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Abstract

The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side
effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and
detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics
or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an
algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the
presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for
conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical
measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm
PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate
PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by
showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then
apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant
relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show
that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for
inhibiting two proteins in a single pathway.
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Introduction

Structural biology studies have provided large numbers of high-

resolution proteins, often bound to small molecule ligands. The

ability to predict additional ligands that will bind these proteins is

an exciting opportunity for understanding drug action and

repurposing. In some cases, the binding of a small molecule to a

protein may explain otherwise unexpected effects of the small

molecule, such as side effects of drugs. In other cases, the binding

of a small molecule may suggest new uses of existing drugs, based

on unexpected affinity to new targets.

Previous methods for predicting the potential binding of small

molecules to protein pockets have used evolutionary, structural,

biochemical and geometric properties in order to assess pocket

similarity, or ligand-pocket complementarity [1,2,3,4,5]. For

example, the method of sequence order-independent profile-

profile alignment (SOIPPA) [6] can recognize binding site

similarity between the cholesteryl ester transfer protein (CETP)

and off-targets, including retinoid X receptor and peroxisome

proliferator-activated receptors (PPARs). These new targets may

explain adverse drug effects of CETP inhibitors [7]. SOIPPA

represents binding sites with a tessellation of C-alpha atoms and

characterizes binding sites using geometric similarity potentials.

SOIPPA evaluates 3D alignments between binding sites that are

enriched for similar angles and distances between residues. It then

gauges overall similarity based on geometric criteria, evolutionary

and biochemical properties.

Like SOIPPA, other methods for locally comparing binding

sites typically have three steps [5]: (1) representation of binding

sites, (2) 3D alignment between two sites and (3) evaluation of a

similarity metric to the two sites. Searching for the best 3D

alignment is the essential step. There are geometric hashing

methods (SiteEngine [8] and SiteBase [1]) and methods based on

clique detection (SOIPPA [6], CavBase [9] and eF-site [10]).

These methods use thresholds to control the similarity of local

geometries in both types of methods, but these can be difficult to

set. In particular, flexible matching can be critical in achieving

high performance [11]. Thornton et al showed that binding sites

with similar ligands display greater conformational variability than

the corresponding ligand molecules [12]. Thus, using predefined

geometric models and thresholds is not optimal. Excessive reliance

on crystallographic poses for both the protein and the ligand can

miss potential similarities.

We have previously described the FEATURE methods for

describing active sites [13]. In the FEATURE representation, a

protein site is represented by one or more microenvironments—
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statistical descriptions of the occurrence of atoms, residues,

secondary structures as well as biochemical and biophysical

properties in radial shells around a central point [14]. We have

shown that the FEATURE representation is useful for describing

sites for Ca++ binding [14], Mg++ binding [15], serine protease

active sites [13], thioredoxin active sites [16] and others [17]. We

have also used it to evaluate the ability of engineered loops to bind

ligands [18]. In this work, we reasoned that the interactions

between microenvironments in the target protein and chemical

fragments in the ligand may drive molecular recognition. Because

the conformational arrangement of fragments within flexible

ligand molecules can be very different, we allow the corresponding

microenvironments to adopt different relative geometries. We

develop an algorithm, PocketFEATURE, to match microenviron-

ments within pockets in order to find pockets with potentially

similar binding capabilities.

We validate PocketFEATURE by testing its performance on

two tasks. First, we test its ability to detect the similarity of binding

sites that are known to bind the same (containing adenine-ribose)

ligands–a test of sensitivity. Second, we test its ability to detect

FAD binding across a large proteome-scale set of proteins–a test of

specificity. In both tests, the method shows very strong

performance, including an ability to detect similarities missed by

other methods.

Kinases play an important role in cell signaling, and can be

dysregulated in cancer. Several recently introduced cancer drugs

act as ATP analogues and inhibit kinase action [19,20]. Therefore,

the binding capabilities (or binding profiles) of kinases may be

useful for discovering novel kinase inhibitors. In particular, kinase

inhibitors that bind two or more kinases in the same pathway are

attractive because they can more effectively interfere with the

pathway, without the need for very high doses or multiple drugs

[21,22]. Kinase binding profiles may also be useful for under-

standing side effects of drugs that bind multiple proteins [22]. In

principle, the ability of an inhibitor to bind multiple kinases may

occur despite very low sequence and structure homology. For

these reasons, the ability to detect similar binding sites in divergent

kinases is potentially valuable.

There are sixteen cancer drugs approved or in advanced

development that are known to have multiple targets [22]. All of

these drugs target members of the same protein family that

regulate the same signaling process. Accordingly, most studies

have focused on dissecting the detailed binding preferences of

drugs on a relatively small set of kinases that are known to be

important. In fact, multi-target drugs that work on proteins within

distant families are only rarely reported [23]. Therefore, one of the

goals of this work is to discover unrecognized binding similarities

between remotely related proteins to increase the repertoire of

kinase inhibitor action and utility. Accordingly, we apply

PocketFEATURE to predict the similarity in inhibitor-binding

profiles between kinases. In particular, we seek similar inhibitor-

binding profiles for kinases that are evolutionarily distant.

