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Abstract

The neuronal system underlying learning, generation and recognition of song in birds is one of the best-studied systems in
the neurosciences. Here, we use these experimental findings to derive a neurobiologically plausible, dynamic, hierarchical
model of birdsong generation and transform it into a functional model of birdsong recognition. The generation model
consists of neuronal rate models and includes critical anatomical components like the premotor song-control nucleus HVC
(proper name), the premotor nucleus RA (robust nucleus of the arcopallium), and a model of the syringeal and respiratory
organs. We use Bayesian inference of this dynamical system to derive a possible mechanism for how birds can efficiently
and robustly recognize the songs of their conspecifics in an online fashion. Our results indicate that the specific way
birdsong is generated enables a listening bird to robustly and rapidly perceive embedded information at multiple time
scales of a song. The resulting mechanism can be useful for investigating the functional roles of auditory recognition areas
and providing predictions for future birdsong experiments.
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Introduction

Songbirds are able to repeat the same, often complex songs with

amazing precision. When male birds sing to a female repeatedly,

there is on average a 1% temporal deviation across the whole song

[1,2]. This combination of complexity and precision is remarkable.

Studying the neuronal basis of birdsong generation may lead to an

understanding of the mechanism underlying how sequences of

song syllables are expressed as complex and temporally precise

sound wave modulations. More generally, such a mechanism may

also be useful for understanding how action sequences at a

relatively slow time-scale (e.g. the words in a sentence) can be

generated by a neuronal system while a high degree of precision is

maintained in the output at a fast time-scale (e.g. the sound wave

modulations necessary to form speech sounds).

Recent findings [1–3] have shown that the song generation

mechanism in birds is hierarchical where neurons in one particular

high-level structure, HVC, fire in a specific sequence with high

temporal precision and drive neurons in the lower level structure

RA (robust nucleus of the arcopallium).

Female birds, at which the songs are typically directed, are

expert in registering variables like the speed of the song and the

precision and the repertoire of the singer [4–8]. Unfortunately, the

study of song recognition is more challenging than song generation

because experimental indicators for recognition, such as the

subsequent behavior of a female bird, are more difficult to

measure than indicators for song generation. This has led to a long

list of experimental and theoretical findings on song generation

and learning while the mechanisms of song recognition remain

relatively elusive.

Here, we propose that the functional mechanism of song

recognition can be obtained from the song generation mechanism. The

basic idea underlying this novel modeling approach is that female

birds are optimal in song recognition because their mating choice

critically depends on the optimal recognition of valuable features

of the male which are revealed by subtle indicators in his song.

Similarly, male birds should be able to distinguish the songs of

their neighbors from the songs of strangers to protect their

territories [9,10]. Using a recently established Bayesian inference

technique for nonlinear dynamical systems [11], we can emulate

this optimal recognition: the key ingredient is a generative model

(a nonlinear dynamical system) which can generate a specific song.

Usually, generative models for complex sensory dynamics, such as

the sound wave or spectrum of birdsong, are difficult to derive

because it is hard to describe a complex multi-scale structure like

birdsong using only differential equations. Fortunately, since the

hierarchical birdsong generating system is so well-studied, parts of

such a model already exist, in particular at the level of the HVC,

RA and vocal tract dynamics [12–18]. We have combined these

parts into a coherent whole, guided by key experimental results,

to form a generative model that can play complex songs. In

particular, we combined sequence-generating dynamics, attractor

dynamics and a model of vocal tract dynamics [17] in a three-

level, hierarchical nonlinear dynamical system. This dynamic

model is based on neuronal rate models, thereby describing the

biological system at a mesoscopic level. We then used Bayesian

inference to derive another set of hierarchical, nonlinear

differential equations (recognition system) which is, by way of

construction, Bayes-optimal in recognizing this song and can be

compared to the real birdsong recognition system. To do this, we
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exposed the agent to several tasks and found that the agent’s

dynamics and performance were reminiscent of song recognition

in real bird brains in aspects such as sensitivity to speed changes

[19] and song perturbations [20,21]. Thus, by harnessing rich

experimental and theoretical results in birdsong generation,

we were able to derive a novel, functional model of birdsong

recognition. We discuss the experimental evidence that the iden-

tified mechanism is indeed used for song recognition by birds. We

suggest that the present model may be useful for understanding the

functional and computational roles of auditory recognition areas.

In addition, the identified recognition mechanism can be used as a

novel machine learning tool to recognize sequential behavior from

fast sensory input, e.g. in artificial speech recognition.

Model

In this section, we will briefly summarize relevant experimental

findings, motivate and describe the present model for birdsong

generation and briefly give the mathematical details.

A birdsong consists of small units called notes (analogous to

phonetic units in speech) which can be grouped together to form

syllables [22]. A combination of identical or different syllables

forms motifs. This hierarchical structure of song units is produced

by two highly specialized song pathways (Figure 1, see [23] for a

review). In the motor pathway, the forebrain nucleus HVC

includes specific neurons called HVC(RA) that project to nucleus

RA. RA neurons innervate the vocal and respiratory nuclei to

produce vocal output. The anterior forebrain pathway is involved

in learning new songs and producing variability for the song

structure [24].

Our modeling approach is based on the following key ex-

perimental observations: During birdsong generation, HVC(RA)

neurons fire sequentially at temporally precise moments where

each element of this sequence fires only once during the song

to control a group of RA neurons [2,3,25]. This suggests that

Author Summary

How do birds communicate via their songs? Investigating
this question may not only lead to a better understanding
of communication via birdsong, but many believe that the
answer will also give us hints about how humans decode
speech from complex sound wave modulations. In birds,
the output and neuronal responses of the song generation
system can be measured precisely and this has resulted in
a considerable body of experimental findings. We used
these findings to assemble a complete model of birdsong
generation and use it as the basis for constructing a
potentially neurobiologically plausible, artificial recogni-
tion system based on state-of-the-art Bayesian inference
techniques. Our artificial system resembles the real
birdsong system when performing recognition tasks and
may be used as a functional model to explain and predict
experimental findings in song recognition.

Figure 1. The schematic diagram of a songbird brain with the motor pathway (red arrows), which is considered in the model of
song generation, and the anterior forebrain pathway (AFP, black arrows). In the motor pathway RA neurons that are driven by the HVC
control the motor (nXIIts innervates the syrinx) and respiratory (DM) areas. The anterior forebrain pathway communicates with the motor pathway
through the LMAN area that provides direct input to the RA region. Abbreviations: DLM, nucleus dorsolateralis anterior, pars medialis; DM,
dorsomedial nucleus; HVC, a letter based name; LMAN, lateral magnocellular nucleus of the anterior nidopallium; nXIIts, tracheosyringeal portion of
the nucleus hypoglossus; RA, robust nucleus of the arcopallium. Adapted from [87].
doi:10.1371/journal.pcbi.1002303.g001

A Model for Generation and Recognition of Birdsong
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bursting HVC(RA) neurons select and drive the activity of subsets

of RA neurons [25]. In particular, each RA neuron can be driven

by more than one HVC(RA) neuron [26], see Figure 2.

How can one model such a mechanism? There have been

several approaches to model the sequential activation of HVC(RA)

neurons using single neuron models [12–15]. Here, we follow an

alternative way by capturing the neuronal mass activity using

firing rate models, i.e. we consider model neurons that can be

thought of as the synchronized firing activity of an ensemble of

neurons. This is motivated by experimental evidence suggesting

that there are about 200 co-active HVC(RA) neurons at a specific

time during song generation [25]. One of the well established ways

for modeling the sequential activation of neuronal ensembles is the

winnerless competition using Lotka-Volterra type dynamics

[27,28]. This approach aims at modeling activity at a mesoscopic

level, e.g. activity that may be expressed in local field potentials.

Another benefit of using ensemble dynamics appears at the RA

level where each ensemble controls the vocal tract muscles in a

specific way. Different than HVC(RA) ensembles, one or more

RA ensembles can activate simultaneously (synchronize) [25]

(Figure 2). We hypothesize that the complex sound wave mo-

dulations that can be observed in many birdsongs are generated by

this network of RA ensembles using spatiotemporal coding (see

also [26]). This coding requires the activation of different sets of

RA ensembles (spatial coding) when the proper signals are

received from the corresponding HVC(RA) ensembles (temporal

coding). This spatiotemporal coding can be modeled with network

states which are driven from one attractor to another where each

of these attractors specifies the currently active RA ensembles.

