of sensors in the active R state. At equilibrium, the activity, fA,

satisfies [10]

fA~
1zað Þn

K 1zcað Þnz 1zað Þn , ð1Þ

where K is the allosteric or equilibrium constant of the

transition between the R and T states; c is the ratio of the

dissociation constant of the sensor and the input molecule when

the sensor is in the R state to the dissociation constant when the

sensor is in the T state; a is the concentration of free input

molecules in units of the dissociation constant of the R state;

and n is the number of subunits, or allosteric binding sites, on

each sensor. We can think of K as the bias of a sensor towards

the T state in the absence of any input signal and c as the

counteracting bias towards the R state in the presence of the

input. In our analysis, we treat the biases K and c as

macroscopic properties of a sensor that do not depend on its

number of subunits.

If the number of subunits is greater than one, then, once some

sensors in the population have already bound input, the increased

probability of additional input molecules binding to the sensors

usually generates a sigmoidal response curve, i.e. a non-linear

increase in the mean activity for a linear increase in the input. This

increase can be sharp and the population of sensors can switch

from being mostly inactive to mostly active for a small change in

the concentration of input.

Author Summary

Sensing environmental changes is the first step in the
process of cellular decision-making, but many different
biochemical sensors exist and why one sensor is selected
for a particular task over another is not known. Here we
study the sensing properties of a simple and generic
allosteric sensor to understand the effectiveness and
limitations of its ‘‘design’’. We begin by defining and
calculating a set of six engineering-inspired characteristics
of the sensor’s response and investigate how specifying a
high performance in one characteristic constrains the
sensor’s performance in others. We determine many such
trade-offs and, perhaps surprisingly, that much of the
space of characteristics is inaccessible given biophysically
plausible ranges of parameters. Our results suggest that
allosteric sensors are not under selection for high
performance in one sensing characteristic but for a
compromise in performance between many. Our approach
provides both quantitative and qualitative insights about
the function and robustness of allosteric sensors and as
such is applicable to both the study of endogenous
systems and the design of synthetic ones.

Trade-Offs in Allosteric Sensing
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Definitions of the different characteristics of sensing
We used six properties to characterize the reliability and

efficiency of sensing:

1) The dynamic range (or amplitude), r, is the difference

between the mean basal level of activity, when no input is present,

and the mean saturated level, when a high (infinite) concentration

Figure 1. The MWC model of an allosteric sensor and illustrations of the different sensing characteristics of the system. (A) The
sensor exists in two conformational states, which have different affinities for the signal molecule being sensed. A sensor can transition from one
conformation to another only when not bound by a signal molecule, but adding extra transitions does not alter our results. (B) The dynamic range, r,
is the difference between the saturation and basal levels of activity. (C) The Hill number, h, is a measure of the steepness of the response curve and,
indirectly, of the cooperativity of the activation of the sensors and the non-linearity of the response. (D) The intrinsic noise, g2 , quantifies the relative
magnitude of the intrinsic fluctuations in the numbers of active sensors. Inset: histogram of the levels of activity at equilibrium. (E) The capacity, Iopt,
provides an upper bound on the number of states that can be sensed and distinguished despite intrinsic noise (represented by the black vertical
bars). In this example, the sensing system can distinguish between 3 states: low (yellow), medium (green) and high (blue). (F) The static gain, G0, is the
change in activity in response to a small step increment in the input signal. The frequency-dependent gain (red curve) decreases as frequency
increases: the system is a low-pass filter. (G) The response time, t, measures the time to reach the level of activity corresponding to half of its
equilibrium level.
doi:10.1371/journal.pcbi.1002261.g001

Trade-Offs in Allosteric Sensing
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of input is present (Fig. 1B). Depending on the strength of the

biases K and c of the sensor, the system can have non-negligible

activity in the absence of any input (as high as 50% if K~1) or

saturate below the 100% level of activity (saturation will occur at

the basal level if c~1). The calculation of the dynamic range gives

r~fA
sat{fA

bas~
1

1zKcn
{

1

1zK
, ð2Þ

where f sat
A ~fA(a??) and f bas

A ~fA(a~0).

2) The Hill number, h, is a measure of the steepness of the

switch as the sensors change from being mostly inactive to

mostly active, or vice versa, as the concentration of input

changes (Fig. 1C). It quantifies the degree of cooperativity of

binding of the input molecules. If hw1, then the binding of one

molecule encourages the binding of the next; when h~1, there

is no cooperativity and the activity increases hyperbolically

with the concentration of input. This characteristic describes,

then, the non-linearity of the response and so its ability to

generate self-perpetuating dynamics [16], such as bistabilities,

through its interactions with downstream components. Math-

ematically, the Hill number is proportional to the derivative of

the response curve at half saturation (in log space). Defining

f norm
A as f norm

A ~
fA{fA

bas

f sat
A {f bas

A

so that the normalised activity lies

between zero and one, we can then write h~2
d log f norm

A

d log a
[17],

and so

h~
2nfAfI

fA{f bas
A

a

1za
{

c

1zca

� �
, ð3Þ

where fI is the fraction of inactive sensors (fI~1{fA) and a is

evaluated at the value of the input, a�, that produces an

activity of f norm
A ~0:5:

a�~
1{l

1
n

l
1
n{c

with l~
1zcnz2Kcn

K(1zcn)z2
.