Results

Detecting binding site similarity
We first validated PocketFEATURE’s ability to detect binding

site similarity. In particular, we tested its ability to recognize

pockets that bind similar ligands, and distinguish them from

pockets that do not bind these ligands. The benchmark dataset is

provided by Bourne group from USCD [6]. The ligands sharing

similarity are: ATP, ADP, NAD, FAD, SAH and SAM, all of

which contain an adenine-ribose moiety. We compared the

performance of PocketFEATURE to SOIPPA, which outperforms

other ligand-binding site comparison algorithms in this task [6].

Figure 1 shows PocketFEATURE’s ability to recognize 30381

pairs of sites that both bind adenine-ribose moieties, and to

recognize the lack of similarity of 24947 control pairs of sites in

which one site binds adenine-ribose and the other does not. The

AUC for the entire benchmark is 0.85. At specificities of 95% to

99.5%, PocketFEATURE outperforms SOIPPA. At 95% speci-

ficity, PocketFEATURE identifies about 40% similar pairs, while

SOIPPA identifies less than 30%. Our results demonstrate that

PocketFEATURE can identify binding sites with overlapping

chemical specificity. Proteins in this test are evolutionarily

divergent (,5% of them are from the same SCOP superfamily).

Thus, PocketFEATURE can detect site similarity across remote

evolutionary relationships.

Figure 2 shows an ATP-binding site (1kvk), an NAD-binding

site (1a5z) and an FAD-binding site (2b9w). There are five

corresponding microenvironments in each protein (spheres are

shown in Figure 2A and the types of microenvironments are listed

in Figure 2B). These five microenviroments are in proximity to the

adenine moiety from ATP, NAD and FAD molecules. It is

important to note that the five microenvironments adopt different

relative geometries in these three sample sites while coordinating

the ligands. We consider the five microenvironments to constitute

modules capable of recognizing adenine-ribose moieties contained

within diverse ligand molecules.

The S(Tc) score captures the similarity of a pair of FEATURE

microenvironments. To evaluate the significance of alignments

between microenvironments, we calculated the probability

distribution function (PDF) of microenvironment similarity score

S(Tc) using a non-redundant dataset of 3D structures in PDB.

Given each set of the mutual alignment between ATP, NAD and

FAD binding sites, Figure 2C maps the three S(Tc) scores to the

corresponding microenvironment types. The alignments of high

significance form the basis for recognizing similarity between

binding sites detected by PocketFEATURE.

Detecting FAD-binding sites in a large druggable
database

The previous test demonstrated that PocketFEATURE can

sensitively detect similarities between adenine-ribose containing

pockets. We tested PocketFEATURE’s ability to specifically

Author Summary

Small molecule drugs may interact with many proteins.
Some of these interactions may cause unexpected effects,
including side effects or potentially useful therapeutic
effects. One way to predict these effects is to analyze the
three-dimensional structure of target proteins, and identify
new binding sites for small molecule drugs. Several
methods have been proposed for predicting new binding
sites, relying on geometric and functional complementar-
ity of the sites and the small molecules. In this paper, we
report on a new method for identifying novel protein-drug
interactions by analyzing the similarity between binding
sites in proteins. The method has relatively weak
geometric requirements and allows for conformational
change or dynamics in both the ligand and protein. Our
results show that geometric flexibility is useful for
effectively comparing sites. We have applied the method
to evolutionarily distant kinases, and find unexpected
shared inhibitor binding. Our results may be valuable for
drug repurposing in order to find novel uses for existing
kinase inhibitors.

Compare Ligand-Binding Sites
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recognize FAD-binding sites on a structural proteome scale. The

Dataset-6958 is derived from an annotated database of ‘‘druggable

binding sites’’ from PDB called scPDB (see Method section). It

includes a total of 6709 non-FAD-binding proteins and 249 FAD-

binding proteins, from 43 EC-families. Using a single arbitrarily

selected FAD-binding site (1nhp/FAD) as a query structure, we

searched the database for all other FAD-binding sites from

Dataset-6958 by pairwise comparison. Figure 3A shows the overall

performance with an AUC value of 0.92. At 95% specificity,

PocketFEATURE identifies about 65% sites that are known to

bind FAD. At 80% specificity, PocketFEATURE identifies nearly

90% sites correctly.

