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Abstract

Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between
preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the
clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We
identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then
developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI
prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To
enhance the confidence for identification of drugs that cause severe DILI in humans, the ‘‘Rule of Three’’ was developed in
DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an
external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the
drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through
network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal
system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and
pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While
marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new
drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect
that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity.
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Introduction

Drug-induced liver injury (DILI) poses a significant challenge to

medical and pharmaceutical professionals as well as regulatory

agencies. It is the leading cause of acute liver failure, which has a

high mortality rate (30%) as treatment is limited due to the

availability of livers for transplantation [1]. Although many

dangerous drugs are identified during animal testing thus

protecting humans from this damage, a consortium determined

that about half of the drugs that cause human hepatotoxicity

were not identified as having this potential in nonclinical

animal testing [2]. Many drugs have been withdrawn from the

market or have received restrictions and warnings due to DILI [3].

DILI information and guidance for pharmaceutical industries has

been released by regulatory agencies such as the U.S. Food and

Drug Administration (FDA) (http://www.fda.gov/downloads/

Drugs/GuidanceComplianceRegulatoryInformation/Guidances/

UCM174090.pdf), European Medicines Agency (EMA) (www.

ema.europa.eu/pdfs/human/swp/15011506en.pdf) and Health

Canada (http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/con-

sultation/drug-medic/draft_ebauche_hepatotox_guide_ld-eng.pdf),

highlighting both the significance and difficulties in DILI

research. In the FDA, the Critical Path Initiative identified

DILI as a key area of focus in a concerted effort to broaden the

agency’s knowledge for better evaluation tools and safety

biomarkers (http://www.fda.gov/ScienceResearch/SpecialTopics/

RegulatoryScience/ucm228131.htm).

Determining the potential for a drug candidate to cause DILI in

humans is a challenge. First, the standard pre-clinical animal

studies do not effectively predict DILI events in humans. In one

notorious example, five subjects in a phase 2 clinical trial

experienced fatal hepatotoxicity induced by fialuridine, an

investigational nucleoside analogue that showed no liver damage

in animal studies [4]. Out of 221 pharmaceuticals, the overall

concordance of liver toxicity in humans and experimental animals

is as low as 55%, which is in sharp contrast with the concordance

of other target organs such as the hematological (91%),

gastrointestinal (85%), and cardiovascular (80%) systems [2].
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Secondly, even well-controlled clinical trials fail to accurately

predict post-marketing DILI events. The main reason for this is

the statistical power of the trials – the risk of severe DILI of an

idiosyncratic nature is very low per exposed subject, while clinical

trials are usually carried out with only several thousand patients

[5], rendering them significantly underpowered to predict rare

DILI events.

To enhance the predictability of DILI, novel approaches have

been explored by many researchers. Notable examples include (a)

development of new DILI biomarkers [6], (b) introduction of high-

content screening [7], (c) adoption of more sensitive animal models

[8,9,10], and (d) utilization of toxicogenomics [11]. Most of these

investigations are focused on developing biomarkers using either

animal or in vitro models for predicting DILI in humans. This still

would involve synthesis of the drug and elaborate testing. An in

silico approach could inform chemists at the earliest point in the

drug discovery pipeline and enable them to select the best

chemical structures.

We hypothesized that there exists a distinct set of liver side

effects that can be used to characterize the DILI risk of drugs in

humans. We identified 13 types of hepatotoxicity (hepatotoxic side

effects or HepSEs) from the organ levels of hepatobiliary disorders in

the Medical Dictionary for Regulatory Activities (MedDRA)

ontology (http://www.meddramsso.com/). We found that these

13 HepSEs can discriminate DILI drugs from non-DILI drugs

with high accuracy (,83%). Since the side effects are clinical

observations obtained either from clinical trials or from post-

marketing surveillance with limited utility in drug discovery, we

developed quantitative structure-activity relationship (QSAR)

models for each of the HepSEs. We then constructed a DILI

prediction system (DILIps) based on the 13 HepSE models with an

improved prediction strategy using a ‘‘Rule of Three’’ (RO3)

criterion (incriminated by 3 or more HepSE models). The systems

were evaluated in several external test sets with performance

surpassing most in silico models in the field. We screened the entire

drug list using the DILIps and evaluated the RO3 drugs in terms

of therapeutic use and drug targets.

Results

Identification and assessment of hepatotoxic side effects
(HepSEs)

Figure 1 is an overview of the approach taken. First, the

identification and assessment of HepSEs were performed. We used

the SIDER database [12] to identify drugs and associated side

effects. Out of 1450 side effects in the database, we selected only

those that were caused by more than 20 drugs (an arbitrary cut-

off). This yielded 473 side effects. The distribution of 888 drugs

over 473 side effects and vice verse were depicted in Supplemen-

tary Figure S1, indicating that over 90% drugs were associated

with at least 10 side effects. These side effects were then directly

mapped onto low level terms of MedDRA. The terms were linked

to the system organ classes (SOC) level according to the

hierarchical structure of MedDRA (Supplementary Table S1) in

order to determine the terms’ attributes at the organ level. Finally,

we considered side effects defined by the MedDRA ontology as

related to the hepatobilliary disorders SOC term as HepSEs, and

identified 13 HepSEs: bilirubinemia, cholecystitis, cholelithiasis, cirrhosis,

elevated liver function tests, hepatic failure, hepatic necrosis, hepatitis,

hepatomegaly, jaundice, liver disease, liver fatty, and liver function tests

abnormal.