3) The intrinsic noise, gint, quantifies the relative size of the

fluctuations generated by the biochemistry of sensing around the

mean level of activity (Fig. 1D). Such fluctuations arise from the

stochastic timing of individual chemical reactions. We define gint

as [18]

g2
int~

SA2T{SAT2

SAT2
, ð4Þ

where A is the number of active sensors, A~NfA, and N is the

total number of sensors in the system. By approximately solving

the master equation that describes the MWC model, we found that

g2
int&

1{fAð Þ
NfA

: ð5Þ

4) The capacity, Iopt, provides an upper bound on the

number of levels of input that can be sensed and distinguished

given intrinsic noise (Fig. 1E). The capacity is found by

maximising the mutual information [19] between the input a

and the activity fA. For low levels of intrinsic noise [20], we found

that

Iopt&log2

ffiffiffiffiffiffiffi
2N

pe

r
arctan

ffiffiffiffi
K
p� �

{arctan
ffiffiffiffiffiffiffiffi
Kcn
p� �� �" #

: ð6Þ

5) The static gain, G0, describes the mean change in activity

in response to a small step increment in the input (Fig. 1F). The

frequency-dependent gain can be found by linearizing an ordinary

differential equation model of the system around the equilibrium

concentrations (Methods) and takes the general form [15]

G(iv)~
Output(iv)

Input(iv)
~

fA(iv)

a(iv)
, ð7Þ

where all quantities are Laplace transformed and v is the angular

frequency. Fluctuations in the input represent extrinsic fluctua-

tions. The frequency-dependent gain measures the response of the

system to extrinsic variation, and consequently the system’s ability

to track small changes in the input. The static gain is defined

asG0~G(iv~0) and can be obtained from Eq. (7), but it can also

be calculated by differentiating the steady-state activity with

respect to the input [12]:

G0~
dfA

da
~

n(1{c)fAfI

(1za)(1zca)
: ð8Þ

From the frequency-dependent gain, Eq. (7), we find that the sensing

system is a low pass filter (see Methods). It can adapt its activity to slow

fluctuations of the input, but gradually loses the ability to respond as the

fluctuations become more rapid (Fig. 1F). Beyond a cut-off frequency,

the frequency-dependent gain declines, and we find that the response

time determines this cut-off frequency, as expected. The filtering

properties of the system at high frequencies are independent of the

number of allosteric subunits in each sensor: the frequency-dependent

gain falls as 1
�
v2 for all n (Methods).

6) The response time, t, is the time the system takes to reach

the level of activity that is equidistant between the basal level and

the maximum level for a particular concentration of input. We

assume that initially there is a basal level of activity and that input

undergoes a step increase from zero (Fig. 1G).
Properties of the sensing characteristics. All characteristics,

with the exception of the response time, depend only on the biases K
and c, and can be calculated directly, at least for sufficiently high

concentrations of input molecules and if the intrinsic noise is low.

Fig. 2 shows contour plots of these characteristics for different values

of the biases and numbers of subunits n and therefore is in some sense

the ‘design space’ [21] of the sensors. The intrinsic noise and the static

gain are measured at the threshold input: the concentration of input

molecules that gives an activity midway between the basal and

saturated activities. As expected, we see that the maximum Hill

number increases with increasing numbers of subunits and that the

capacity is larger when the intrinsic noise is lower. We will focus,

however, on five further observations:

1. As the number of subunits increases, the dynamic range

becomes restricted to be close to unity for most values of K and

c.

2. A high Hill number implies a high dynamic range.

3. The intrinsic noise at the threshold decreases with increasing

numbers of subunits in each sensor.

Trade-Offs in Allosteric Sensing
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4. The capacity and the dynamic range are strongly correlated.

5. The static gain and the Hill number are anti-correlated.

To understand their origin, we first consider the system’s

intrinsic fluctuations and ability to transfer information.

Intrinsic fluctuations. If we assume a concentration of input

molecules high enough so that the binding of molecules to the sensors

does not substantially reduce the number of free input molecules, then

the model of Fig. 1A becomes approximately linear, i.e., all reactions

are approximately first order reactions [22]. We can then solve the

Figure 2. The biases K and c and the number of subunits n completely determine the value of all characteristics except the response
time, and consequently each characteristic is not independent. Contour plots of the five characteristics we can derive analytically from Eq.
(1). From top to bottom: the dynamic range, the Hill number, the intrinsic noise at the threshold, the capacity, and the static gain at the threshold.
From left to right, the number of subunits n is respectively 1, 2, 4 and 8. The total number of sensors in the system is 100 and is used to calculate the
intrinsic noise and the capacity. The white areas in the contour plots of the capacity (fourth row) correspond to parameter sets for which the
magnitude of the intrinsic noise is large enough to invalidate the approximation we use to calculate the capacity. For n = 1, although the Hill number
is always one, there is small variation in the static gain (between 0 and 0.06 units).
doi:10.1371/journal.pcbi.1002261.g002

Trade-Offs in Allosteric Sensing
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corresponding master equation (Methods) and find that the probability

of having m of N sensors active approximately obeys a binomial

distribution and takes the form

PN,m&
N

m

� �
f m
A 1{fAð ÞN{m

, ð9Þ

where fA is given by Eq. (1). We verified Eq. (9) using numerical

simulations (Fig. 3A).