Of note, FAD binds proteins in two general conformations [24]:

the (1) elongated and the (2) bent butterfly conformation

(Figure 3B). In the bent conformation (1nhp in Figure 3B), the

AMP portion is folded back, placing the adenine and isoalloxazine

rings in close proximity, whereas in the elongated conformation

(1fdr in Figure 3B) the adenine ring is distant from the

isoalloxazine ring. Remarkably, PocketFEATURE can detect

bent butterfly FAD sites based on an elongated FAD query

structure. Conversely, using a binding site with a bent butterfly

FAD as a query structure, PocketFEATURE can detect elongated

FAD binding sties (Supplementary Material Figure S1).

Figure 3B and 3C show the microenvironment alignments

detected by PocketFEATURE. (See Method section, A microen-

vironment is named using the following convention: ‘‘m’’ followed

by ‘‘residue index’’ and ‘‘residue type’’, upon which the

microenvironment is centered. PDB identifier or gene name is

tagged when necessary.) The aligned microenvironments

m6L1nhp-m67L/1fdr (red), m250W/1nhp-m248W/1fdr (orange)

and m79I/1nhp-m68V/1fdr (yellow) are near the adenine moiety

of FAD in 1nhp and 1fdr, respectively. Aligned microenviron-

ments m132R/1nhp-m77P/1fdr (pink) and m12G/1nhp-m77P/

1fdr (green) are adjacent to phosphate chemical groups. Another

two sets of microenvironments m159Y/1nhp-m52Y/1fdr (cyan)

and m300T/1nhp-m53S/1fdr (wheat) are found near flavin

groups. As might be expected, the different conformations of

FAD molecules in the structures 1nhp and 1fdr lead to markedly

different geometric arrangements of these aligned microenviron-

ments. However, PocketFEATURE identifies these alignments

with high significance, demonstrating the robustness of the

algorithm.

Other related benchmarks
We have performed three independent experiments to test

PocketFEATURE’s ability to specifically recognize non-adenine

ligand binding sites. First, using a typical steroid-binding site (1A28

bound with progesterone) to detect all other steroid-binding sites

(total 83 sites) from Dataset-6985 (Supplementary Material Figure

S2). The overall AUC is 0.826. Second, we compared Pock-

etFEATURE to a 3D shape descriptor using real spherical

harmonic expansion coefficients [25,26]. Using their published

datasets (10 sites for ATP, 10 for NAD, 10 for heme and 10 for

steroids), PocketFEATURE successfully clusters the four types of

sites and compares favorably with the real spherical harmonic

shape descriptor (Supplementary Material Figure S3). Third, we

applied PocketFEATURE to predicted off-targets for Torcetrapib

from a non-redundant subset of PDB for 1200 human proteins.

Supplementary material Table S1 lists top ranked off-targets

predictions. Xie et al [7] published a panel of 20 off-targets for

CETP inhibitors (specifically Torcetrapib) predicted by SOIPPA.

These predictions have been refined and validated by docking

methods and critical human curation. Comparing the 20

published off-targets by SOIPPA and the 36 predictions by

PocketFEATURE, we find that seven are the same. These three

tests show that PocketFEATURE effectively recognizes non-

adenine ligand binding sites.

The Similarity Ensemble Approach (SEA) is a method for

calculating chemoinformatics similarities between drug sets [27].

Given two binding sites, we incorporate the similarity scores

between experimentally observed ligand molecules calculated by

SEA into the PocketFEATURE similarity score between the

Figure 1. Comparison of the performance of PocketFEATURE to SOIPPA. The benchmark measures the ability to discriminate 30381 pairs of
sites that both bind adenine-ribose moieties from 24947 control pairs of sites where one site binds adenine-ribose and the other does not. The AUC
for the entire benchmark is 0.85. At the specificity range of 95% to 99.5%, PocketFEATURE outperforms SOIPPA. At 95% specificity, PocketFEATURE
identifies about 40% positive pairs, while SOIPPA identifies less than 30%.
doi:10.1371/journal.pcbi.1002326.g001
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binding sites. Preliminary results suggest that combining ligand

chemoinformatics and target physiochemical properties leads to

strong signals for similarity detection (Supplementary Material

Figure S4).

Predicting inhibitor-binding for distantly related kinases
Having established reasonable sensitivity and specificity of

PocketFEATURE, we studied ATP-binding sites in kinases, to find

new targets for these inhibitors. We specifically targeted kinase

proteins that are distantly related, with little detectable sequence or

structural similarity, because most previous work has focused on

the binding properties of closely related kinases.

We calculated the binding site similarity scores of the 6058 pairs

sites in distantly related kinases using PocketFEATURE. Figure 4

plots the PDF of the scores for the 6058 pairs. A small p-value

suggests an increased likelihood of high binding site similarity for

the pair of proteins evaluated.

CHEMBL is a manually curated chemical database of bioactive

molecules with drug-like properties [28]. Our local database

downloaded from CHEMBL includes binding assays between a

total of 3199 protein domains and 541,137 compounds. Similarly,

the Ambit panel provides high-throughput kinase selectivity

profiling of 317 kinases against 37 known kinase inhibitors [29].