We evaluated these 13 HepSEs for their ability to differentiate

drugs that do and do not cause DILI using the Liver Toxicity

Knowledge Base Benchmark Dataset (LTKB-BD) [13] and

PfizerData [14]. For both datasets, we used only the drugs that

they had in common with SIDER. There are several differences

between two datasets to call a drug as DILI or non-DILI (see

Materials and methods), including (1) LTKB-BD is based on the FDA-

approved drug labeling while PfizerData is according to the case

reports; (2) two datasets apply different criteria for DILI

assessment; and (3) drugs are grouped differently between two

datasets. To obtain an objective evaluation for 13 HepSEs, we

took the following actions to select DILI positive and negative

drugs from two datasets: (a) in LTKB-BD [13], Most-DILI-

Concern drugs were classified as positive while No-DILI-Concern

drugs were classified as negative; and (b) in PfizerData [14], drugs

with evidence in human toxicity were considered DILI positive

while drugs with no evidence in any species were considered DILI

negative. Defining a drug as causing DILI if it was positive in any

of the 13 HepSEs, this approach yielded 91% and 74% accuracy

for LTKB-BD and PfizerData, respectively.

It is important to note that the 26 MedDRA SOCs are not all

strictly related to human organs in a conventional sense. For

example, ‘‘investigations’’ and ‘‘general disorders and administra-

tion site conditions’’ are not organs (the complete list of MedDRA

SOC is available in Supplementary Table S1). Some side effects

with DILI indication are resided in a SOC other than the

hepatobilliary disorders. For example, the SOC of ‘‘investigations’’

include the ‘‘elevate liver enzyme’’ and ‘‘alkaline phosphatase

increased’’, both are conventional DILI indicators. Moreover,

some side effects in the SOC of ‘‘general disorders and

administration site conditions’’ could also be the manifestations

of DILI. Thus, we conducted a permutation test with the purposes

of confirming that the 13 HepSEs do in fact have significant

performance over the chance to distinguish DILI drugs from non-

DILI drugs. We randomly selected 3, 5,…, 21 side effects from the

473 side effect pool with each selection repeated 20,000 times. As

shown in Figure 2, the classification accuracy of the 13 HepSEs,

indicated by the red dot, was considerably higher than the average

accuracy for each of the sets of randomly selected side effects,

demonstrating that the observed classification accuracy for the 13

HepSEs was not due to chance.

Author Summary

Translational research involves utilization of clinical data to
address challenges in drug discovery and development.
The rationale behind this study is that the side effects
observed in clinical trial and post-marketing surveillance
can be translated into a screening system for use in drug
discovery. As a proof-of-concept study, we developed an
in silico system based on 13 hepatotoxic side effects to
predict drug-induced liver injury (DILI), which is one of the
most frequent causes of drug failure in clinical trial and
withdrawal from post-marketing application, and also one
of the most difficult clinical endpoints to predict from
preclinical studies. We first identified 13 types of liver
injury which yielded high prediction accuracy to distin-
guish drugs known to cause DILI from these don’t. To
effectively apply these 13 hepatotoxic side effects to the
drug discovery process for DILI, we developed in silico
models for each of these side effects solely based on
chemical structure data. Finally, we constructed a DILI
prediction system (DILIps) by combining these 13 in silico
models in a consensus fashion, which yielded .91%
positive predictive value for DILI in humans. The DILIps
methodology can be extended in applications for address-
ing other drug safety issues, such as renal and cardiovas-
cular toxicity.

Drug-Induced Liver Injury Prediction System
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Figure 1. Overview of the workflow of DILIps development and its evaluation.
doi:10.1371/journal.pcbi.1002310.g001

Drug-Induced Liver Injury Prediction System
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Figure 2. Box plot of classification accuracy with the number of selected side effects using a permutation test. (a) The test consisted of
128 drugs with a ratio of 69 DILI positives versus 59 DILI negatives in the LTKB-BD, and (b) 258 drugs with a ratio of 168 DILI positive drugs and 90 DILI
negative drugs in PfizerData. Given a randomly selected number of side effects, a drug showing positive in any of the side effects was considered as a
DILI positive drug. The process was repeated 20,000 times for each of the selected number of side effects. The red dot denotes the data based on the
13 HepSEs selected from the MedDRA hepatobilliary disorders category.
doi:10.1371/journal.pcbi.1002310.g002

Drug-Induced Liver Injury Prediction System
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DILI prediction system (DILIps)
As illustrated in step 2 (Figure 1), QSAR models were developed

for each of the 13 HepSEs to enable their use in screening new

drug candidates computationally. The QSAR models developed

from the drugs related to each of these 13 HepSEs had high

prediction accuracy (.93%) in a leave-one-out cross-validation

(LOO-CV) process (Table 1).