The mean and variance of the number of active sensors are,

respectively,

A~NfA

s2
A~NfA 1{fAð Þ~NfAfI

ð10Þ

using standard results for a binomial distribution, and where fI is

the fraction of inactive sensors. The variance in the activity is

therefore highest when each sensor molecule has exactly a 50%

probability of being found in either state and need not occur, as

might be expected, at the threshold level of the input. If the system

has a high basal level of activity (Fig. 3B), close to fA~0:5, then

the highest variance is in the vicinity of the basal level (Fig. 3C).

The intrinsic noise given by Eq. (5), however, decreases

monotonically with increasing activity because the probability of

an individual sensor being active then increases. By raising the

basal level of activity sensing systems can thus reduce intrinsic

noise at all levels of activity (Fig. 3D).

We note that Eq. (10) implies that the variance in the number of

active sensors both determines the Hill coefficient, Eq. (3), and

the static gain, Eq. (8), presumably as a consequence of the

fluctuation-dissipation theorem [23].

Optimizing transmission of information. The capacity is

the maximum of the mutual information between the input signal

and the output of the system, the activity of the sensors. Mutual

information quantifies information transfer [19] and measures

how the uncertainty in the input decreases given observations of

the output. To calculate the capacity, we must find the optimal

distributions of input and output that permit the system to transmit

as much information about the input as possible given the system’s

intrinsic fluctuations. Following Tkačik et al. [20], we assumed

small intrinsic fluctuations and approximate Eq. (9) by a Gaussian

distribution. The optimal input distribution, assuming the model

of intrinsic noise discussed in the previous section, becomes

popt(a)~
1

ZsA

G0, ð11Þ

Figure 3. The intrinsic fluctuations follow a binomial distribution and can maximize their variance away from the threshold of the
response curve. (A) Comparison between Eq. (5) (in dark blue) and numerical simulation (red line). Total number of sensors is 20; the initial number
of input molecules is 224; K = 100; c = 0.01; n = 4; fR = 0.01 s21; fT = 0.01 s21; bR = 1 s21; and bT = 100 s21. (B) The threshold of the response (the
midpoint between the basal and saturation levels) need not coincide with the level of input at which 50% of the sensors are active. (C) The maximum
of the variance in the system, which is always located at the 50% of activity level, need not coincide with the threshold value of the input signal. (D)
The intrinsic noise decreases with increasing input because more sensors become activated. In (B, C, D), the dark blue dots represent numerical
simulation, the red curve the analytical solutions from Eqs. (1) and (10), and the light blue box shows the dynamic range of activity. The total number
of sensors in the system is 100; K = 2; c = 0.1; fR = 0.01 s21; fT = 0.01 s21; bR = 10 s21; and bT = 100 s21.
doi:10.1371/journal.pcbi.1002261.g003

Trade-Offs in Allosteric Sensing
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where Z is a normalization constant given by Z~
ÐAsat

Abas

dA
1

sA

,

s2
A~A(1{A=N) from Eq. (10), and G0 is given by Eq. (8). The

optimal output distribution is obtained by dividing the optimal

input distribution by the static gain,
dfA

da
, and we find that

popt(A)~
popt(a)

G0

. Evaluating the integral in Eq. (11) and using the

definition for mutual information gives Eq. (6) (Methods).

For optimal information transfer, we find that the input should

be distributed mostly where the system is most sensitive and has a

steep response curve. Small changes in input will then have

changes in output large enough to be distinguishable from changes

generated by the system’s intrinsic fluctuations. In Fig. 4A and 4C,

we show two examples of the optimal input distributions for

sensors with either a hyperbolic or sigmoidal response curve. The

most probable values of the input fall where the system is sensitive;

the least probable values fall where the system is saturated and has

an approximately flat response curve.

The optimal output distribution is bimodal with peaks at the

two extremes of activity: A~0 and A~N (Fig. 4D). Such a

distribution produces distinguishable values of the output. Sensors

that have a low dynamic range, however, can only have at most

one such peak (Fig. 4B), so they produce only a limited number of

distinguishable outputs.

The highly sigmoidal limit. A natural and informative limit

of the system is when the response becomes highly sigmoidal. This

limit requires extreme values of the two biases, Kww1 and

cvv1, with the combination Kcn
vv1. The dynamic range then

tends to one with a basal level of zero. The value of input at the

threshold grows with K: a�?K
1
n. The activity at the threshold

tends to a half, and the Hill number tends to its maximum value of

n. The static gain, however, becomes small with G0?
n

K
1
n

.