In other words, when HVC(RA) ensembles undergo sequential

activations, the RA level is driven from one attractor to the next.

Such networks with attractor dynamics (so called Hopfield

networks [29]) can encode a large number of potential attractors

because the forcing input from the HVC level effectively

recombines subsets of RA ensembles in distinct assemblies.

Note that since the activity of each unit represents the average

firing rate of an ensemble of neurons, some features of neural

activity at the level of individual neurons are not considered.

Here, we focus on capturing the two key features of the

hierarchy, which are the sequential firing of HVC ensembles

and the spatiotemporal coding at the RA level. Therefore, the

choice of parameters in the computational model below are

motivated by capturing the specific dynamics inferred by

experiments [25].

At the lowest level, we map the dynamical RA states onto motor

neurons. To do this, we compute linear combinations of oscillators

at different frequencies which represent the effect of currently

active RA ensembles and create dynamical control signals

(Figure 3) for a model of the vocal organ, the syrinx [17]. This

mathematical model of the syrinx has been used previously to

model several birdsongs [30,31].

In summary, the present three-level hierarchical model

generates sequences at its top (HVC) level, which are transformed

into sequences of multi-dimensional attractors at the RA level.

Each of these attractors encodes a mixture of oscillations. These

oscillatory dynamics enter a syrinx model as a control signal to

produce a birdsong sonogram. In the following, we describe the

equations used at each level in detail (see Figure 4 for an overview).

The Bayesian recognition of dynamics generated by this birdsong

model is described at the end of the section.

Figure 2. The scheme of HVC and RA dynamics. Five RA ensembles are controlled by eight sequentially activated HVC(RA) ensembles. The
horizontal axis denotes time and the arrows describe the specific HVC ensemble that activates the corresponding RA ensembles. The color scheme
matches the dynamics shown in Figure 5. The part of the song obtained from the first three RA-patterns (i.e., ensemble combinations 2–4, 1-3-5 and
1–4) is shown as a sonogram in Figure 3.
doi:10.1371/journal.pcbi.1002303.g002
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HVC Sequential Dynamics
Lotka-Volterra equations are well known in population biology

to describe the competition between species [32]. Rabinovich et

al. (see [33] for a review) applied this idea more generally to

neuronal dynamics under the name of winnerless competition,

see [28] and [34] for applications. In the following, we will

describe how one can apply this idea to model sequential HVC

activity by a nonlinear dynamical system. In the winnerless

competition setting, there are N equilibrium points which are

saddles of a nonlinear dynamical system. Each of these

equilibrium points has a single unstable direction and all other

directions are stable. One can think of these saddle points as the

beads on a string where the unstable manifold of one saddle point

is the stable manifold of the next saddle point and this sequence

continues in a circular fashion forming a heteroclinic chain.

Under some conditions [27], this sequence is stable, i.e. a solution

of the system that starts from a neighborhood of the chain, stays

in this neighborhood at all times while traveling through all

saddle points. This stable sequential behavior is what we exploit

to model the experimentally established sequential activities of

HVC(RA) ensembles at the highest level. As the solution of the

system moves along the string, it visits all saddle points, i.e. each

HVC(RA) ensemble, one by one thereby activating each ensemble

for a brief period until it is deactivated as the next ensemble

becomes active.

These dynamics can be obtained from a neural mass model of

mean membrane potential and action firing potential [35],

reviewed in [33]. We use the equations:

Figure 3. Motor control signals and resulting power spectra generated by the model. Left: The motor control signals are obtained by a
linear combination of sine waves (L) with p(t)~p1(L)zp0 (x-axis) and k(t)~k1(L)zk0 (y-axis) where L~sin(f2t)zsin(f4t) in (A),
L~sin(f1t)zsin(f3t)zsin(f5t) in (B) and L~sin(f1t)zsin(f4t) in (C). Right: These p(t) and k(t) dynamics are used in the syrinx equations (4) to
obtain sound waves with the corresponding sonograms (time (sec) vs. frequency (kHz)). p(t) and k(t) control the amplitude and frequency of the
sound waves, respectively. When p(t)vps&0, no phonation is produced (mini-breaths, [44]). The fluctuations in the fundamental frequencies in the
sonograms on the right can be traced by moving in counter clock-wise direction on the ellipse-like curves on the left starting from the blue arrows at
t~0.
doi:10.1371/journal.pcbi.1002303.g003
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_xx(3)~k3({lx(3){rS(x(3))z1)zv1
(3),

v(3)~G(x(3))zv2
(3),

ð1Þ

where x(3)[<N|1 is the hidden-state vector (e.g., mean membrane

potentials) at the third (HVC) level, k3 and l are scalars,

S(x)~1=(1ze{x) is the sigmoid function applied component-

wise and r[<N|N is the connectivity matrix with entries rij giving

the strength of inhibition from state j to i. The second equation

describes the output vector (or causal-state vector; e.g., neural

firing rates) v(3)[<N|1 where Gi(x)~ exiPN
k~1

e
xk

, i~1,2, . . . ,N, is a

normalizing function. We also add normally distributed noise

vectors v1
(3) and v2

(3) to render the model stochastic. With an

appropriately chosen connectivity matrix, one can obtain a system

with N saddle points forming a stable heteroclinic chain [27]. For

the entries of the connectivity matrix, one chooses high inhibition

from the previously active neuron to the currently active neuron

and low inhibition from the current active neuron to the next

neuron which will become active:

rij~

0 j~i,

1:5 j~iz1,

0:5 j~i{1,

1 otherwise:

8>>><
>>>:

(Here iz1~1 when i~N and i{1~N when i~1).

Note that, theoretically, one can generate arbitrarily long

sequences of HVC activation using the above connectivity matrix.

The stability region around the heteroclinic chain will persist for

much longer sequences than the one modeled here. For our

illustrative simulations described below, we use N~8, i.e., there

are 8 HVC(RA) neuronal ensembles but the model works robustly

with more HVC(RA) ensembles as well (see Figure S1). A real bird

brain has many more HVC(RA) ensembles but here we are

interested in presenting a general mechanism for which a small

selection of HVC and RA ensembles is sufficient. See the third

level dynamics in Figure 5A for typical dynamics generated by this

system.

We control the dynamics of RA ensembles by letting the kth

HVC(RA) ensemble send a signal Ik[<N|1 to the lower level

during its activation time. See the next subsection for details of

how this signal vector is computed. The total signal sent to the

lower level by all HVC(RA) ensembles at any time is a linear

combination of the Ik’s: I(t)~
PN

k~1

v
(3)
k (t):Ik where v(3)[<N|1 is

the output vector in Eq. (1). Note that for typical sequential

dynamics at the HVC level, except for the transition times, only

one entry in v(3) is active (i.e., only one entry is close to 1), see

Figure 5A.

RA Attractor Dynamics
Experimental findings suggest that activation of different

HVC(RA) ensembles drives the activation of different combinations

of RA ensembles [25]. In the present model, we capture this by

forming a network of RA neuronal ensembles whose dynamics

converge to one of several attractors depending on the input from

the HVC level (see Figure 2). This means that the RA level

receives input from the HVC level and produces output which

encodes the level of activity of each RA ensemble at a given time.