Based on the 13 HepSE models, we further developed the

DILIps (step 3 of Figure 1, left box). Using the same classification

rule described above (i.e., drugs incriminated by any of the 13

HepSEs models are considered as DILI positives), we applied

DILIps to three external validation sets. The validation sets of

LTKB-BD and PfizerData contain drugs not used in developing

the 13 HepSE models. For the O’Brien et al. dataset [15], the

severe and moderate hepatotoxicity drugs were combined as DILI

positive drugs while the non-toxic drugs were defined as DILI

negative drugs (only the drugs not used by the 13 HepSE models

were included). As summarized in Table 2, the DILIps exhibited a

reasonable prediction performance for three external validation

sets with the prediction accuracy between 60–70%.

Development of the ‘‘Rule of Three’’ criterion in DILIps
Identifying the drugs of severe DILI potential with high

confidence has an important application since these drugs are

likely withdrawn from the market or restricted in use with black

box warning (BBW) due to the serious public health concern. We

assume that the number of models calling a drug causing DILI is

positively correlates with the drug’s severity for DILI and to the

extension of the confidence to make such a call. We generated a

union set based on the three validation datasets listed in Table 2.

We removed three drugs having an inconsistent DILI assignment

among three datasets (only three drugs were removed: moxisylyte,

carbidopa and terfenadine), i.e., positive in one dataset and

negative in another. This process resulted in 145 DILI positives

and 63 DILI negatives (see Supplementary Table S2). We used

this union set to assess how many HepSE models to be combined

likely identify high risk DILI drugs (i.e., withdrawal or BBW drugs)

with high positive predictive value (PPV).

Specifically, for each of the possible HepSE combination models

requiring a drug to be incriminated by N HepSE models (‘‘Rule of

N’’), we calculate PPV and the number of drugs retained by each

of the HepSE combination models. As depicted in Figure 3, the

PPV reaches a maximum of 91.3% when N = 3. Additionally, the

percentage of high risk DILI drugs reached a local maximum at

N = 3. Therefore, we established the RO3 criterion in the DILIps

for identifying drugs that might cause severe DILI with high

confidence (step 3 of Figure 1, right box). The number of drugs

meeting the RO3 is 23, dramatically decreased from 100 (RO1)

and 49 (RO2), which was expected when the optimization was

tilted toward increasing PPV. In order to identify the drugs of

severe DILI potential with high confidence, the trade-off was

accepted in the context of an application. Therefore, the RO3 was

selected to carry out further study.

DILI potential varies for different therapeutic categories
We applied the RO3 criterion to the drugs (small molecules

only) in DrugBank to investigate which therapeutic categories were

most likely associated with DILI (represented by the graph at the

Table 1. Performance of leave-one out cross-validation for the 13 HepSE models.

HepSE models # of drugs positive in HepSE Accuracy Sensitivity Specificity

bilirubinemia 88 0.96 0.76 0.99

cholecystitis 53 0.98 0.83 0.99

cholelithiasis 60 0.98 0.75 0.99

cirrhosis 27 0.99 0.89 0.99

elevated liver function tests 29 0.99 0.76 1.00

hepatic failure 132 0.95 0.82 0.97

hepatic necrosis 56 0.97 0.91 0.97

hepatitis 254 0.93 0.91 0.94

hepatomegaly 62 0.96 0.71 0.97

jaundice 274 0.93 0.89 0.95

liver disease 42 0.98 0.74 0.99

liver fatty 22 0.99 0.82 0.99

liver function tests abnormal 111 0.95 0.83 0.97

doi:10.1371/journal.pcbi.1002310.t001

Table 2. Performance of DILI prediction system (DILIps) on three literature datasets.

Datasets* The number of drugs for analysis (DILI positive drugs/DILI negative drugs) Accuracy Sensitivity Specificity

LTKB-BD 67/6 0.66 0.66 0.67

PfizerData 92/56 0.60 0.52 0.73

O’Brien et al. 25/15 0.70 0.56 0.93

*Only the drugs that did not overlap with the SIDER database were used.
doi:10.1371/journal.pcbi.1002310.t002

Drug-Induced Liver Injury Prediction System
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right of step 4, Figure 1). Figure 4(a) shows the drug distribution

across 14 therapeutic categories as defined by Anatomic

Therapeutic Class (ATC) (http://www.whocc.no/atcddd/) with

the RO3 positive drugs highlighted in red. The enrichment of the

RO3 drugs in each therapeutic category was determined by

Fisher’s exact test. We found that two therapeutic categories (i.e.,

anti-infective for systemic use and musculoskeletal system drugs)

were significantly associated with drugs that cause DILI (p-

value = 5.00E-11 and 0.002, respectively). To confirm the findings,

we carried out the same analysis for drugs in the SIDER database

that met the RO3. As shown in Figure 4(b), the same two

therapeutic categories were also found to be significantly

associated with drugs that cause DILI (p-value = 8.94E-8 and

2.36E-7, respectively). Both results demonstrated that care must be

taken when drugs are developed with existing targets in these two

categories.