We now reconsider the observations made from Fig. 2:

More subunits increase the dynamic range. For the

model of Fig. 1A, increasing the number of subunits on each

sensor increases the probability that all sensors can become active

for a given concentration of the input: fA(n1,a)wfA(n2,a) for any

n1wn2 from Eq. (1). The upper limit of the dynamic range in Eq.

(2) therefore increases (mathematically, the term cn becomes small

because c,1).

A high Hill number implies a high dynamic range. To

attain a high Hill number, both biases must be strong with

Kww1 and cvv1, Eq. (3), which is also the condition for a high

dynamic range, Eq. (2). Sensing is more cooperative with a

sigmoidal response curve of high Hill number and, consequently,

we expect that systems with high basal levels or low saturation

levels of activity are limited in the degree of cooperativity they can

achieve. The sensing response can, however, have relatively low

dynamic ranges (, 0.7) with Hill numbers of approximately 2, but

sensors with eight subunits are required (Fig. 2), which are

potentially more expensive to synthesize.

The intrinsic noise decreases with the number of

subunits. We calculated the intrinsic noise at the threshold

level of input, which gives an activity midway between its basal

and saturation levels. As the number of allosteric subunits on each

sensor increases, the upper limit of the dynamic range grows, and

the value of the activity at the threshold level of input also

increases. Consequently, more sensors are active, and the intrinsic

noise decreases: high intrinsic noise requires low numbers of active

sensors (Eq. (5), where NfA is the number of active sensors, and

Fig. 3D).

The capacity and the dynamic range are correlated. In-

tuitively, the larger the dynamic range, the more distinguishable

levels of activity are generated for the same range of levels of the

input providing there are not competing changes in the magnitude of

the intrinsic noise. More information can therefore be transferred.

Mathematically, we can see that Eqs. (2) and (6) are both minimal

when c~1 and both maximal when Kww1 and cvv1. Iopt can

be written as

Iopt~

log2

ffiffiffiffiffiffiffi
2N

pe

r
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{f bas

A

f bas
A

s !
{ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{f sat

A

f sat
A

s ! !" # ð12Þ

and depends only on the values of the basal and saturated levels of

the activity.

To be effective, a sensing system should have a capacity of at

least 1 bit and so be able to distinguish between at least two

different states of input. For a system with 100 sensors, dynamic

ranges of at least 0.5 are necessary to obtain such capacities (Fig. 2).

Systems with fewer sensors would have higher intrinsic noise and

would therefore require a higher dynamic range.

The static gain and the Hill number are anti-

correlated. The Hill number is proportional to
a

f norm
A

df norm
A

da
:

it measures the fractional change in the activity for a fractional

change in the input. The static gain, G0, is proportional to
dfA

da
: it

measures the absolute change in activity for an absolute change in

input. Although the Hill number increases with the strength of the

biases K and c, the value of the threshold input also increases, and

consequently the slope of the activity curve diminishes. Therefore

Figure 4. Maximising the information transferred through the
sensing system determines optimal distributions for outputs
and inputs. (A) Optimal distribution of inputs (dark blue area) and
activity (red curve) for a system where n = 1, K = 100, and c = 0.01. (B)
Optimal distribution of outputs for the system in (A), which has a
dynamic range of about 0.5. (C) Optimal distribution of inputs (dark
blue area) and activity (red curve) for a system where n = 4, K = 100, and
c = 0.01. (D) Optimal distribution of outputs for the system in (C), whose
dynamic range is close to 1.
doi:10.1371/journal.pcbi.1002261.g004
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the static gain decreases. For highly sigmoidal responses, relatively

large changes in input are required to generate the expected large

change in response because of the increase in the threshold

concentration. Small, limiting changes in input generate only small

responses. We also note that the Hill coefficient and the static gain

are never simultaneously maximal (Fig. 2)

The space of characteristics has large inaccessible regions
Our results imply that nature is not free to choose each sensing

characteristic independently. Specifying certain characteristics

restricts the values of others and some regions of characteristic

space may even be inaccessible. We used numerical methods to

explore generally the effects of one characteristic on another.

We considered the properties of the characteristics for a

randomly sampled set of parameter values. We sampled the two

biases from a uniform distribution in log-space and so assumed

that all orders of magnitude are equally probable. To determine

the average response time of the system, we also need the kinetic

rates. We sampled these rates similarly to our sampling of the

biases and use the values of the biases already sampled to calculate

one rate. For example, K is the ratio of the forward and backward

rates in the transition between R0 and T0 (from Fig. 1A, K~
fL

bL
with fL being the rate of transitioning from R0 to T0 and bL being

the rate of transitioning from T0 to R0). Given K we can then

sample freely one of the two rates, but the other is constrained.

Similarly, c~
KR

KT

~
bRfT

fRbT

and constrains another kinetic rate.