Since we are working with continuous systems, the notion of

attractors comes up naturally as the RA ensemble activity flows

from one activity pattern to another one. To achieve this smooth

flow between RA attractors, we have to use a nonlinear network

because otherwise the RA level would simply copy the dynamics of

the HVC level. Note that, similar to the HVC level, the intrinsic

neuronal dynamics of the RA are not established well experimen-

tally. In this situation, we aim at describing underlying population

dynamics which give rise to the experimentally observed key

features of RA dynamics [25]. To implement these dynamics, we

use a well-established type of an attractor-based network described

by Hopfield [29]. Hopfield networks have been mostly used as a

model of associative memory where each memory item is encoded

by an attractor. When such a system receives noisy sensory input,

i.e. it is started at some nearby initial state, it evolves to an

attractor (the memory to be retrieved) [29,36]. Here, we use this

idea to encode the activities of RA ensembles by attractors. As the

attractor of the network changes continuously due to driving HVC

input, the activities of RA ensembles also changes such that some

Figure 4. Summary of nonlinear differential equations (1), (3),
(4) and (5) (see Text S1 for Eq. (5)) that are used in the
hierarchical model for birdsong generation. Notice that the
output at each level is used as an input to the lower level. Typical
dynamics of HVC, RA and oscillator (Osc.) levels are given in Figure 5A,
5B and 5C, respectively. Finally, the output of the oscillator level is used
in the syrinx equations to produce appropriate sound waves (Figure 6).
See Table 1 for the parameters.
doi:10.1371/journal.pcbi.1002303.g004
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RA ensembles activate and some others deactivate. This gives us

the spatiotemporal coding that drives the syrinx dynamics

described in the next subsection. We use a Hopfield network with

asymmetric connectivity matrices [37–39] given by the following

equation:

_xx~{AxzWQ(x)zI , ð2Þ

where x[<n|1 is the ensemble state vector with n ensembles,

A[<n|n is a diagonal positive matrix which governs the rate of

change of each ensemble’s state, W[<n|n is a synaptic con-

nectivity matrix with entries wij denoting the strength of con-

nection from ensemble j to ensemble i, Q : <n|1?<n|1 is the

activation function which we take as tanh function applied

component-wise and I[<n|1 is the direct input from the HVC

level. This equation is similar to Eq. (1), i.e. both are continuous-

time recurrent neural networks, but in Eq. (2) we have an

additional input vector and different conditions on the connectiv-

ity matrix as described below. In addition, the use of the nonlinear

activation function Q brings more plausibility to the network, as

compared to linear dynamics, since the effect of one RA ensemble

to another one does not increase linearly but saturates.

The input vector I should be chosen such that RA ensembles

get quickly attracted to a desired attractor. An attractor means that

a subset of the RA ensembles are ‘active’ (taking the value 1) while

all other RA ensembles are inactive (taking the value {1). The

goal is to establish conditions for the network in Eq. (2) to have a

globally asymptotically stable equilibrium point (a vector x� that

makes the right hand side of Eq. (2) zero and attracts all the

solutions regardless of the initial state). These conditions and the

proper choice of I for the desired attractor have been described in

[38] and [40] (see Theorem 1 in Text S1).

Using this technique, we can employ a small number of RA

ensembles to encode a larger number of desired attractors to

control the lowest level, the motor output. Each HVC(RA)

ensemble provides a different I -vector to the RA level thereby

driving the RA ensembles into a unique attractor. The application

of this is that each RA level attractor will drive the motor output in

a specific way thereby producing a different part of the song. We

obtain the equations for the second level by combining the

Hopfield network, Eq. (2), with the two output equations (state

vectors) v(2) and w(2) where superscripts denote the specific level of

a variable:

_xx(2)~k2({Ax(2)zWQ(x(2))zI)zv(2)
1 ,

v(2)~x(2)
�

2z1=2zv(2)
2 ,

w(2)~G(x(2))zv(2)
3 ,

ð3Þ

where the exact form of the connectivity matrices A, W and the

HVC input vector I are described in Text S1, k2 is a scalar and

v
(2)
j are normally distributed noise vectors. G is the normalizing

function as in Eq. (1). Note that v(2) squeezes the entries of x(2) into

the interval 0,1½ � but w(2) may return values smaller than 1 since

more than one entry of x(2) can be active (z1) at a given time.

The vectors v(2) and w(2) carry the output of the second level to the

first level (oscillator level) as described in the next subsection.

In the present model, we use n~5 (i.e., five RA ensembles,

Figure 5B). Note that there are 2n{1 different ways to activate n
RA ensembles to produce motor output. We use 7 of these 31

combinations (one occurring twice) in Figure 5 for generation of

an example song (with 8 HVC(RA) ensembles at the higher level).

In the figures, we used arbitrary units for both time (x-axis) and

neuronal activation (y-axis) because we consider neuronal

ensembles.

Model of the Avian Vocal Organ
The avian vocal organ, the syrinx, is located at the base of the

trachea (windpipe) where the trachea divides into the bronchi. A

set of soft tissues within the syrinx, the labia, which are similar to

Figure 5. Generated dynamics for the first simulation ‘Ideal
communication’. The causal states are shown on the left and hidden
states on the right with arbitrary units both in time and neuronal
activation. There are three levels: A) HVC (third) level, Eq. (1), B) RA
(second) level, Eq. (3) and C) Oscillator (first) level, Eq. (5) in Text S1. At
the third level, there are eight HVC ensembles (each represented with a
different color) which are activated for a short amount of time to
control the dynamics of the five RA ensembles, see also Figure 2. At the
second level (left column), the solid lines represent v(2) and dashed lines
represent w(2), see Eq. (3). At the first level (right), we only show x(1)

since y(1) is a shifted version of x(1), see Eq. (5) in Text S1. At the first
level (left), the blue line is v(1) and the red line is w(1) (which are mostly
overlapping because of phase-locking). These output dynamics control
the syrinx to obtain synthetic birdsong (Figure 6).
doi:10.1371/journal.pcbi.1002303.g005

A Model for Generation and Recognition of Birdsong
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human vocal folds, oscillate with the airstream propelled from the

air sacs. Sound waves generated from these oscillations propagate

through the trachea and beak. Therefore, these sound waves are

modeled as the oscillations of the labia which are produced by the

vocal control signals: the air sac pressure, p(t), and the stiffness of

the labia, k(t). Such a mathematical model of the vocal fold

oscillations was first given by Titze [41], and similar oscillations

were experimentally observed in the bird syrinx [42]. A simplified

version of this model (using a polynomial approximation for the

nonlinear dissipation) can be given as follows [17]:

_xx~y,

_yy~ p(t){b½ �y{k(t)x{cx2y,
ð4Þ

where x is the position of the labia from the midpoint of the syrinx,

p(t) denotes the air sac pressure, b is the linear dissipation

constant, k(t) is the stiffness of the labia and cx2y is a dissipation

term to prevent the big amplitude oscillations when the labia meet

each other or the walls of the syrinx [43]. The fundamental

frequency of the sound wave increases or decreases proportional to

k(t). Note that there is a critical value ps for the pressure such that

if p(t)vps, no phonation is produced. This region in the

parameter space corresponds to the mini breaths between syllables

[44]. Using this simple model, one can obtain accurate copies of

some birdsongs such as canary [30], chingolo sparrow [17], white-

crowned sparrow [31] and cardinal [45] by choosing appropriate

vocal control signals for the syrinx (p(t) and k(t)) as described next.

Vocal Control Signals
Oscillators as in the present model have been widely used to

model movement patterns in animals and humans. Central pattern

generators are a well-known example of neural networks that are

used to generate periodic motor commands such as locomotion

[46]. We use the same principle here, and use five oscillators with

different frequencies (one for each RA ensemble) to let the RA

dynamics drive the vocal output (syrinx) mechanism, see Eq. (4).

Note that it is experimentally not well established how the RA

level controls the syrinx muscles; our approach is a natural

extension of the phenomenological syrinx model described above

[17]. The main point here is that the oscillator level (first level) is

assumed to generate mixtures of oscillations (hidden states) where

the RA level activity at the supraordinate level controls which

oscillations should be produced at a given time. Each RA

ensemble is assumed to control the activity of a single oscillator

at the level below Therefore, the spatiotemporal coding of the RA

level is transformed into the oscillatory activity of the first level

which generates the final p(t) and k(t) dynamics necessary to

control the syrinx.

As oscillators, we choose simple sine wave equations where the

lowest frequency oscillator sin f1t corresponds to the slowest-

changing dynamics of the birdsong. We choose the remaining four

oscillators such that their frequencies are integer multiples of this

first oscillator’s frequency (fi~if1): sin f2t, sin f3t, sin f4t and

sin f5t. Each one of these sine waves represents faster changing

dynamics of the song; sin f5t being the fastest. In this way, we can

model effects in the birdsong which express themselves on different

time-scales.