The findings are consistent with real-world observations; for

example, non-steroidal anti-inflammatory drugs (NSAIDs, a

subcategory of anti-infectives for systemic use) are often associated

with DILI. A good example is didanosine (VidexH) which is an

antiviral drug used to treat human immunodeficiency virus (HIV)

infection. On Jan 29th, 2010, the FDA notified healthcare

professionals and patients about a rare but serious complication

in the liver known as non-cirrhotic portal hypertension in patients

using the drug. Subsequently, a black box warning was added to

the drug label to warn doctors and consumers of this risk.

Didanosine can also cause lactic acidosis and severe hepatomegaly

with steatosis, and has resulted in several fatal cases (http://

dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id = 23496).

Associating the protein targets with DILI potential via
network analysis

It was important to determine if the drug target is related to the

drug’s likelihood of causing DILI. Accordingly, we investigated the

drugs that were RO3 positive from DrugBank in the target space

using network analysis as illustrated on the left side of Figure 1,

step 4. These drugs were associated with 134 human protein

targets. In the network analysis, we considered that two protein

targets are directly related (connected with an edge in network

analysis) if one or more drugs were associated with both targets.

As depicted in Figure 5, the network contains two large modules

(Modules #1 and #2) with several small modules. There are 72

targets in Module #1 associated with 125 RO3 positive drugs, and

23 targets in Module #2 associated with 8 drugs. We conducted

toxicity function and pathway analyses using Ingenuity Pathway

Analysis (IPA, http://www.ingenuity.com/) for both modules. In

each module, particularly Module #1, the biological functions

related to disease and disorder were investigated to assess if the

targets of the drugs meeting the RO3 have a relationship with

hepatic system diseases or disorders. As shown in Table 3, liver

injury and disease related functions enriched in Module #1 were

hepatic system disorder, jaundice, liver cancer, hepatocellular carcinoma, and

Figure 3. The evaluation of the ‘‘Rule of Three’’ (RO3). The predicted positive value, percentage of withdrawn or boxed warning (BW) drugs,
and the number of drugs meeting the ‘‘Rule of N’’ for different values of N in the combined HepSE model.
doi:10.1371/journal.pcbi.1002310.g003

Drug-Induced Liver Injury Prediction System
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Figure 4. The distribution of small molecular drugs in (a) DrugBank and (b) SIDER that satisfy the ‘‘Rule of Three’’ (RO3) at the first
level of Anatomical Therapeutic Chemical Classification System (ATC). The probability of the presence of DILI drugs is statistically significant
in two therapeutic categories (J and M).
doi:10.1371/journal.pcbi.1002310.g004

Drug-Induced Liver Injury Prediction System
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hepatitis C. All the liver injury and disease functions are under the

hepatic system diseases branch of the top toxicity functions in IPA.

The other significant toxicity functions of Module #1 can be

found in Supplementary Table S3.

We also found that every drug in the two largest modules was

associated with more than three targets on average. Note that

drugs are prone to having multiple side effects if they interact with

multiple targets since different targets may invoke different side

Figure 5. Target network of corresponding drugs satisfying the ‘‘Rule of Three’’.
doi:10.1371/journal.pcbi.1002310.g005

Table 3. Summary of significant functions and pathways for module #1 identified in the network analysis of DILI targets using
IPA.

Functions Annotation p-Value Gene Name # Genes

hepatic system disorder 5.85E-25 ABCB1, ABCG2, ACSL4, ADRA1A, ADRA1B, ADRA1D, ALOX5, CASP3, CHRM1, CHRM2, CHRM3,
CHRM4, CHRM5, CHUK, DRD2, DRD5, HRH1, IKBKB, KIT, NR1I2, OPRM1, PDGFRA, PDGFRB,
PPARG, PTGS1, PTGS2, RXRA, SLC6A3, SLC6A4, TOP2A, VEGFA

31

jaundice 2.69E-15 CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, CHUK, HRH1, IKBKB 8

liver cancer 5.58E-11 ABCB1, CA2, CASP3, HTR3A, KIT, LCK, PDGFRA, PDGFRB, PTGS1, PTGS2, RARA, SLC6A3,
SLC6A4, SRC, TOP2A, VEGFA

16

hepatocellular carcinoma 7.76E-08 CA2, CASP3, KIT, PDGFRA, PDGFRB, PTGS1, PTGS2, RARA, TOP2A, VEGFA 10

hepatitis C 1.04E-07 CASP3, DRD2, DRD5, OPRM1, PPARG, SLC6A4 6

doi:10.1371/journal.pcbi.1002310.t003

Drug-Induced Liver Injury Prediction System
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effects [16,17]. We conducted text mining to verify the association

of 13 HepSEs and 134 targets identified by RO3 positive drugs.

We identified 45 proteins associated with eight HepSEs in a co-

occurrence analysis (Figure 6 and Supplementary Table S4). Most

of these targets are associated with hepatitis, while targets such as

PTGS2/COX-2 (prostaglandin-endoperoxide synthase 2) and

ABCD1 (ATP-binding cassette, sub-family, and member 1) are

related to multiple HepSEs.