Some allosteric sensors may undergo transitions between active

and inactive states even when bound by the input ligand, unlike

the model of Fig. 1A. Such effects will not change five of the

characteristics, but will typically diminish the response time. We

therefore compared a model in which only transitions between R0

and T0 exist to one in which transitions are possible between all

states of ligand occupancy. We sample the additional kinetic rates

as described above but now constrained to the condition that at

each level of occupancy – Ri and Ti – the ratio of transition rates

satisfies
fi

bi

~Lci . For n~2, we find that the mean response time is

about two orders of magnitude lower when all transitions are

considered. Our analysis is not concerned with the absolute values

of the response time, but its relation to the other characteristics,

and throughout we use the model with transitions only between R0

and T0 states because, at least for n~2, the qualitative behaviour

of these relationships is model-independent.

As well as the general relationships between characteristics we

have already discussed, we also observed a weak correlation

between the average response time and the Hill number (Fig. 5B).

Generating a highly sigmoidal response is biochemically more

complex and usually requires more chemical reactions. Conse-

quently, there is a greater probability than one reaction will be

slow reducing the overall response time. The correlation is

maintained for the n~2 model with all active-inactive transitions

but disappears when we only consider simulations where all extra

kinetic rates are bound between 103 s21 and 1023 s21 (Methods).

We found that large regions of the space of characteristics are

inaccessible. Plotting dynamic range versus Hill number for our

randomly sampled parameters (Fig. 5A), we observe a well-defined

forbidden region of characteristics space that organisms using

allosteric sensing cannot access. There is a tight constraint on the

dynamic range when the Hill number is greater than one (Fig. 5A).

We can analytically determine the boundary of this region.

For example, when c~0 all data points in the charac-

teristic space fall on a line that bounds the points in Fig. 5A from

below. Similarly, a scatterplot of capacity and dynamic range

(Fig. 5C) shows that the data fall only in a narrow area of

characteristic space. Most of the space is inaccessible.

Further, high Hill numbers constrain the intrinsic noise to a

narrow band of possible values (Fig. 5D). Attempts at reducing

intrinsic noise below this constrained band require sharply

reducing the Hill number (for all sensors with more than one

subunit). As we have seen, high Hill numbers imply high dynamic

ranges (Fig. 5A) with basal levels close to zero and saturation levels

Figure 5. For randomly sampled parameter values, constraints exist between pairs of characteristics. (A) Scatterplot of the Hill number
and the dynamic range for our randomly sampled parameter sets. (B) Scatterplot of the normalised response time (Methods) and the Hill number. (C)
Scatterplot of the capacity and the dynamic range. (D) Scatterplot of the Hill number and the intrinsic noise measured at the threshold of the
response curve. For each number of subunits, n, there are 10,000 data points.
doi:10.1371/journal.pcbi.1002261.g005
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close to one and, consequently, the threshold of the response curve

will coincide with 50% of the sensors being active. From Eq. (5),

the intrinsic noise is then fixed at g2
int~

1=N, where N is the

number of sensors, and is insensitive to the values of the two biases.

Hence the narrow peak observed in Fig. 5D.

When looking at the six-dimensional space of all characteristics,

we found most of the space is empty and is inaccessible to allosteric

sensing systems: for all numbers of subunits, we find 90% of all

sampled systems are contained within less than 2% of the space of

characteristics, and all systems lie within less than 6% of the space

(in contrast, 10,000 samples of six randomly distributed charac-

teristics would with this measure occupy 100% of the six-

dimensional space). The densest regions have relatively high

dynamic range and capacity, low intrinsic noise, and relatively low

static gain for all numbers of subunits. As the number of subunits

increases, both the static gain and the Hill number are more

evenly distributed across the densest regions (Fig. 2), and the

response time takes average values.

The sensing characteristics are mutually constraining
To quantify further the trade-offs between pairs of character-

istics, we calculated the normalised mutual information [19]

between all possible pairs for our randomly sampled parameters

(Methods). We normalised by either the entropy of the first or the

second characteristic of the pair (Fig. 6). For example, if we

normalise by the entropy of the first characteristic, the normalised

mutual information measures the fraction of the entropy of the

first characteristic that is constrained by specifying the second.

When one characteristic is fixed, such as the Hill number for n~1,

then it shares no mutual information with others (inset of Fig. 6),

and changing any other characteristic cannot alter the Hill

number. There is a trend for the constraints between character-

istics to increase slightly as number of subunits of the sensors

increase (compare the colour of the matrix for n~1 with the

matrix for n~8 in Fig. 6). The characteristics are therefore more

independent for lower numbers of subunits.

The normalised mutual information need not be symmetric:

specifying one characteristic can therefore constrain another more

than specifying the second characteristic constrains the first. In the

n~8 matrix, we emphasize the trade-off between the Hill num-

ber and the dynamic range. The entropy of the Hill num-

ber is higher than that the entropy of the dynamic range

(inset of Fig. 6). Hence specifying the Hill number constrains

the dynamic range more than specifying the dynamic range constrains

the Hill number. A similar phenomenon occurs for the constraints

between the dynamic range and the intrinsic noise (Fig. 6).