We include these five oscillators in the present model at the first

level, where each of the five ensembles at the RA level controls the

amplitude of one of the oscillators (through v(2), Eq. (5) in Text

S1). The observable output is obtained by taking a linear

combination of these amplitude-modulated sine waves. To drive

the vocal model appropriately, we produce two outputs v(1) and

w(1) (the second output is simply a time-shifted copy of the first

one), which are involved in producing air sac pressure p(t) and the

stiffness of the labia k(t). v(1) and w(1) are described in detail in

Text S1.

Laje et al. [31] chose p(t) and k(t) to form several ellipses in the

p{k parameter space where each ellipse corresponds to a

different syllable. However, this parameterization may not support

complicated syllables which have more fluctuations on the

sonogram. Here, we extend their model to increase the complexity

of the generated songs by using the linear combination of different

frequency sine waves (v(1) and w(1) described above) to para-

meterize these two functions and obtain a variety of ellipse-like

curves in the p{k parameter space (see Figure 3):

p(t)~p1(v(1))zp0,

k(t)~k1(w(1))zk0,

where v(1) and w(1) are the outputs of the first level and the scalars

are given in Table 1. These ellipse-like curves can be plugged into

Eq. (4) to obtain synthetic birdsongs. See Figure 6 for the

sonogram obtained using the first level output of the generation

process shown in Figure 5C. The sonogram can be played and is

reminiscent of a birdsong (Audio S1). Note that in the real system,

longer HVC(RA) sequences would be required to produce a song

with 6.5 seconds duration since HVC(RA) bursts last only about

6–10 ms [25]. Here, we assume that each HVC(RA) ensemble in

the model is a collection of at least 80 HVC(RA) neurons that fires

sequentially and controls the timing of the song for about 800 ms.

Table 1. Variables used in the generative and recognition
models.

x(i) ,y(i),v(i) ,w(i) Hidden states, x(i) ,y(i) and causal states, v(i) ,w(i)

vj
(i) Normally distributed noise vectors at the ith level

S,G Sigmoid (S) and normalizing (G) functions

k1,k2,k3 Rate constants: k1~6=5, k2~1 and k3~1=5

l Decay rate: 1=8

r Connectivity matrix of the HVC level

A Diagonal matrix with diagonal a~0:2

W Connectivity matrix of the RA level

I Direct input from the HVC to the RA level

N,n Number of HVC (N~8) and RA (n~5) ensembles

fi Angular frequencies: fi~if1 where f1~0:06

h Phase-shift: h~3 time units.

p0,p1,k0,k1,b,c Syrinx control parameters:

p0~4700 s{1 p1~7000 s{1

k0~7:6|108s{2 k1~7|108s{2

b~1000 s{1 c~108s{1cm{2

Sv
(i)
j Covariance matrices for the noise in generation: v(i)

j

Sv
(i)

1 ~diag(exp({12)) Sv
(i)

2 ~diag(exp({16))

This table lists the variables of the equations shown in Figure 4 and Eqs. 1 to 5.
doi:10.1371/journal.pcbi.1002303.t001
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Online Bayesian Recognition
In this subsection, we will briefly describe the present re-

cognition scheme for the generated songs. This scheme is a model

of vocal communication between conspecific birds but may also

serve as a functional model to explain experimental findings along

the auditory processing pathway which is less understood than the

song pathway. Here, we describe a potential mapping of this

Bayesian inference framework to neuronal dynamics at a po-

pulation level, see [47,48]. The inference is based on hierarchical

message passing and implements a predictive coding scheme for

dynamics. As summarized below, all the update equations of the

recognition system (to reconstruct the hidden states) consist of

differential equations (as in the generation model) and therefore

may be implemented by neuronal populations and their net-

work interactions via forward, backward and lateral connections

[47,48].

How can a bird recognize a conspecific’s song and decode the

information contained in the song? This decoding is important as

it is known that female birds select their mates according to criteria

such as the complexity of the male’s repertoire [7] or the precision

of the vocal performance [8] and they show preference for the

songs of their mates or fathers compared to the songs of strangers

[4,49,50]. In general, this suggests that listening birds may have

certain expectations (priors) about the type of the song they expect

to hear. In general, we assume that listening birds have internal

models for the songs they have learned before and the generative

model of the heard songs should fit to this internal model.

Using this concept, we model optimal recognition using Bay-

esian inference for hierarchical, nonlinear dynamical systems [47].

For the sensory input, we assume that the vocal control signal

y~(p(t),k(t)), given the sound wave, can be readily extracted by

the listening bird (agent) from the spectrotemporal dynamics, see

Figure 3. Here, we consider the p(t) and k(t) dynamics, in the

recognition step, as an abstract representation of the song

spectrum and therefore a phenomenological approximation to

the highly nonlinear features of the singing bird’s syrinx. This

means that we assume that the listening bird has access to these

dynamics via some low-level recognition process. For the present

implementation of the inference framework, the full inference

from the soundwave (Figure 7) would currently be computationally

too expensive because this would require a high temporal

resolution, e.g. at 12 kHz, and long time-series. However, once

an optimized (parallel) implementation of the present framework

becomes available, the present model can be extended in a

straightforward fashion to model recognition that receives a

soundwave as sensory input by adding another level that

transformed the p(t) and k(t) dynamics to soundwaves.

Given this vocal control signal, we infer the spatiotemporal RA

dynamics and the sequential HVC(RA) dynamics. The proposed

Bayesian inference scheme provides, under some assumptions,

optimal inference to decode the RA and HVC(RA) dynamics, i.e. to

recognize the hidden messages embedded into the vocal control signal.

The mathematical description is provided below and can be

conceptualized as follows: At each time step t, the recognition

system receives sensory input, here the current amplitudes of the

p(t) and k(t) dynamics. Like the generative model, the recognition

system has three levels as well. Each of these three levels consists of

interacting neuronal populations, which encode predictions, i.e.

expectations, about how their internal dynamics will evolve during

a song. At the same time, each level receives input from the

subordinate level. For the first level, this is the sensory input, which

is compared with the internal prediction. The prediction error is

forwarded to the second level, where again predictions are used to

generate prediction errors, which are forwarded to the third level.

Critically, each level adjusts its internal predictions to minimize its

prediction error weighted by the prior precision of the internal

prediction. At each level, the updated predictions are sent to the

subordinate levels to guide their internal predictions by higher

level predictions. In summary, each level minimizes its prediction

error by a fusion of internal dynamics with top-down (predictions)

and bottom-up (prediction error) messages. The overall result is

that a listening bird fuses its dynamic and hierarchically arranged

expectations about a song with the actual sensory input. Im-

portantly, due to this dynamic fusion, the recognition is robust

against deviations from its expectations by explaining away errors

of the singing bird by internal precision-weighted prediction error.

The derivation of the update equations to achieve Bayes-optimal

online recognition solutions is non-trivial, see Friston et al. [11].

Note that this modeling approach implies that generation and

recognition models are fundamentally different from each other in

the sense that generation is a top-down process where recognition

consists of both top-down and bottom-up processes. Although

some of the computations in the generation and recognition model

are the same and may provide a computational explanation for

mirror neuron accounts [51], this is not a central issue in the

present paper and we assume here that recognition is performed

by neuronal populations different from those that generated the

song. Clearly, this remains an open question that can only be

settled experimentally.

Figure 6. The sound wave and sonogram of a generated song.
We plugged the air sac pressure (p(t)) and stiffness (k(t)) parameters
obtained from the first level output of the generative model (Figure 5C)
into the syrinx equations (4). A) The solution of the syrinx equations, i.e.
x(t) in Eq. (4), arbitrary units. The mini-breaths where no phonation is
produced can be clearly observed. B) The sonogram of the soundwave
in A (time (sec) vs. frequency (Hz)) is given with a sampling frequency of
12000 Hz. The first ,3 sec of this sonogram can also be viewed in
separate chunks in Figure 3.
doi:10.1371/journal.pcbi.1002303.g006
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For sensory input y and a given model m, the probability p(yjm)
is called the model evidence or marginal likelihood of y and is an

important quantity for model comparison among different models.