Discussion

One application of translational science involves utilization of

clinical data to address challenges in drug discovery. The key

concept of this study is that the side effects observed in clinical

trials and post-marketing surveillance can be translated for use in

drug discovery. As a proof-of-concept study, we developed the

DILIps to address one of the most difficult clinical endpoints to

predict from preclinical studies, that is DILI. The DILIps contains

three distinct and sequential approaches. First, we identified 13

HepSEs based on the MedDRA ontology, which provided

excellent discrimination of a drug’s potential to cause DILI

(91% and 74% accuracy for LTKB-BD and PfizerData,

respectively). Secondly, HepSE-based QSAR models were devel-

oped by using all 888 drugs in SIDER, which were highly

predictive as compared to published models [14,18,19] and

offered a robust translation of clinical observation (i.e., side effects)

using in silico techniques to the drug discovery/preclinical testing

aspect of drug development. Next, we developed DILIps by

combining these 13 HepSE QSAR models, which yielded 60–70%

prediction accuracy for three independent validation sets. Lastly, a

RO3 criterion was implemented in DILIps, which had .91%

confidence for identification of drugs that might cause severe

DILI.

The DILIps is a modular system; each of its components can be

replaced by other methods or constructed using different variables.

For example, besides selecting 13 HepSEs from the hepatobiliary

disorders category in MedDRA, we also examined the effect of

including additional two DILI related terms from the investigation

SOC category, or selecting 14 DILI relevant terms as suggested by

an expert (Supplementary Table S5). Both yielded similar

performance compared to the 13 HepSE-based approach. Given

the fact that each MedDRA category is a stand-alone ontology and

other options did not yield exceptional performance, we choose

the terms under hepatobiliary disorders as representative types of DILI

in this study. For the second component of the DILIps, we

developed HepSE-based QSAR models because chemical struc-

ture data were readily available for the entire set of 888 drugs in

SIDER, providing a sufficiently large sample from which to build

the HepSE-based models. Other technologies, such as gene

expression microarrays, might be able to construct better HepSE

models. However, the data from these technologies was not

available for the complete set of SIDER drugs. With different

choices in components 1 and 2, the criterion in component 3 of

DILIps could be altered to optimize DILI classification using

different consensus approaches instead of RO3. Therefore, the

DILIps is subject to change and improvement when new data,

technology, and knowledge are available.

Development of predictive models for drugs that might cause

DILI in humans has been an active research field, with much of

the work being done using QSARs. However, the DILI labels used

in these studies are from different sources, some focused on case

reports and others developed using text mining. Furthermore, the

methods used to develop the models are also different. Thus, it is

difficult to compare these methods. For example, Greene et al. [14]

Figure 6. Text mining results to associate types of DILI
(columns) with protein targets (rows). The number of co-
occurrences (papers) between a target and a side effect type is
indicated in the cell. In each cell, the total number of reports as well as
the normalized value (shown in parenthesis) is provided. The
normalized value is the ratio of the number of co-occurrence reports
divided by the total number of reports for a protein target.
doi:10.1371/journal.pcbi.1002310.g006

Drug-Induced Liver Injury Prediction System
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developed Derek for Windows (DfW), a knowledge-based expert

system, to predict a drug’s potential to cause DILI using the DILI

classification scheme developed by Pfizer. The system has 56%

overall accuracy with 73% specificity and 46% sensitivity.

Fourches et al. [18] applied text mining for DILI reported in

different species using MEDLINE abstracts, suggesting that the

concordance of liver effects is low (i.e., 39–44%) between different

species. They also developed QSAR models using a text mining

approach to define DILI classification with external prediction

accuracies ranging from 56 to 73%. Very recently, Ekins et al. [19]

developed a Bayesian model based on DILI endpoint from cellular

imaging predictions [7], which gave a concordance of 60%,

sensitivity of 56%, and specificity of 67%.

Development of DILI models for humans is always confronted

by two distinct but related challenges: (1) a comprehensive drug list

with DILI annotation is usually not available, and (2) there is no

authoritative assessment of whether a drug causes DILI or not. In

this study, we compiled three large datasets from our LTKB

project. We used only the drugs of the opposite extremes in DILI

classification (positive or negative in relationship to DILI) by

removing drugs with ambiguous call. The RO3 criterion of

DILIps reached .91% positive predictive value for a combined

drug list from these three literature datasets. We also applied

DILIps for the drugs with ambiguous call and the results are

available from Supplementary Table S6.

The translation of clinical observations to evaluation of drugs

earlier in the drug development pipeline is a goal of translational

medicine [20]. DILI is an endpoint influenced by several

important factors, and it is difficult to adequately predict with a

single model. The SIDER database has collected clinical

observation data (side effects) from drug labels and the scientific

literature, which allows the linkage of disease endpoints and

related symptom profiles. This, in turn, provides an opportunity to

combine drug information and patient information into a unified

prediction method, a focus of this study. The HepSEs provide a

new direction to predict DILI based on the consensus of multiple

clinical endpoints (side effects) using an in silico method.