Of the 6058 pairs we evaluated, there are 40 pairs for which

experimental data (from CHEMBL or Ambit) are available for

both kinases. Of these pairs, 11 had experimental results

suggesting high overlap in inhibitor binding—they are ‘‘positive-

pairs’’. When we rank order the 40 pairs based on their scores,

nine of the 11 positive-pairs rank first through eighth, and tenth

(Figure 4). The binding site similarity scores of negative-pairs

Figure 2. An example illustrating how PocketFEATURE identifies similar sites that bind to ligands with overlapping chemical
specificity. We compare an ATP-binding site (1kvk/ATP), an NAD-binding site (1a5z/NAD) and an FAD-binding site (2b9w/FAD). There are five sets of
mutual aligned microenvironments between the three sites. (A) 3D structures of the binding site. The five sets of mutual aligned microenvironments
are represented as colored spheres: red for microenvironment centered at residue type E(mE) or D (mD), blue for mT, green for mY, orange for mV or
mI and purple for mP. The five microenviroments are close to the adenine moiety from ATP, FAD and NAD molecules. The aligned
microenvironments display different relative geometries in the three sites. 3D illustrations were generated using PyMOL [37]. (B) Index of center
residues for the mutual aligned microenvironments. (C) Significance of alignments. Tc scores between the five sets of mutual aligned
microenvironments are mapped to the pre-calculated PDF for a given type of microenvironment pair. The scores between ATP-binding and NAD-
binding sites are marked using diamonds, those between ATP-binding and FAD-binding using circles, and those between NAD-binding and FAD-
binding using squares. For each of the five sets, the S(Tc) scores fall within the p-value cutoff of 0.05.
doi:10.1371/journal.pcbi.1002326.g002
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Figure 3. Identification of FAD-binding sites in a large druggable database. (A) The overall performance with an AUC value of 0.92 At 95%
specificity, PocketFEATURE identified about 65% sites that are known to bind FAD. At 80% specificity, PocketFEATURE identified nearly 90% sites
correctly. (B) Microenvironment alignments between two FAD-binding sites. Two sites adapt to two different ligand conformations, an elongated
(1nhp) and a bent butterfly conformation (1fdr). The relative geometries arrangements of aligned microenvironments are different. (C) An illustration

Compare Ligand-Binding Sites
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range from 21.9 to 23.6—quite separate from the positives. The

significance of the separation of positive-pairs and negative-pairs in

this ranking, as evaluated by a hyper-geometric distribution has a

p-value of 4.5e-18.

Using a p-value cutoff ,0.01 from the PDF (binding site

similarity score cutoff of 23.76 in Figure 4), 50 pairs of kinases are

predicted to have inhibiting-profile overlapping. Nine pairs have

experimental evidence suggesting overlap in inhibitor binding-

these are true positives (Table 1). One pair is considered false

positive because although the two kinases are tested in CHEMBL,

they do not share ligands using our relatively stringent cutoff

(Table 2). The other 40 pairs with high apparent similarity are

novel predictions (Table 3). Experimental evidence for these

kinases pairs is not available in CHEMBL or Ambit.

Discussion

We have presented a new algorithm for detecting ligand-

binding site similarity, tested it on (1) the recognition of adenine-

ribose binding ligands and (2) the recognition of FAD binding sites.

We then applied it to the problem of predicting cross binding of

ATP analogues inhibitors of kinases.

Summary of PocketFEATURE method
Our method works for two reasons. First, we employ a novel

microenviroment-based representation and scoring system for

comparing pockets that captures the physical and chemical

properties in the binding pocket, and second, we do not impose

rigid geometric matching criteria on the microenvironments

within the pocket. The resulting method accurately recognizes

similar microenvironments, and identifies combinations of micro-

environments that can interact with fragments within ligand

molecules.

Representation and similarity measure between

individual microenvironments. Microenvironments are

represented using the FEATURE representation that captures

physiochemical properties of a local subsite. The raw Tc score

measures similarity between two microenvironments. However, it

is difficult to compare Tc scores across pairs of microenvironments

because the background similarities between different pairs are not

the same. Therefore, it is necessary to normalize the Tc scores. We

normalize the scores by creating a background distribution for

each pair type (See Method). The normalized score S(Tc) is

negative, decreases monotonically with increasing Tc, and

changing most rapidly for Tc.Tc0. Therefore, our method

seeks microenvironment-pairs that have high similarity, given the

expected background score distribution.

We aligned microenvironments from an ATP, FAD and an

NAD binding site (Figure 2). Microenvironment similarity score

S(Tc) of aligned ones are outliers within the PDF (Figure 2C). The

aligned microenvironments constitute functional modules for

ligand recognition (Figure 2A). That is, particular microenviro-

ments are associated with the recognition of particular molecular

fragments with ligands. A better (more negative) S(Tc) similarity

captures this shared recognition role in different binding sites.