In our case, y~(p(t),k(t)) is the vocal control signal for the syrinx

which we take as the input and the model m (Figure 4) includes all

the parameters and equations together with causal and hidden

states at all levels. We take u~fx,vg to be the set of all hidden

states x and causal states v at all levels of hierarchy. The task for

the agent is to infer the states u~fx,vg from the sensory input

under model m. We assume that the parameters (such as I , W and

r, see Figure 4) have been learned previously by the listening bird

and are fixed (Table 1).

Our goal is to approximate the posterior density p(ujy,m) which

will give us both the posterior mean of the dynamical states and

the uncertainty about this mean. To get a good approximation for

the posterior density, we follow a rather indirect way using the

marginal likelihood.

The marginal likelihood of y can be written as p(yjm)~ð
p(y,ujm)du. Here, p(y,ujm)~p(yju,m)p(ujm) is defined in terms

of the likelihood p(yju,m) and the prior p(ujm). Except for a few

analytical cases, this integral is usually intractable and needs to be

approximated. One way for this approximation is to introduce a

free-energy term which is a lower bound for the marginal likelihood.

It is not hard to show that:

ln p(yjm)~F (q,y)zD(qjjp),

where F (q,y)~

ð
q(u) ln

p(y,u)

q(u)
du is the free-energy, D(qjjp)

~

ð
q(u) ln

q(u)

p(ujy,m)
du is the Kullback-Leibler divergence and

q(u) is the recognition density. Note that q(u) is an auxiliary function

that we will use to approximate the posterior density. It is easy to

Figure 7. First simulation ‘Ideal communication’: The dynamics of song generation (left two columns) and song recognition (right
two columns) with arbitrary units. The format and the generated dynamics are the same as shown in Figure 5. The recognition scheme receives
only the output of the first level (bottom left) and reconstructs states at all levels using the online Bayesian inference scheme. It can be seen that the
reconstruction is successful as there are only tiny deviations between the true (left) and the reconstructed (right) dynamics.
doi:10.1371/journal.pcbi.1002303.g007
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show that D§0, and D~0 if and only if q(u)~p(ujy,m). This

means F (q,y) is a lower bound for ln p(yjm), and if we can

maximize F (q,y), this will minimize D(qjjp) giving an approx-

imation q(u)&p(ujy,m) for the posterior density.

To maximize F(q,y) with respect to q(u), we make the

assumption of normally distributed error terms and write

q(u)~N(f)~N(m,S) where f~fm,Sg consists of the mode m
and the variance S. Then the problem turns to a maximization

problem of the free energy with respect to f:

f�~ max
f

F (q,y),

which gives the approximation for the posterior density

p(ujy,m)&q(u)~N(f�). For the details of this variational process

and its extension to time-dependent states, see [11].

Since we apply the variational scheme in a hierarchical setting,

we write the equations in our model (see Figure 4) in a generic

hierarchical form [11]. We use the same set of equations as in the

generative model since we assumed the singing and listening birds

have the same internal models. We denote all hidden and causal

states at level i by x(i) and v(i), respectively. In particular, v(i) stands

for all the v(i) and w(i) outputs of the i th level. We also write f (i)

and g(i) to describe the dynamics of the hidden and causal states in

the i th level:

_xx(3)~f (3)(x(3))zv1
(3),

v(3)~g(3)(x(3))zv2
(3),

_xx(2)~f (2)(x(2),v(3))zv1
(2),

v(2)~g(2)(x(2),v(3))zv2
(2),

_xx(1)~f (1)(x(1),v(2))zv1
(1),

v(1)~g(1)(x(1),v(2))zv2
(1),

where vj
(i) denotes the normally distributed fluctuations at the i th

level. The present model shown in Figure 4 follows this generic

form. The causal states (v(i)) provide input to the subordinate level

while the hidden states (x(i)) are intrinsic to each level.

Note that the Gaussian fluctuations vj
(i)~N(0,Sv

(i)
j ) in the

above hierarchical form quantify different amounts of noise at

each level of the singing bird. We list the covariance matrices used

in the ‘‘Ideal Communication’’ simulation in Table 1. Note that

sensory input y enters the recognition system at the first level:

v(1)&y~(p(t),k(t)). The optimization process of f (i.e. the

estimated mode of causal and hidden states) can be implemented

in a message passing scheme [11] which involves passing

predictions down and passing prediction errors up from one level

to another. Prediction errors can be written as

e(i)
v ~v(i){ĝg(i),

e(i)
x ~ _xx(i){f̂f (i),

where ĝg(i) and f̂f (i) denote the predictions from level above for v(i)

and _xx(i), respectively. In this scheme, f is optimized through

gradient descent on prediction errors at each level of the

hierarchy. Importantly, the computations required for this

gradient descent could be implemented by interacting neuronal

populations at each level: Each population comprises causal and

hidden state-units that encode the expected states and the error-units,

with one matching error-unit for each state-unit, which encode the

prediction errors. The estimated mode of the states, i.e. m(i), is

described by the activity of the state-units. The error units

compare the estimated modes with predictions sent via backward

and lateral connections and compute prediction errors, which are

passed on via forward and lateral connections. This message

passing has been shown to minimize precision-weighted prediction

errors and optimize predictions at all levels efficiently (see [47,52]

for further details).

Software Note: The routines (including commented Matlab source

code) implementing this dynamic inversion, which were also used

for the simulations in this paper, are available as academic

freeware (Statistical Parametric Mapping package (SPM8) from

http://www.fil.ion.ucl.ac.uk/spm/; Dynamic Expectation Maxi-

mization (DEM) Toolbox).

Results

To illustrate the behavior of the described generation and

recognition schemes, we exposed our recognition model to four

different tasks. Since the neuronal structures for song generation

and song recognition are mostly different (see Discussion), we refer

in the following to the levels in both the generation and

recognition models as the first, second and third levels instead of

‘Oscillator’, ‘RA’ and ‘HVC’ levels, respectively.

We first show the case of ‘ideal communication’, i.e. the

recognition scheme described above can appropriately infer about

the states at all three levels from sensory input that describes a

veridical song. In a second simulation, we show the case when the

sensory input is not as expected, i.e. when, for the listening bird,

there is an unexpected deviation in the song (a single syllable). We

will demonstrate how the listening bird detects this deviation and

what neuronal correlates are observed in presence of this

deviation. In the third simulation, we show that the recognition

mechanism is robust against differences in the anatomical

connectivity pattern in the second layer. This robustness is a

consequence of the hierarchical setup of the generative model.

This is an important finding because it explains how different birds

can decode the same song although their individual anatomical

connectivity within some layers may differ. In our final simulation,

we replicate the experimental findings of a study [53] where the

authors cooled HVC and observed that the song slowed down. We

also show how the listening bird (e.g., female bird in a social

context) can detect the minor deviations due to a speed change of

the song.

Ideal Communication
Here, we simulate the ideal situation in which both the ‘singing

bird’ and the ‘listening bird’ have learned how exactly a song

should sound. As before, we use eight third level ensembles that

are each activated sequentially and, during this time, they control

the activities of five second level ensembles (Figure 2). The third

level imposes a sequence of attractors on the second level which in
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turn produce linear combinations of appropriate sine waves to

produce the air sac pressure and labia stiffness, see Figure 4. To

introduce noise (both internal state noise for the singing bird, and

also transmission noise to the listening bird), we used normal-

ly distributed zero-mean noise with standard deviation of

exp({6)&0:002 and exp({8)&0:0003 at all levels. To show

that recognition is robust against starting condition (i.e. the state of

the ongoing neuronal activity within the bird brain at song onset),

the initial states of the recognition are chosen differently from the

true initial values used in the generation. As expected, we find that

the listening bird starts tracking the sensory input very quickly and

follows it robustly during the remainder of the song, see Figure 7.

Deviation from Expected Song
Next, we show what happens if the listening bird has a different

expectation than the singing bird about how a song should sound.

In the generative model (singing bird), we use the same third level

ensembles and the corresponding second level combinations that

we used in the ‘Ideal Communication’ case (Figure 2). However,

the recognition system (listening bird) knows a slightly different

song where there is a deviation in a single syllable. We model this

by changing the effect of the third ensemble at the third level such

that it activates only the first ensemble at the second level (instead

of the first and fourth as in the singing bird). This means that the

motor output and the sonogram look different from the prior

expectation of the listening bird but only for the third syllable, see

Figure 8. The internal recognition dynamics of the listening bird

register this deviation and show two effects during the third

syllable, between time points t&150 and t&250: (i) Prediction

errors in the recognition are distributed throughout all three levels

and are not only explained by changes at a single level (Figure 9).