We compared the results of the normalised mutual information

involving the response time for both the model of Fig.1A and the

Figure 6. The mutual information between pairs of characteristics quantifies the dependency of one characteristic on another. The
four matrices show the mutual information between all pairs of characteristics for different numbers of allosteric binding sites per sensor n = 1, 2, 4
and 8. The mutual information is normalised by the entropy of the characteristics on the rows. The darker colours represent pairs that are relatively
unconstrained and the brighter colours indicate pairs that are more constrained. The three scatter plots give three examples of different constraints.
From top to bottom, we have scatterplots of the static gain versus the Hill number, of the capacity versus the dynamic range, and of the dynamic
range versus the Hill number. When n~1, we observe a dark row corresponding to pairs involving the Hill coefficient because the Hill coefficient is
always one when n~1. The diagonals are white because the normalised mutual information of a characteristic with itself is always maximal.
doi:10.1371/journal.pcbi.1002261.g006
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alternative model with transitions between all active and inactive

states when n~2. For our sample of simulations the maximal

deviation observed between both models was about 70%. The

normalised mutual information between the response time and

any other characteristic, however, remained low and qualitatively

Fig. 6 is unchanged.

Discussion

For allosteric transcription factors, one of the simplest biological

sensing systems, we found several relationships between the

system’s sensing characteristics and that specifying one character-

istic strongly constrains others (Figs. 2, 5 and 6). Using the Monod-

Wyman-Changeux model, we showed that the dynamic range of a

collection of sensors reaches its maximum for most values of the

two biases, K and c, particularly as the number of subunits

comprising each sensor increases. We found that the Hill number

of the mean input-output response curve and the capacity – its

ability to transmit outputs that distinguish changes in the system’s

input – are both strongly correlated with the dynamic range and

that the Hill number is inversely correlated with the static gain.

Further, we showed that the intrinsic noise typically decreases as

the number of subunits on each sensor increases.

Perhaps surprisingly, we discovered that most of the space of

characteristics is inaccessible for typical values of biochemical

parameters (Fig. 5). For the collection of parameter values we

considered (10,000 sets of parameters in all), constraints between

characteristics caused less than 6% of the space of characteristics to

be occupied. A sensing system must therefore trade high

performance in one characteristic for low performance in another.

For example, the intrinsic noise in the response is highest when the

number of active sensors is low and therefore will be reduced by

increasing the system’s basal level of activity (Fig. 3D). Such an

increase, however, diminishes the dynamic range and also therefore

the system’s capacity (Fig. 2 and Fig. 5C). The fall in intrinsic noise is

not enough to overcome the decrease in capacity caused by

reducing the dynamic range. Reducing the noise would also

decrease the Hill number (Fig. 5D). The response time, however,

would be expected to become faster (Fig. 5B). Such constraints

tighten as the number of subunits in each sensor increases (Fig. 6).

To maximise information transfer, the system should generate

discriminative outputs for as many bands of input concentrations

as possible. We found that the distribution of output that

maximized the mutual information between the input and the

output is indeed discriminatory being peaked only at low and high

values. Similarly, the corresponding optimal input distribution has

high probabilities for those inputs where a small change in input

gives a large change in the mean output activity and has low

probabilities for inputs that give little mean change in the output

(Fig. 4). We find that the capacity has a maximum value of around

two bits for a system with a population of 100 sensors (Fig. 2), and

so allosteric transcription factors can therefore distinguish between

four bands of input concentrations, at least when our assumptions

of low intrinsic noise and more input molecules than sensors hold.

Selection, though, need not favour the ability to distinguish

multiple bands and therefore, say, multiple states of the

extracellular environment, but rather the ability to quickly and

reliably determine a few states, such as the presence or absence of

a toxin. Further, some cellular information-processing is likely to

be dynamic [24] with the system not having time to reach steady-

state as we have assumed here.

The number of subunits a sensor has enables the sensing system

to access different regions of the space of characteristics (Fig. 2).

Comparing 33 allosteric transcription factors in Escherichia coli [25],

we found that 33% are monomers and 48% are dimers with only

18% having more than two subunits (Table 1). Being a dimer helps

a transcription factor recognise palindromic sequences in promoters

[6], but having two subunits also perhaps gives a profitable

compromise between the fragility and robustness of the sensing

characteristics [26,27]. Dimeric systems have both substantial

regions of parameter space where some characteristics, such as

the dynamic range, intrinsic noise, and capacity, vary and equally

substantial regions where the dynamic range and the capacity are

large and the intrinsic noise small (Fig. 2). Sensors with four or

eight subunits, however, will have a near maximal capacity

for most values of the two biases, at least when there

are 100 sensors and given our approximations (Fig. 2), but do

not appear common in Escherichia coli. To include the higher

biochemical costs of synthesizing sensors with four or eight subunits,

we can compare the capacity for equal numbers of subunits rather

than equal numbers of sensors (e.g., a system with 50 dimers versus a

system with 25 tetramers). From Eq. (6), however, the maximal

capacity declines with the total number of sensors favouring dimers

over tetramers when the total number of subunits is limiting.