Geometric flexible matching between microenvi-

ronments. The combined interactions between multiple

microenvironments in a target protein and molecular fragments

within its ligand molecule drive molecular recognition. Because

fragments can adopt different poses within a ligand molecule, the

FEATURE based microenvironments in the target protein can

adopt different relative geometries, as shown in Figure 3C. Some

of the corresponding positioning of aligned microenvironments and FAD molecules. The aligned microenvironments m6L/1nhp-m67L/1fdr (red),
m250W/1nhp-m248W/1fdr (orange) and m79I/1nhp-m68V/1fdr (yellow) are near the adenine moiety of FAD molecules in 1nhp and 1fdr, respectively.
Near phosphate chemical groups, aligned m132R/1nhp-m77P/1fdr (pink) and m12G/1nhp-m77P/1fdr (green) are observed. Another two sets of
microenvironments m159Y/1nhp-m52Y/1fdr (cyan) and m300T/1nhp-m53S/1fdr (wheat) are found close to flavin groups.
doi:10.1371/journal.pcbi.1002326.g003

Figure 4. Predicting overlapping of inhibitor-binding profiles between kinases. The binding site similarity scores of 6058 pairs of distant
kinases were fitted into normal distribution. The more negative the score, the higher level of similarity between two sites is predicted. The blue
dotted line is the p-value cutoff of 0.01 for highly ranked predictions (Table 1). Of the 6058 pairs, there are 40 pairs of which experimental data are
available to both kinases. Out of the 40 pairs, 11 pairs have experimental results suggesting overlap in inhibitor binding – they are ‘‘positive-pairs’’.
The remaining 29 pairs are ‘‘negative-pairs’’ that do not share ligands. The significance of the separation of positive-pairs and negative-pairs in this
ranking, as evaluated by a hyper-geometric distribution has a p-value of 4.5e-18.
doi:10.1371/journal.pcbi.1002326.g004

Compare Ligand-Binding Sites

PLoS Computational Biology | www.ploscompbiol.org 6 December 2011 | Volume 7 | Issue 12 | e1002326



methods use geometric constraints to control local arrangements of

functional modules. PocketFEATURE has relatively weak geometric

requirements (only that the matching microenvironments be present

within the pocket of interest). As a result, the number of possible

alignments between pockets is increased, and PocketFEATURE can

recognize site that bind similar ligands in different poses.

Our results with FAD-binding sites illustrate the value of

geometric flexibility; FAD contains highly flexible regions between

flavin and adenine. The FAD conformation and orientation varies

widely across different protein families. By using PocketFEA-

TURE, microenvironments corresponding to the same fragments

within FAD are recognized even though these microenvironments

adopt different local geometries according to their ligand poses

(Figure 3C). These results demonstrate the value of allowing

microenvironments to adopt variable orientations within pockets.

We have also assessed whether the microenvironment align-

ments identified by PocketFEATURE correspond to specific

recognition of ligand chemical substructures. The average number

of microenvironments between two ATP sites is six; while that of

ADP is six, that of NAD is ten and that of FAD is twelve. The

common aligned microenvironments of high frequencies for these

four types of binding sites are: mD, mE, mR, mK, mS and mT, all

of which are in close proximity to the common sub-fragments

contained within ADP, ATP, FAD and NAD: the adenine, ribose

and phosphate. Thus, these microenvironments have specific roles

in recognizing particular fragments within the overall molecule.

Furthermore, the additional aligned microenvironments observed

in FAD and NAD sites are mW and mP, which ‘‘recognize’’ the

phosphate, flavin or nicotinamide moieties.

In summary, PocketFEATURE is more sensitive than other

state-of-the-art methods. It is suitable for application on a genome

scale.

PocketFEATURE defines sites based on position of known

ligand binding. For apo structures and uncharacterized sites, we

can also use published patch-searching algorithms, such as

CONCAVITY [30] and PocketPicker [2] to define sites (on-going

projects).

Application of PocketFEATURE to drug discovery
Current computational studies on comparing kinase inhibitor

binding sites often focus on known drug targets Tyrosine kinase

(TK family, EC 2.7.10) and Serine/Threonine kinases ISTE

family (EC 2.7.11). Potential similarity between divergent kinases

has not been systematically explored either computationally or

experimentally. For example, of the 6058 pairs of divergent

kinases we compared in this work, only 40 pairs have experimental

data from CHEMBL and Ambit. The literature is biased towards

a few well-validated kinases. Some inhibitors may appear to be

more promiscuous simply because they have been profiled more

systematically.