This makes sense since the observed deviation at the first level

cannot be explained by the simple oscillatory first level dynamics.

Rather, the recognition attempts to explain away the deviation at

the first level by using prediction error at the second and third level

as well. At the first level, this is quite successful because the

recognized dynamics look very similar to the generated dynamics

(see Figure 8, bottom row). However, at higher levels, there are

obvious differences between the generated and recognized

dynamics, i.e. the listening bird can infer a deviation via the

prediction error at the second and third levels. (ii) When the

deviation has finished, the recognition quickly locks back onto the

ongoing song dynamics at all three levels and decodes the song

veridically. In summary, this simulation shows that the dynamic

recognition hierarchy uses all its levels to compensate for

unexpected deviations in the song. This means that all levels of

the hierarchy work together in concert to minimize the effects of

deviations throughout the hierarchy. In other words, the activity of

high-level auditory processing levels in songbirds in response to

small deviations in the expected song may be most revealing for

their function. This mechanism may be important in social context

since the listening bird can recognize subtle variations in the

singing bird by its activity in high-level areas and grade the singing

bird’s overall performance [54].

Differently Wired Brains: Communication within Species
Considering the anatomical complexity of the brain, genetic and

developmental variability is expected in the brains of individuals of

the same species. At the macro scale, the general connectivity

structure of distinct brain regions may be shared, but at the micro

scale, variability is found in size, location and connections between

individual neurons or neuronal ensembles [55–58]. Here, we

simulate a difference in the connectivity structures by using differ-

ent second-level connectivity matrices W (Figure 4 and Eq. (3)) in

the generative model of the singing bird and the recognition

system of the listening bird. In other words, the listening bird has a

different internal model at the second level as would be prescribed

by the generative model of the singing bird at the RA level. How

can birds with individual variability in their internal models still

extract the same information from a song?

The answer is that differences in the second-level connectivity

matrix W can be compensated by a different driving activity I from

the third level since I depends on W (see Theorem 1 in Text S1).

Figure 8. Second simulation ‘Deviation from expected song’:
For simplicity, we only show the causal states of the generation
(left column) and recognition (right column), where the format
is the same as in Figure 5 with arbitrary units. The listening bird
(recognition) hears a slightly deviating syllable between the time steps
t&150 and t&250 indicated by the black rectangle. During this period,
the third ensemble of the HVC level (red color) in the singing bird
(generation) activates the first and the fourth ensembles of the RA level
(blue and cyan colors) while the listening bird expects the activation of
the first ensemble of the second level (blue) only. This unexpected
sensory input continues until the listening bird starts hearing and
recognizing the expected syllables again after t&250. See Figure 9 for
plots of the associated prediction errors.
doi:10.1371/journal.pcbi.1002303.g008
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In our simulation, we assume that these driving activities have

already been learned in the corresponding birds, e.g. during

juvenility. As shown in Figure 10, the states at all three levels can

be recognized successfully even though the second levels in the two

birds are wired differently. This means that the internal models of

generation and recognition do not have to be the same but can

cope with structural variations due to anatomical variability at the

micro-scale. Critically, this compensation of anatomical variability

at the second level relies on the hierarchical configuration and

learning of the connectivity from the third level to second level.

Cooling of HVC
In song generation, a critical question is which regions of the

brain are involved in the timing of syllables or sub-syllable

structures. A recent study tackled this question by manipulating

the temperature of the HVC and RA regions in the singing bird

[53]. Importantly, it was shown that song speed at all time scales

slowed down but the acoustic structure stayed the same as the

temperature of HVC dropped. In the sonogram, this corresponds

to a temporal stretching of the song. Conversely, cooling of RA did

not have any effect on the timing of the song. This suggests that

HVC is involved in the control of the timing of the song [53].

We observed similar behavior in our model where we modeled

the cooling by manipulating the rate (i.e. speed) constants k1,k2

and k3 at the three levels. Importantly, changing the rate constant

for HVC slows down the song but changing the rate constant for

RA does not. In the first simulation (Figure 11, left), we ‘cooled’

HVC by changing k3 from 1=5 to 1=10. This slows down the

Figure 10. Third simulation ‘Differently wired brains’: For
simplicity, we only show the causal states of the generation
(left column) and recognition (right column), where the format
is the same as in Figure 5 with arbitrary units. The connectivity
matrices (W ’s) at the second level are different in the singing bird
(generation) and in the listening bird (recognition). Recognition still
works as well as in the first simulation (‘Ideal communication’, Figure 7)
because third level ensembles can compensate for this variability by
providing different input to the second level (different I vectors).
doi:10.1371/journal.pcbi.1002303.g010

Figure 9. Prediction errors for the ‘Deviation from expected
song’ simulation with arbitrary units. Prediction errors for all
causal and hidden states during recognition are plotted using the same
format as in Figure 5. Note that prediction errors increase during the
unknown syllable (between t&150 and t&250) and are observed at all
levels.
doi:10.1371/journal.pcbi.1002303.g009
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dynamics of the HVC level and immediately slows down the RA

level as well since the control signals coming from HVC now last

twice as long. In other words, we find as in the cooling

experiment that HVC, due to its position at the top of the

hierarchy, controls directly the timing of the song. To reflect this

slowing down in the output we also changed k1 from 6=5 to 6=10
(k3=k1 is kept constant in all simulations) to adjust the frequencies

which were chosen independently from the RA level for

simplicity (fi~if1 where f1~0:06). In the second simulation

(Figure 11, right), we changed the rate constant of RA, k2, from 1
to 1=2. This has no observable effect, as in the experiment [53],

on the dynamics of RA ensembles since the timing of attractor

activations is controlled by the timing of HVC. A change in k2

only slows down the transition times which has no detectable

effect in the output.

Speed changes may not only have an experimentally

observable effect in the generated song but also in the listening

bird. Interestingly, speech changes in song also occur under

natural conditions, e.g. in a social context: Male birds sing slightly

faster when addressing a female bird (directed song) compared to

singing towards other males or when alone (undirected song)

[6,59]. Using the present model, we tested whether the listening

bird can detect such small changes in the singing bird during

directed song. We slowed down the song by 3%, thereby

modeling an undirected song, and analyzed the prediction errors

in the listening bird which expected the slightly faster, directed

version. The listening bird was able to recognize the song

successfully but it also reliably distinguished the subtle change in

the tempo, as can be seen from the sustained prediction errors at

all three levels (Figure 12).

Discussion

We have described a hierarchical model for generating bird-

songs and introduced an online Bayesian inversion as a re-

cognition model. The key result is that the specific anatomical,

functional and hierarchical structure of birdsong generation

enables Bayesian online decoding of hidden information at a slow

time-scale at the HVC and RA levels. Four simulations showed

that the Bayesian recognition mechanism works efficiently in

several settings and its functional behavior might be helpful to

understand the mechanisms of birdsong recognition. In addition,

recognition is robust to noise and can be performed online.

Overall, this is a unified modeling approach which handles both

generation and recognition of birdsong and may serve as a model

for vocal bird communication.

Both generation and recognition models extend previous

modeling work either by using novel techniques (e.g. Bayesian

inference for hierarchical, stochastic, nonlinear dynamical systems)

or by combining well-known nonlinear differential equation

systems in a novel way (generative model). The model explains

recognition of birdsong as continuous message passing scheme

among auditory areas and explains the dynamic song recognition

system of birds using Bayesian techniques. In the generation

model, we combine a well-established syringeal model with the

sequential HVC/RA model and describe a hierarchical and

dynamical mechanism which transforms the spatiotemporal

coding at the RA level into the rich, complex structure of the

song power spectrum. Based on this generative model, we use

Bayesian inference to model song recognition by a conspecific.