Elucidation of therapeutic uses, drug targets, and pathways

related to DILI from a systematic perspective is of great use in

drug discovery and pharmacovigilance. By applying the RO3

criterion to the entire drug space defined by DrugBank, we

constructed a DILI landscape in terms of therapeutic and drug

target space. We do acknowledge that the findings from this excise

are dependent on the accuracy in annotation in DrugBank.

We identified two therapeutic categories (i.e., anti-infectives for

systemic use and musculoskeletal system drugs) in which the drugs

have a high risk for causing DILI. This is consistent with the

general understanding that, for example, NSAIDs (a subcategory

of anti-infectives for systemic use) are often associated with DILI

and have been subject to a broad range of studies looking into

drug-specific, therapeutic class-specific, and genetic-specific effects

[21]. Another possibility is that these drugs may have higher

exposure rates; they are widely used by many people over

prolonged periods, which may inadvertently increase the risk of

DILI. The RO3 positive criterion was able to identify most ‘‘bad

actors’’ among NSAIDs including celecoxib, diclofenac, diflunisal,

ibuprofen, leflunomide, and rofecoxib. Most of them are PTGS2

(COX-2) protein inhibitors. This gene is also involved in several

hepatic system pathways such as hepatic system disorder, liver cancer,

and hepatocellular carcinoma. COX (Cyclooxygenase) is an enzyme

that is responsible for formation of important biological mediators

called prostanoids. Pharmacological inhibition of COX can

provide relief from symptoms of inflammation and pain. However,

more and more reports indicated that the selective inhibition

profile of COXs can cause certain serious adverse drug reactions.

A classic example is rofecoxib (brand name VioxxH), which was

withdrawn in 2004 because of the risk of heart attack caused by

selective inhibition of COX-2. Rofecoxib was also associated with

DILI [22]. Another example is lumiracoxib, a selective COX-2

inhibitor developed for the symptomatic treatment of osteoarthritis

and acute pain. Concern over hepatotoxicity has contributed to

the withdrawal or non-approval of lumiracoxib in most major

drug markets worldwide [23]. Therefore, the study of the

relationship between drug target and DILI, such as COX

selectivity and DILI, may provide new insights into DILI at a

molecular level [24].

We also found that DILI drugs often involve multiple targets,

which is often associated with drugs applied in multiple

therapeutic categories [25]. Drugs interacting with multiple targets

are considered ‘‘dirty’’ since they have a potential to initiate

different adverse reactions. On the other hand, these drugs may

also hold the potential to be repositioned for use outside of their

original therapeutic indications. One such example is diclofenac,

which is used to relieve pain, tenderness, swelling and stiffness

caused by osteoarthritis, rheumatoid arthritis, and ankylosing

spondylitis. Diclofenac is labeled with four different ATC codes

(i.e., four different therapeutic uses) and associated with a number

of targets categorized by DrugBank, including prostaglandin G/H

synthase 1 and 2, the cytochrome P450 family (2C18/2E1/2C19/

1A2/2C8/2D6/2C9/3A4/1A1/2B6), the UDP-glucuronosyl-

transferase family (1–1,2B7), prostaglandin G/H synthase 1, etc.

Several case-control studies have been carried out to investigate

the role of polymorphisms in the gene encoding regions of the

aforementioned drug-metabolizing enzymes and transporters to

determine susceptibility to diclofenac-induced hepatotoxicity

[26,27,28,29,30]. Diclofenac has been withdrawn in several

countries due to liver injury and other adverse drug reactions,

including ulcers, bleeding, and ulcerations in the stomach and

intestinal linings [31]. Diclofenac induced liver injury causes a

number of side effect patterns, including cirrhosis, hepatic failure,

hepatic necrosis, hepatitis, jaundice, all of which were included in

our set of 13 HepSEs.

DILI is associated with two distinct but related parameters: drug

properties and patient susceptibility. Some drugs are more likely to

cause DILI, while some patients are more likely to show DILI.

The DILIps is primarily capable of addressing the former

challenge with an aim to enhance DILI identification in drug

discovery. Identifying genetic variations and their associated

protein products that contribute to DILI is another important

research area, but one that requires the costly and time-consuming

collection of samples from large numbers of affected individuals.

Study of the genetic risk factors to DILI or other conditions usually

involves the identification of genes associated with key disease

mechanisms and immunological reactions using genotyping

approaches. The network analysis conducted in this study

connected DILI drugs with pathways and targets and might

contribute to the identification of mechanisms that relate a

patient’s genetic predisposition and DILI. There are a small

number of genetic risk factors identified for DILI, most are

associated with a drug interaction with a specific HLA (human

leukocyte antigen system) polymorphism within the major

histocompatibility complex (MHC) such as lumiracoxib (HLA-

DRB1*15:01) [23], antituberculosis chemotherapy (HLA-

DQB1*02:01) [32], ticlopidine (HLA-A*33:03) [33], ximelagatran

(HLA-DRB1*07:01) [34], flucloxacillin (HLA-B*57:01) [21], and

amoxicillin-clavulanate (HLA-DRB1*15:01) [35]. Other genetic

risk factors such as those involving drug metabolizing enzymes are

exemplified by CYP2C8*4 (diclofenac), CYP2E1*1A (isoniazid),
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GSTT1-M1 (troglitazone), and UGT2B7*2 (diclofenac) are also

reported [36,37,38].