As shown in Figure 4, PocketFEATURE identifies similar

ligand binding sites across distantly related kinases. The surpris-

ingly accurate predictions (Table 1) for those that have been tested

make the remaining untested predictions (Table 3) with high

similarity scores particular interesting.

Some of our predictions rediscover combinations of divergent

kinases for multi-targeted drug design. One highly ranked

prediction is the pair SRC (a Tyrosine kinase) and PIK3CG (a

lipid kinase in PI3K family), which are evolutionarily distant

(PID,10%). Both kinases have been observed to bind to a similar

series of inhibitors (PP121 and its derivatives) [23]. The

PocketFEATURE binding site similarity score (24.26) ranks high

—20th out of 6058 pairs. PocketFEATURE identifies six key

microenvironments (Figure 5). One alignment matches mT338/

SRC to mY867/PIK3CG, both of which reside near the typical

‘‘gate’’ of an ATP-binding site. The gatekeeper residue enables

interactions between the deep hydrophobic pocket and ligands

(adenine in ATP or pyrazolopyrimidine in inhibitor ABJ). In SRC

structures, residue T338 is designated as the gatekeeper and in

PIK3CG structures, residue I879 [23]. As PocketFEATURE does

not seek alignments between polar and hydrophobic residues, it

Table 1. True positives predictions.

EC group PDB ID Gene name PID Binding sitesimilarity Representativeinhibitor

2.7.10.2 2.7.11.22 2src 3blq SRC CCNT1 10. 24 25.85 AST-487

2.7.10.1 2.7.11.26 2hen 1j1c Ephb2 GSK3B 25.63 25.31 CHEMBL247067

2.7.10.1 2.7.11.26 1jqh 1j1c IGF1R GSK3B 27.86 24.34 CHEMBL215803

2.7.10.1 2.7.11.22 2hen 2cch Ephb2 CDK2 19.98 24.30 AST-487

2.7.1.153 2.7.10.2 1e8x 2src PIK3CG SRC 18.26 24.28 PP121

2.7.10.1 2.7.11.22 1jqh 2cch IGF1R CDK2 23.94 24.25 BMS-536924

2.7.10.1 2.7.11.24 2hen 1cm8 Ephb2 MAPK12 26.61 24.15 AST-487

2.7.10.1 2.7.11.24 1jqh 1cm8 IGF1R MAPK12 29.36 23.83 CHEMBL215803

2.7.1.153 2.7.11.1 1e8x 2pvr PIK3CG CSNK2A1 23.17 23.80 CHEMBL379156

Using a p-value cutoff of 0.01, 50 pairs of kinases are predicted to share inhibitors. Nine pairs have experimental evidence suggesting overlap in inhibitor binding- these
are true positives. The first two columns are EC groups. Kinases in one pair are from different EC groups. The PDB IDs and gene names are listed in column three to
row six. The seventh column lists the percentage identity (PID) of structural alignment between two kinases in a pair. The eighth column shows the binding site
similarity score of the pair. The more negative the score is, the higher the similarity level between two sites is predicted.
doi:10.1371/journal.pcbi.1002326.t001

Table 2. False positive predictions.

EC group PDB ID Gene name PID
Binding site
similarity

2.7.1.153 2.7.12.2 1e8x 1s9j PIK3CG MAP2K1 28.37 23.88

One pair is considered false positive because both kinases are linked to at least
one set of experimental data from CHEMBL, but they do not share ligands using
our stringent standards.
doi:10.1371/journal.pcbi.1002326.t002
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does not find a match between mT338/SRC and mI879/

PIK3CG. Instead, in the PIK3CG structure, the proximal

mY867/PIK3CG is aligned to mT338/SRC. Thus, PocketFEA-

TURE detects similar binding sites from these two distant kinases.

SRC activates the lipid kinases of the PI3K family, a central

regulator of cell growth. Molecules that target both SRC and

PIK3CG may have potent antitumor activity.

PIK3CG is also predicted to share ligands with other kinases,

including CSNK21A, MAP2K1, GCN2 and ACK2 (Table 1–3).

Of these, CSNK21A encodes a Casein kinase that is involved in

Wnt signaling pathway. Casein kinase inhibitors are considered

potent anti-cancer drug candidates [31]. It is possible that drugs

inhibiting both CSNK21A and PIK3CG may have synergistic

anti-tumor activity. ACK2 is a homolog of CSNK21A

Table 3. Novel predictions of high similarity.