An important caveat to our results is that natural selection

presumably acts on the entire biochemical system, not only on

upstream allosteric sensing but also on both the direct and indirect

downstream gene expression. Our analysis, however, is perhaps

best extended to specific systems because to understand trade-offs

and constraints in those systems we need to know the biochemical

details of their control and regulation, the probability distribution

of typical inputs, the costs and benefits of potential responses, and

ideally how these responses correlate with fitness [1,28].

Nevertheless, we can make a few general predictions about how

some individual characteristics will change if the output of the

system is taken to be the level of expression of a downstream gene.

For example, the maximum Hill number describing the response

of the last species of a biochemical cascade is given by the product

of the Hill number at each stage of the cascade [29]. We can

expect the capacity to at best remain unchanged with the addition

of each new stage in the cascade from the data-processing

inequality [19]. Intrinsic noise in the output can increase because

each stage of the cascade is itself a new source of stochasticity

[30,31], but need not do so if the input at each stage saturates the

output at that stage [32]. Further, assuming that regulation of the

downstream gene can be described by a Hill function, we can

show by simulation that the dynamic range of the expressed

protein is more sensitive to changes in this function’s threshold

rather than its Hill number.

Table 1. Numbers of allosteric transcription factors in E. coli
sorted according to their number of subunits.

Allosteric transcription factors in Escherichia coli

Type of oligomer Numbers present

Monomers 11

Dimers 16

Tetramers 3

Hexamers 2

Octamers 1

For each of the transcription factors listed in Wall et al. [25], we searched in
online databases [42] and in the literature for information on the type of
oligomer they form. We excluded those for which no information could be
found or for which there are contradicting reports.
doi:10.1371/journal.pcbi.1002261.t001
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If we consider that natural selection acts to improve the

performance of a sensing system, our results indicate that the

performance of allosteric sensors is likely to be a function that

balances the values of all the sensing characteristics. Changing one

or two necessarily changes others. Indeed, there are other factors,

such as structural constraints, difficulties in regulating the

molecular assembly of large oligomers, fluctuations in the number

of sensors, and energetic costs, that we have not considered and

that will impact selection. Nevertheless, the biochemistry of

allosteric sensing prevents random changes in the values of

biochemical parameters generating random changes in sensing,

and, as such, the constraints we have determined here may

themselves have been selected to enable allosteric sensors to be

evolvable and reduce catastrophic mutations [33].

Methods

Sampling of parameters
The biases K and c are sampled from a uniform distribution in

logarithmic space across six orders of magnitude for each case, i.e.,

1vKv105 and 10{5
vcv1. We consider the number of subunits

on each sensor to be n~1,2,4 and 8. For each, we sample 10,000

different sets of K and c pairs. The kinetic rates fR, bR, fT and bT

(Fig. 1A) are sampled a posteriori with the constraint that the

previously sampled values of the biases are maintained. Taking the

typical volume of an E. coli cell, 10-18 m3 [34], and the diffusion-

limited upper bound on association rates, which is in the order of

107 – 1010 M21 s21 [35], we sample normalised kinetic rates

between 1023 s21 and 103 s21. We sample the kinetic rates for the

model that includes transitions between all active and inactive

states similarly, maintaining that
fi

bi

~Lci.

Estimating the response time
We find the response time by simulations of an ordinary

differential equation model using the Facile software [36] and

MATLAB (The MathWorks, Massachusetts). We normalise the

response time by dividing by 1s, which is the timescale associated

with the central value of the range we chose for the kinetic rates.

Intrinsic noise
We can calculate the intrinsic noise of the system analytically if

we assume that the number of input molecules is much greater

than the number of the sensors. We can then consider each sensor

to act independently: any input molecule binding to one sensor

does not affect the availability of input molecules for other sensors

because the number of free input molecules is always assumed to

be much greater than the number of sensors proteins, or more

exactly the total number of allosteric binding sites. We proceed by

considering a single allosteric molecule. In the presence of input

molecules, the sensor will transition between R and T states

according to the transition probabilities for each trans x

transitioning from a state to any of its neighbours and the

transition probabilities are independent of how the system

reached that state. Denoting the time-dependent state vector of

the system by X (t)~½R0(t)T0(t):::Rn(t)Tn(t)� and the transition

rate matrix by P, where Pij is the transition probability between

states i and j and Pii~{
P
j=i

Pij , then

d

dt
PX (t)~PX (t)P, ð13Þ

and we have PRi
~PRn

n

i

� �
a{(n{i) and PTi

~PRn Ka{n n

i

� �
cað Þi

at steady-state. Eq. (13) is identical to the system of deterministic

rate equations that describe the dynamics of the mean activity

for a fixed amount of free input. The probability of a sensor

being in the active state is given by

PR~
Xn

i~0

PRi
~

(1za)n

(1za)nzK(1zca)n : ð14Þ

These results then show the probability of an individual sensor

being active is given by fA from Eq. (1) – the deterministic (mean)

activity for a population of sensors. Furthermore, in a model that

includes transitions between the R and T states when they are

bound by input molecules, neither the mean activity (Eq. (1)) nor

the probability of a sensor being active (Eq. (14)) are altered

because of the thermodynamic constraint between parameter

values created by the presence of cycles of reactions (involving Ri,

Riz1, Ti and Tiz1).