This modeling strategy is a novel approach to employ experimen-

tal findings in birdsong generation for establishing a functional

model of birdsong recognition. In fact, decoding of sensory input

generated by hierarchical, nonlinear dynamical systems is usually

technically challenging and often impossible [60,61] because the

sensory input may not be informative about hidden information at

higher levels. However, here we found that the decoding of

birdsong using hierarchical Bayesian inference based on a song

generation model is feasible, robust and can be performed online.

Intuitively, it may be obvious that birdsong must be generated

such that conspecifics can derive information (meaning) from it.

The question is how birds do this mechanistically. Here, we

propose that this recognition mechanism may rest on Bayes-

optimal inference given the specific hierarchical arrangement of

the neuronal birdsong-generating network.

Figure 11. Generated dynamics for the fourth simulation
‘Cooling of HVC’: We simulated two cooling experiments,
where the format is the same as in Figure 5 with arbitrary units.
Left: The rate constant at the HVC (third) level, k3 , is decreased by half.
Right: The rate constant of the RA level (second level), k2 , is decreased
by half. The change in k3 slows down the dynamics of the system, while
cooling at the RA level does not have any significant effect, compare
with the dynamics in Figure 5. The parameters used are k1~6=10,
k2~1 and k3~1=10 on the left and k1~6=5, k2~1=2 and k3~1=5 on
the right.
doi:10.1371/journal.pcbi.1002303.g011
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Neurobiological Plausibility of the Recognition Model
We have derived a recognition scheme using Bayesian

inference. However, bird brains may have established their

recognition capabilities by evolutionary processes [4,49,62]. What

are the similarities between the proposed recognition scheme and

the biological one?

Note that the present modeling does not suggest that the areas

involved in generation and recognition are the same. Many

computations during recognition are different from those in

generation. The present recognition scheme consists of three

hierarchical levels, thereby mirroring the hierarchical generation

system. We found that three hierarchical levels are also

appropriate for the recognition of a song. Interestingly, experi-

mental findings point to a hierarchical arrangement of the

auditory system in songbirds as three major functional levels of

processing [63,64] where it is partially unclear yet how this

hierarchy maps exactly onto the auditory system. Moreover, note

that these areas are mostly investigated for male (zebra finch) birds

and it is quite possible that there could be different areas involved

in females or in other bird species.

Experimental evidence suggests that HVC may be located at the

highest level of this recognition system. In particular, HVC(X)

neurons (HVC neurons that project to Area X, see Figure 1) are

selectively responsive to the bird’s own or a conspecific’s song

[65,66]. The firing of HVC(X) neurons at temporally precise times

during an auditory stimulus [65] is similar to the temporally

precise activation of HVC(RA) neurons during singing. This

suggests that HVC(X) neurons may be involved in the represen-

tation of the expected sequence of song dynamics. In the present

model, the third level encodes both the sequence prediction but

also the perceived deviation from this sequence.

The circuitry of areas subordinate to HVC during song

recognition is not particularly well understood. The caudal

mesopallium (CM) and caudomedial nidopallium (NCM) have

Figure 12. Recognition results for the fourth simulation ‘Cooling of HVC’, where the format is the same as in Figure 5 with arbitrary
units. Left: We slowed down the singing bird by decreasing the rate constants by 3%: k1~(6=5):(0:97), k2~0:97 and k3~(1=5):(0:97). Middle: The
rate constants for the recognition are k1~6=5, k2~1 and k3~1=5. Right: The listening bird can distinguish this subtle change in song speed as can
be seen from the prediction errors of the causal states at all three levels. (The hidden states show similar prediction errors at all levels).
doi:10.1371/journal.pcbi.1002303.g012
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been shown to be selective for particular familiar songs or sounds

and are involved in auditory memory [23,63,64]. Similar functions

are implemented by the second level of the present recognition

model: The second level encodes the expectation of specific

spatiotemporal patterns, i.e. it encodes auditory memory by

attractors that correspond to specific vocal tract dynamics (sounds).

Note that there is a clear distinction between the third and second

level in the model: While the third level encodes the expected

sequence of sound dynamics, the second level encodes the

repertoire of song sounds (transcribed to sound waves by the

vocal tract dynamics). This functional separation is also assumed to

be implemented in the real bird brain [26].

In the primary auditory area, Field L, spectral-temporal

receptive fields (STRF) have been proposed to explain the

selective responses of neurons [67]. These selective responses

may correspond to the recognition dynamics at the first level in the

model which decodes the detailed spatiotemporal structure of the

auditory stimulus guided by higher level predictions. It is

interesting to note that we could use the present recognition

model to derive, as done experimentally [67], the spectral-

temporal receptive fields at the first level. Alternatively, one could

use experimentally acquired STRFs to adapt the first level of the

present model to establish exact equivalence of the model and the

real system at the level of primary auditory areas.

Relation to Other Generation Models
There are several models that focus on the sequential activation

of HVC(RA) neurons using single neuron models. Inhibition is

believed to be a key element to generate rhythmic (sequential)

activity in HVC [15,16,68]. We used winnerless competition

which relies on inhibition to sequentially activate HVC(RA)

ensembles. A similar generation mechanism as described here

can be obtained using the synaptic chain scheme: Li and

Greenside [12] proposed a conductance-based model for HVC(RA)

neurons from which they obtained sequential multi-spike bursts.

Later, Jin et al. [13] used an intrinsic bursting mechanism to

obtain higher firing rates more consistent with the experimental

data. This scheme was extended in [14] and was shown to produce

robust and highly stereotyped sequential bursts. A learning

mechanism was proposed in [69] showing how a sparse temporal

code can emerge from a recurrent network. The models

mentioned above focus on describing possible ways for the

sequential activity of HVC where the downstream areas can be

regarded as driven in a feed-forward fashion by HVC. A

comprehensive generative model that includes HVC, RA and

motor control areas was described in [18]. This study showed that

the intrinsic connectivity at the RA level can substantially

influence the acoustic features of syllables. This approach is

similar to the present where the common research question is

which parameterization (connectivity) of a recurrent neural

network will generate motor control signals that result in realistic

acoustic features of birdsong. However, we additionally incorpo-

rated recent findings [26] which point to a specific role of RA

ensembles in encoding sound wave modulations. Furthermore, we

provide evidence that the hierarchical setting of HVC and RA

ensembles is the basis for robust and rapid song recognition.

Relation to Other Recognition Models
Theunissen et al. [70] estimated spectral-temporal receptive

fields (STRF) of nonlinear auditory neurons using natural

sounds as sensory input. The STRFs describe which temporal

succession of acoustical features would elicit the maximal neural

response and provide useful information for modeling perception

of acoustic features, e.g. in the primary auditory area, Field L [67].

A two-level model was introduced [71] where the first level

encoded frequency responses identified by an STRF analysis and

the second level used these features to model song selective

responses of HVC neurons. In another approach, Larson et al.

[72] proposed a model for auditory object recognition where the

first level uses a distance metric to distinguish between different

spike trains and the second level acts as a decision network.

However, both of these models propagate auditory signals in a

feed-forward fashion from the low to the high level while the

present scheme uses dynamical and recurrent bottom-up and top-

down message passing thereby providing a more comprehensive

model of the neuronal dynamics observed during song recognition.

Learning models such as [73] and [74] were proposed which

also include birdsong production and evaluation. These models

mainly focus on the neural mechanisms of learning but they also

provide mechanisms for song evaluation.

There have been also attempts for the automated recognition of

birdsongs using machine learning methods, e.g. [75,76]. However,

these models are not concerned with neurobiological plausibility

but rather use ad-hoc techniques as used in automated speech

recognition, i.e. hidden Markov models and template-based

matching of song syllables.

Implications for Empirical Research
There are several implications for future experiments which one

can derive from the present model. The first is that we observe

prediction errors at all levels when there is an unexpected piece of

song (Figure 9) or a song which is slower than expected (Figure 12).