EC group PDB ID Gene name PID Binding sitesimilarity

2.7.11.2 2.7.13.3 2e0a 3d36 PDK4 spo0ANE 28.54 26.6061

2.7.11.2 2.7.13.3 1jm6 3d36 Pdk2 spo0ANE 28.75 25.4505

2.7.1.95 2.7.11.1 1j7u 1zp9 aphA rio1 12.55 25.4243

2.7.11.1 2.7.13.3 1th8 2c2a spoIIAB TM_0853 12.5 25.2046

2.7.1.100 2.7.11.1 2pyw 1csn At1g49820 cki1 28.33 24.9383

2.7.1.100 2.7.11.1 2olc 1zp9 mtnK rio1 10.24 24.6189

2.7.1.100 2.7.11.1 2pyw 1u5r At1g49820 Taok2 10.71 24.475

2.7.1.100 2.7.11.24 2olc 1cm8 mtnK MAPK12 10.55 24.4283

2.7.1.153 2.7.11.1 1e8x 1zyd PIK3CG GCN2 11.09 24.4036

2.7.10.2 2.7.11.1 2ijm 1zp9 PTK2 rio1 25.91 24.4022

2.7.10.1 2.7.11.1 1mqb 1zp9 EPHA2 rio1 25.76 24.3987

2.7.1.100 2.7.11.1 2olc 1zyd mtnK GCN2 13.19 24.3499

2.7.1.100 2.7.11.1 2pyw 3e7e At1g49820 BUB1 28.83 24.3048

2.7.1.153 2.7.11.1 1e8x 1lp4 PIK3CG ACK2 23.24 24.2874

2.7.1.100 2.7.11.1 2olc 3e7e mtnK BUB1 25.83 24.2698

2.7.1.95 2.7.11.1 1j7u 3e7e aphA BUB1 7.21 24.2628

2.7.1.100 2.7.11.26 2pyw 1j1c At1g49820 GSK3B 12.26 24.1925

2.7.1.100 2.7.12.2 2pyw 1s9j At1g49820 MAP2K1 27.68 24.1752

2.7.10.1 2.7.11.1 2hen 1q97 Ephb2 SKY1 21.35 24.1734

2.7.1.100 2.7.10.2 2olc 2ozo mtnK ZAP70 12.66 24.1549

2.7.1.36 2.7.12.2 1kvk 1s9j Mvk MAP2K1 11.07 24.1171

2.7.10.1 2.7.11.1 1jqh 2vwi IGF1R OXSR1 24.17 24.1001

2.7.1.100 2.7.11.24 2pyw 1cm8 At1g49820 MAPK12 10.86 24.0862

2.7.10.1 2.7.11.1 1pkg 1zp9 KIT rio1 24.51 24.077

2.7.1.100 2.7.11.1 2pyw 1o6l At1g49820 AKT2 29.75 24.0536

2.7.1.100 2.7.10.2 2pyw 2src At1g49820 SRC 20.49 24.0529

2.7.1.- 2.7.11.1 2a19 1zp9 SUI2 rio1 20.29 24.0507

2.7.1.100 2.7.11.1 2pyw 1zyd At1g49820 GCN2 13.19 24.0412

2.7.10.1 2.7.11.1 2hen 1zp9 Ephb2 rio1 14.78 24.0407

2.7.10.2 2.7.11.1 2src 1zp9 SRC rio1 24.28 24.0122

2.7.1.95 2.7.11.1 1j7u 1tqp aphA rio2 14.83 24.0018

2.7.1.100 2.7.11.1 2olc 1u5r mtnK Taok2 12.82 23.9498

2.7.1.95 2.7.11.1 1j7u 1u5r aphA Taok2 19.01 23.9436

2.7.1.100 2.7.10.1 2pyw 1pkg At1g49820 KIT 17.11 23.9048

2.7.11.4 2.7.4.22 1gkz 2bri Bckdk pyrH 11.08 23.8977

2.7.1.100 2.7.12.2 2olc 1s9j mtnK MAP2K1 27.68 23.8804

2.7.1.95 2.7.11.24 1j7u 1cm8 aphA MAPK12 11.79 23.8187

2.7.1.36 2.7.10.1 1kvk 2qoc Mvk EPHA3 10.6 23.8101

2.7.1.100 2.7.10.2 2pyw 2ozo At1g49820 ZAP70 15.23 23.8093

2.7.1.144 2.7.11.1 2f02 1u5r lacC Taok2 7.63 23.8036

In the top 50 ranked predictions, there are 40 pairs of novel predictions that experimental evidence for one for both kinases is not available in CHEMBL or Ambit.
doi:10.1371/journal.pcbi.1002326.t003
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Figure 5. An example of validated positive predictions. SRC (a Tyrosine kinase) and PIK3CG (a lipid kinase) bind to a same series of inhibitors
(PP121 and its derivatives). Four related structures are available in PDB. The first row is structures of SRC bound with ANP (PDB ID: 2src) and a drug-
like inhibitor (PDB ID is 3en7 and ligand PDB code is ABJ). The second row is structures of PIK3CG bound with ATP (PDB ID is1e8x) and ABJ (PDB ID is
2v4l). Between binding sites of 2src (SRC/ANP) and 1e8x (PIK3CG/ATP), PocketFEATURE aligned six pairs of microenvironments. At the position near
the typical ‘‘gate’’ of an ATP-binding site, PocketFEATURE aligned mT338/SRC to mY867/PIK3CG (light yellow sphere). In SRC structures, the
gatekeeper residue T338 enables interactions between the deep hydrophobic pocket and ligands. The original experimental study suggests the
residue analogous to the gatekeeper in PIK3CG is I879 (red circle), which is the nearest microenvironment to mY867/PIK3CG. (A). 3D illustration of
binding sites in SRC and PIK3CG (B). Aligned microenvironments.
doi:10.1371/journal.pcbi.1002326.g005
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(PID.90%). The binding site similarity score between PIK3CG

and ACK2 ranks highly—18th out of 6058 pairs.