Drug safety is a key area of focus in the FDA. Modernizing

safety evaluation has been advocated by the FDA’s recent initiative

on advancing regulatory science with a proposal of incorporating

both in vitro and in silico methodologies in drug development and

safety assessment [39]. The DILIps follows the same philosophy

that underlies this new initiative at the FDA. It could be a

predictive system for FDA to utilize and reference when

hepatotoxicity issues arise during the various stages of the

regulatory review process. It could also serve as a proof-of-concept

approach of using predictive systems for drug safety to support the

FDA’s regulatory science. While the DILIps was developed for

DILI, its methodology can be applied equally well to address other

drug safety issues, such as renal and cardiovascular toxicity.

Materials and Methods

Preparation of datasets
SIDER database. SIDER is computer-readable database of

side effects which connects 888 drugs with 1450 different side

effect terms [12]. The side effects were extracted from drug labels

in either Structured Product Labeling (SPL) or Portable Document

Format (PDF) documents. The standardized Coding Symbols for a

Thesaurus of Adverse Reaction Terms (COSTART), a part of the

Unified Medical Language System (UMLS) Metatheasaurus, was

used as the basic lexicon of side effects. In this study, we

downloaded the entire database from http://sideeffects.embl.de/.

We then constructed a matrix with 888 drugs corresponding to

1450 side effects with supplementing the chemical structure data.

DrugBank. DrugBank (http://www.drugbank.ca) is a richly

annotated database of drugs and drug target information [40,41]. It

contains extensive information about nomenclature, chemistry,

structure, function, mode of action, pharmacology, pharma-

cokinetics, metabolism, and pharmaceutical properties of both

small molecule and large molecule (biotech) drugs. The updated

DrugBank 3.0 contains 6,800 drug entries including 1,400 FDA-

approved small molecule drugs, 132 FDA-approved biotech

(protein/peptide) drugs, 82 nutraceuticals and 5,200 experimental

drugs. In additional, more than 4,300 non-redundant protein (i.e.

drug target) sequences are linked to these drug entries [42].

In this study, information about 6620 small molecule drugs

(1,400 FDA drugs and 5,200 experimental drugs) was retrieved

including chemical structure, approval status, therapeutic catego-

ries and protein targets for use to generate the DILI landscape in

terms of therapeutic uses and drug targets.

LTKB benchmark dataset (LTKB-BD). As a part of the

LTKB project, a research team from the FDA’s National

Center for Toxicological Research has developed the LTKB-

BD dataset that contains 287 drugs with DILI annotation based

on the FDA-approved drug labels. The data are available

from http://www.fda.gov/ScienceResearch/BioinformaticsTools/

LiverToxicityKnowledgeBase/ucm226811.htm [13]. The drugs are

classified into three categories: those of Most-DILI-Concern, Less-

DILI-Concern, and No-DILI-Concern. In this study, only those in

the Most-DILI-Concern (gemtuzumab was excluded since it is a

biotechnology product) and No-DILI-Concern categories were

used. The dataset was divided into two sets. One set overlapped with

the SIDER database and contained 69 drugs of Most-DILI-

Concern and 59 No-DILI-Concern. This was used to evaluate the

performance of HepSEs. The rest of the LTKB-BD contained 67

drugs of Most-DILI-Concern and 6 of No-DILI-Concern that were

not in SIDER and were used to validate the DILIps performance

(Supplementary Table S6).

Pfizer hepatotoxicity dataset (PfizerData). Another

independent test set comes from part of the Derek for Windows

(DfW) system [14], which is a knowledge-based expert system

designed to assess the potential toxicity of a chemical from its

structure. A total of 626 compounds were classified into four

categories based on case reports, including evidence of human

hepatotoxicity (HH), no evidence of hepatotoxicity in any species

(NE), weak evidence (,10 case reports) of human hepatotoxicity

and evidence for animal hepatotoxicity but not tested in humans.

In this study, only HH and NE drugs were used, As a result, there

were 406 drugs remaining; 168 HH (positive) and 90 NE (negative)

overlapped with the SIDER database. The other 92 HH (positive)

and 56 NE (negative) that were not contained in the SIDER

database were selected as another independent test set

(Supplementary Table S6).

O’Brien et al. dataset. O’Brien et al. classified drugs into

four categories according to the severity of human hepatotoxicity

based on the frequency of an observed increase in ALT and other

evidence [15]. In this study, the categories of ‘‘Severely’’ and

‘‘Moderately’’ hepatotoxic drugs were considered DILI positive

drugs while non-toxic drugs were considered DILI negative, and

those that did not overlap with the SIDER database were

employed. The ratio of positive to negative drugs was 25/15

(Supplementary Table S6).