This suggests that there may not be a single area in the auditory

pathway (such as HVC(X) or LMAN in the anterior forebrain

pathway) that acts as a comparator between the stimulus and

previously memorized tutor song [77] but several levels of the

auditory pathway may be involved in this comparison. Comparing

the neuronal recordings from a bird that listens to a normal speed

song and a slower version of the same song might reveal the

locations where these prediction errors are computed. Similar

experiments have been done in auditory areas Field L and caudal

lateral mesopallium (CLM) where some neurons responded

robustly to perturbations in vocalization or playback of the bird’s

own song [21]. A functional model like the one presented here

could predict what amount of activity should be expected in

experiments given defined deviations, at different levels of the

recognition hierarchy. Parallel to this idea, a recent experiment

explained the activity in CLM by the level of surprise in the stimulus

[20]. Our model could be used to predict the amount of surprise or

prediction error at different hierarchical levels. As the present

model covers much of the auditory pathway, this prediction

technique may be best suited for using functional MRI on birds

[78,79] where one would model increased activation, relative to

some baseline condition, as an increase in prediction error.

Potential Relationship between Birdsong and Human
Speech

As noted by several authors, human speech and birdsong have

in common that both are complex, hierarchical, sequenced

vocalizations which are repetitions and combinations of simple

units such as phonemes and syllables [2,80,81]. Although human

speech is far more complex than birdsong, the underlying

anatomical and functional features show striking similarities such

as the pathways for vocal production, auditory processing and

learning [22,81]. Songbirds, similar to humans, gain their vocal

abilities early in life by listening to adults, memorizing, and

practicing their songs [22]. These similarities suggest that one may
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derive insight about human speech recognition and learning from

findings in birdsong research [82].

The present results clearly point to the usefulness of a hierarchical

recognition structure to decode sequences of syllables. Such

hierarchical models are rarely used in automated speech recognition

[83] presumably because the standard model, the hidden Markov

model, is mathematically best understood only in a non-hierarchical

setting. The present scheme shows that complex spectral dynamics

such as birdsong may be modeled as a sequence of nonlinear

dynamics, where, in the generative model, each level drives the

subordinate level in a highly non-linear fashion. To invert such a

hierarchical, nonlinear, dynamical system, one requires sophisticat-

ed Bayesian inference machinery [11,84]. We described such a

mechanism previously for a simple auditory sequence of sounds

[85]. The novelty of the current approach is that we use a

neurobiologically plausible generative model to derive a functional

recognition model that has also the potential to recognize real and

complex birdsong. In addition, we hypothesize that the specific

arrangement of HVC and RA level (dynamic sequences driving

attractor dynamics at a lower level) and its Bayesian online inversion

will not only play a role in birdsong recognition models but may be

successfully used for automated speech recognition as well.

Further Extensions to the Model, Scaling and Sensitivity
Analysis

The mathematical model that we used to generate birdsongs

was previously shown to produce accurate copies of songs such as

canary [30], chingolo sparrow [17], white-crowned sparrow [31]

and cardinal [45] songs. The vocal organs of other birds, e.g. of

the zebra finch, can generate highly nonlinear, more complex,

acoustic dynamics than the one considered here. For modeling

such songs, one would have to replace the syrinx model of Eq. (4)

by a more involved syrinx model such as the one reported in [86].

For our purposes, we focused on one particular song to describe

the generation and recognition framework. The recognition of

different songs either by the same or different conspecifics could be

modeled by using multiple sequences encoded at the third level,

where we assume that the recognition will converge to the best

fitting sequence. In addition, one could adapt the nonlinear syrinx

model to endow a singing bird with its own low-level acoustic

characteristics.

In the present model, we used rather small numbers of ensembles

for visualization and computational purposes. The generative model

applies to an arbitrary number of ensembles and similar type of

dynamics can be obtained with larger number of ensembles at each

level (see Figure S1 for generation with 100 HVC ensembles). For

recognition, we performed similar experiments with larger numbers

of HVC ensembles (32) and RA patterns (24) where the recognition

results were as robust as with the reported smaller size models

(see Figure S2 for the simulation). This indicates that the model

scales to larger model sizes. However, there are two main issues that

one will need to address to enable recognition using hundreds of

units: (i) The computational power required for the recognition

quickly increases with the number of ensembles used (with

complexity O(n3) due to computing a matrix exponential, see

[11]). This can be resolved by parallelizing the ensemble-specific

computations which would be a further step towards biological

reality. Currently, we emulate these parallel computations using a

single-process Matlab implementation. (ii) The complexity of the

syrinx model must be matched by the ‘descriptive power’ of the RA

level. In other words, if one wanted to increase the number of RA

ensembles significantly, one also had to render the model at the

syrinx level more complex so that the recognition can infer more

RA ensembles from more complex sensory data. However, this

increase in model complexity at the syrinx and RA levels would

require a more sophisticated syrinx model and is beyond the scope

of the present work, in which we provide a proof of concept and

introduce the computational framework.

Furthermore, we tested the sensitivity of the Bayesian recognition

in response to changing specific details of the generative model: (i)

We used higher noise levels (standard deviation of exp({3)&0:05
and exp({4)&0:02) as compared to the simulations above, the

recognition still robustly inferred the hidden states and causes at all

levels (see Figure S3) (ii) We found that the recognition is robust

against varying the initial conditions of the states in both the

generative model and recognition. We tested a wide range of random

initial conditions in both generation and recognition and observed

that in all simulations the recognition quickly locks into the necessary

dynamics. This implies that the listening bird can recognize a song

reliably whatever the initial state of itself or the singing bird at the

beginning of the song. (iii) We also changed the connectivity matrices

at the third level (with the constraint of high inhibition from the

previous neuron and low inhibition to the next neuron) and at the

second level (with the constraint that global stability conditions are

satisfied, see Theorem 1 in Text S1) of the generative and recognition

models. The recognition was still robust with these different

connectivity matrices (see Text S1 and Figure S4).

Conclusion
We described a model to generate artificial birdsongs and a

scheme for their online recognition. We constructed a model based

on key experimental findings in birdsong generation. Our results

show that the specific, hierarchical mechanism how birdsong is

generated enables robust and rapid decoding by a hierarchical and

dynamic Bayesian inference scheme. We have interpreted this as

evidence that the birdsong generation mechanism is geared toward

making the song robustly decodable by conspecifics and discussed

the experimental evidence that songbirds use a recognition

mechanism similar to the present Bayesian inference scheme.

Supporting Information

Audio S1 Sound file for the generated artificial birdsong

obtained by plugging the first level output of the generation

scheme (Figure 5C) into the syrinx equations, Eq. (4).

(WAV)

Figure S1 Generated dynamics with 100 HVC ensembles at the

third level where the format is the same as in Figure 5 with

arbitrary units. We only modified the rate constants (so that all

activations fit to the time-window used) of the generative model

and the rest of the constants are the same and listed in Table 1.

This simulation shows that the generative model can be scaled up

and similar dynamics as shown in the main text figures can be

obtained with long HVC sequences.

(TIFF)

Figure S2 The dynamics of song generation (left column) and

song recognition (right column) with 32 neuronal ensembles at the

third levels of both generation and recognition models. The format

is the same as shown in Figure 5 with arbitrary units. We only

modified the rate constants (so that all activations fit to the time-

window used) and the rest of the constants are the same and listed

in Table 1. This simulation shows that the recognition model can

be scaled up and similar recognition dynamics as shown in the

main text figures can be obtained with long HVC sequences.

(TIFF)

Figure S3 Robustness to noise of both the generative and

recognition models: We generated song dynamics (left column)
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and song recognition (right column) using higher noise levels than

in the simulations reported in the main text. The format is the

same as shown in Figure 5 with arbitrary units. We used noise with

standard deviation of exp({3)&0:05 and exp({4)&0:02 for

causal and hidden states, respectively, at all levels of the generative

model. The recognition was still robust at these noise levels. For

simplicity, we only show the causal states of the generation and

recognition.

(TIFF)

Figure S4 Robustness of the generative and recognition models

with respect to the connectivity matrices at the third and second

levels. The format is the same as shown in Figure 5 with arbitrary

units. In this simulation, we used different (randomly assigned)

connectivity matrices at the third and second levels of the

generative and recognition models and obtained qualitatively the

same dynamics as in the simulations reported in the main text.

(TIFF)

Text S1 Further details about the RA and oscillation levels and

the description of the online Bayesian recognition. We describe

how to choose I vectors to control the RA dynamics and explain

Eq. (5) for the oscillatory dynamics in the first level. In addition, we

describe the sensitivity analysis of the model with respect to the

changes in the connectivity matrices.

(PDF)
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