To extend our results to a stochastic population of sensors, we

need to consider all possible configurations of the individual

sensors that correspond to a particular activity of the population.

For example, for a system with two sensors and one subunit, n~1,

our approximation implies that both sensors are independent and

the probability that both are active is then

P both activeð Þ~PR0
PR0

zPR0
PR1

zPR1
PR0

zPR1
PR1

~ PR0
zPR1

� �2

~ fAð Þ2
ð15Þ

Similarly, the probability that only one sensor is active is

P 1 activeð Þ~2fA 1{fAð Þ and the probability that no single sensor

is active is P none activeð Þ~ 1{fAð Þ2. Extending the argument

for systems with higher numbers of sensors, the activity obeys a

binomial distribution [22]: the probability of having m of N sensors

active is

PN,m~
N

m

� �
fA

m 1{fAð ÞN{m ð16Þ

which corresponds to the probability of an activity of m/N.

Calculation of the capacity
The capacity is the upper bound of the mutual information

between the input a and output, i.e., the activity fA, given a model

for the intrinsic noise. The mutual information is defined as [19]

I a,Að Þ~
ðð

dadAp a,Að Þlog2
p a,Að Þ

p að Þp Að Þ

� �
: ð17Þ

Using a small Gaussian noise approximation, Tkačik et al. [20]

derived the optimal solutions of the input and output that

maximise the mutual information, i.e., the capacity. Their solution

is

Iopt a,Að Þ~log2
Zffiffiffiffiffiffiffiffi
2pe
p
� �

, ð18Þ
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where Z~
ÐAsat

Abas

dA

sA

. Using the expressions for fA and sA in Eqs. (1)

and (9), we find the capacity in the MWC system satisfies Eq. (6).

Stochastic simulations
All stochastic simulations were performed using the EasyStoch

software [38], which implements the Gibson-Brück [39] version of

the Gillespie algorithm [40].

Calculation of the frequency-dependent gain

Given the general form of a linear system,
dx

dt
~AxzBu,

y~CxzDu, where x1, x2,…, xn are the state variables, u1, u2,…,

ui is the input and y1, y2,…, yj is the output, it can be shown that

the frequency response is given by G(iv)~C ivI{Að Þ{1
BzD

with I being the identity matrix [15]. The frequency-dependent

gain measures the relation between the input and the output of

linear systems, and here we use it to quantify how the system

responds to extrinsic fluctuations in the input signal. We ignore

intrinsic fluctuations and consider the system to be at equilibrium,

or at an ‘operating point’, and introduce a small perturbation term

to the input, L, so that it becomes LzdL. This fluctuation

propagates through the system and each variable gains a small

correction whose dynamics we follow by linearizing an ordinary

differential equation model of the system. We can then write down

the matrices A, B, C, and D and calculate the frequency-depen-

dent gain directly.

The sensing system is a low-pass filter
The frequency-dependent gain has the form

G(s)~
R(s)

S(s)
~

R(s)

P
k

i~1
szpið Þ

, ð19Þ

where s~iv is the complex argument of the Laplace transform.

The roots of the numerator, R(s)~0, are the zeros of the

system; those in the denominator, written as pi, are the poles.

The exact number of zeros and poles varies with the number of

subunits on the sensors, and the magnitude of the gain rises for

each zero and falls for each pole [15]. We found the number of

poles always to be greater than the number of zeros and

therefore the system is a low-pass filter. We consider the pole

with the lowest frequency to be the cut-off frequency. For all

numbers of subunits the number of poles exceeds the number of

zeros by two, so in the limit of large frequencies the transfer

function declines with 1
�
s2.

Occupancy in the space of characteristics
To give an estimate of the density and occupancy of the space

of characteristics, we divided the space of characteristics into

equally sized hypercubes and counted the number of sampled sets

that fall into each hypercube. We binned each characteristic

into low, medium and high levels, thus obtaining a total of 729

hypercubes.

Quantifying constraints by mutual information
Mutual information is a statistical measure that quantifies how

much knowing one random variable informs on another [19,41].

It is symmetric, but we normalise it in two ways, by the entropy of

each characteristic in the pair. For characteristics X and Y , the

normalised mutual information in its discretized form is

MI(X ,Y )~
I(X ,Y )

H(Y )
~{

P
x

P
y

p(x,y)log2
p(x,y)

p(x)p(y)

� �
P
y

p(y)log2p(y)
, ð20Þ

where I(X ,Y ) is the mutual information between two character-

istics and H(Y ) is the entropy of one characteristic. We estimate

the probability distributions for the characteristics by binning

values of the characteristics from our randomly sampled

parameter sets into 30 bins. Although the probabilities are then

dependent on the numbers of bins, we varied that number without

observing a substantial qualitative change in the mutual

information.
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