Data analysis method
Identification and assessment of Hepatotoxic Side Effects

(HepSEs). This section is shown as step 1 in Figure 1. There are

1450 different side effects listed in the SIDER database. We

identified 473 side effects for HepSE identification, with each side

effect associated with more than 20 drugs. We used MedDRA to

identify HepSEs. MedDRA is an ontology that provides a

controlled vocabulary describing adverse events. The 473 side

effect terms were mapped to the System Organ Class (SOC) level

of hepatobiliary disorders in MedDRA to extract the HepSEs

(Supplementary Table S1). The drugs in LTKB-BD which

overlapped with drugs in SIDER (128 total drugs) as well as

those in PfizerData which overlapped with drugs in SIDER (258

total drugs) were employed to assess the performance of HepSEs.

If a drug was associated with any HepSE as observed in the

SIDER database, it was considered as DILI positive. To determine

if the predictive performance of the 13 HepSE models was better

than would be expected by chance alone we randomly selected a

set of M side effects (M = 3,5,…,21) and used these to predict DILI

potential. The selection process for each M was repeated 20,000

times, and the average performance of each M was compared to

the performance of the 13 HepSEs.

DILI prediction system (DILIps). Development of DILIps

consists of two steps (steps 2 and 3 of Figure 1). In step 2, all of the

drugs were transformed into well-established functional class

fingerprints (FCFP_6), structural fingerprint developed by Pipeline

Pilot 8.0 from SciTegic (http://accelrys.com/). It has been shown

in other studies that Bayesian models built using circular

fingerprints work very well in virtual screening tasks

[14,43,44,45,46,47]. Then, multiple-category naı̈ve Bayesian

classifiers were trained for each of the selected HepSE

endpoints. In the training set, leave-one-out cross-validation

(LOO-CV) was employed to investigate the model performance.

For each model, a receiver operating characteristic plot (ROC

plot) was drawn to select the best Bayesian score (cut-off value) to

distinguish DILI drugs and non-DILI drugs.

In step 3, the independent test sets were submitted to the 13

HepSE models to calculate the Bayesian scores and give the

prediction results: For each HepSE endpoint, the predicted
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Bayesian scores (PB-SCOREi, i = 1, 2…n) compared to cut-off

Bayesian score obtained in step 2. If PB-SCOREi . cut-off value,

the drug was considered positive for this endpoint and vice versa.

A drug was considered to have the potential to cause DILI if any of

the HepSE endpoints was called as positive (the left side of

Figure 1, step 3). In the right side of Figure 1 (step 3), consensus

prediction strategies were used to investigate the effectiveness of

combining results from multiple HepSEs into a single prediction.

A ‘‘Rule of N’’ strategy was evaluated, where 13 separate

consensus prediction strategies were examined with each predict-

ing a drug as causing DILI if N (N = 1,2,…,13) HepSEs were

positive for that drug.
DILI landscape. Three sets of analysis were conducted,

which is summarized in step 4 of Figure 1. The right side of

Figure 1 is to assess the relationship of therapeutic use and DILI

potential of RO3 drugs. The Anatomical Therapeutic Chemical

(ATC) codes [48] for small molecule drugs which meet the ‘‘Rule

of Three’’ were extracted for this analysis.

The right side of Figure 1 is to assess the association of protein

targets and DILI potential of RO3 drugs. The protein targets

associated with small molecule drugs which meet the RO3

criterion were obtained from DrugBank 3.0. There are 4437

different protein targets from different organisms, and only the

human protein targets were selected. The protein target network

was built by considering two protein targets as connected if at least

one drug was associated with both targets. Two large modules

were identified using the SCAN algorithm, which is used to find

modules in the network [49]. The protein targets in these two large

modules were submitted to Ingenuity Pathway Analysis (IPA)

software (http://www.ingenuity.com/products/pathways_analysis.

html) for pathway analysis. In addition, a text mining with co-

occurrence analysis [50] was also employed to verify the protein

target and HepSE relationship from the network analysis. In this

analysis, the number of papers in PubMed that links a target with a

HepSE in a co-occurrence analysis was extracted. Since some

proteins are more extensively studied than others, the number of

papers associating the protein to the HepSE was normalized by

dividing the number of co-occurrence reports by the total number of

reports of the related protein.
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Figure S1 The distribution of 888 drugs over 473 side
effects and vice versa.

(TIF)

Table S1 Information for the 473 side effects. Informa-

tion included: (1) the number of drugs involved; (2) system organ

classes (SOC) number and annotation of MedDRA; and (3) the

distribution of 473 side effects in the SOC levels of MedDRA.

(XLS)

Table S2 Information of the validation set from three
literature datasets (i.e., LTKB-BD, PfizerData, and
O’Brien et al.) for drugs that do not overlap with SIDER.

(XLS)

Table S3 The top toxicity functions of Module 1.

(XLS)

Table S4 The literature proof about the co-occurrence
between the HepSE terms and protein target. The

EntrezGene ID and PubMed ID (which can be linked to PubMed

directly) are provided.

(XLS)

Table S5 The QSAR models performance for the 13
HepSEs and an additional two terms from the Investi-
gation category, and for 14 HepSEs as suggested by an
expert.

(XLS)

Table S6 Information for datasets. Datasets include: (1)

SIDER, (2) LTKB-BD, (3) PfizerData, (4) O’Brien et al., and (5)

Small molecules in DrugBank.

(XLS)
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