In addition to its similarity to CSNK21A, the pocket in

PIK3CG is very similar to that in MAP2K1. These proteins do not

share known ligands using our stringent interpretation of

CHEMBL results (see Method). However, this apparent false

positive deserves further scrutiny. MAP2K1 encodes an essential

kinase in mitogen-activated protein (MAP) kinase signal transduc-

tion pathway. Activation of MAP kinase pathway plays important

roles in the metastasis of pancreatic cancer. Specific inhibitors

have been developed to inhibit oncogenic pathways. However,

activation of PI3K pathway in response to MAP2K1 inhibition

through a negative feed back loop limits the efficacy [32]. The

high similarity between PIK3CG and MAP2K1 by PocketFEA-

TURE suggest the possibility of inhibitors that target both kinases.

Other highly ranked novel predictions have some implications

for side effects and drug repurposing. In Table 3, there are three

pairs of mammalian: {Mvk-MAP2K1}, {Mvk-EPHA3} and

{1GF1R-OXSR1}. Of these kinases, MAP2K1, OXSR1 and

EPHA3 are implicated in cancer. Further evaluation of these pairs

may be warranted. Most of other pairs in Table 3 are

combinations of one kinase from human (or other mammalian)

and one from plant (or bacteria). It is intriguing to consider that

inhibitors for plant or bacterial kinases may be useful inhibitors of

mammalian proteins.

Methods

FEATURE microenvironments
Given a functional center of a residue, we use the term

‘‘microenvironment’’ to refer to the local, spherical region in the

protein structure that may encompass residues discontinuous in

sequence and structure. Specifically, we use the FEATURE system

to calculate a set of 80 physicochemical properties (Table S2) [14]

collected over six concentric spherical shells (total 480 proper-

ties = 80 properties66 shells) centered on the predefined functional

center (Table S3) [33]. The total radius of the microenvironment is

7.5 Angstroms. A microenvironment is named using the following

convention: ‘‘m’’ followed by ‘‘residue index’’ and ‘‘residue type’’,

upon which the microenvironment is centered. PDB identifier or

gene name is tagged when necessary. For example m6L/1nhp

represents the microenvironment centered on the functional center

of the sixth residue in 1nhp, which is leucine (L). A complete

description of FEATURE can be found in the original publication.

Similarity measure between two FEATURE
microenvironments

Given a pair of FEATURE microenvironments (A and B)

derived from two different sites, we calculate an adjusted

Tanimoto coefficient based on the presence/absence of similar

properties. We compute a single standard deviation (STD) for

each of the 480 properties across a random set of FEATURE

microenvironments (see section ‘‘Background calculation). Two

microenvironments have a ‘‘similar property’’ if they differ by less

than one STD for the given property. Given A and B, c is the

number of ‘‘similar properties’’; a and b are the numbers of non-

zero properties in A and B, respectively; the denominator is the

total number of unique properties that are non-zero in A or B or

both (a+b2c); then the Tanimoto similarity is as follows:

Tc~
c

azb{c
.

Background calculation
We make observations of the background distributions of Tc

scores between microenvironments from different sites. We

compile a dataset of 1160 sites from a non-redundant set of 3D

structures in PDB using these filters: (1) structures were solved

using X-ray diffraction at resolutions higher than 2.0 Angstrom; (2)

no two structures have greater than 40% sequence identity; (3)

specifically bound small molecule ligands have more than the

heavy atoms. The binding residues are defined as those having any

atom within 6 Angstroms of the ligand molecules, resulting in a

total of 22008 microenvironments. There are 242 possible types of

pairs between 22 types of microenvironments centered on 20

residues types (two centers for residue W and Y), but not all of

these are likely to be matched. For computational efficiency, we

group residues by physical properties in order to avoid

comparisons that are unlikely to yield high similarity scores. The

comparisons are limited to pairs of microenvironments that fall

within the same groups: positively charged (R H K), negatively

charged (D E), polar (S T Q N W1 Y1), non-polar (A C G I L M P

V) and aromatic (W2 Y2 F). This produces 72 microenvironment-

pairs (out of the 200 possible) that we check for high similarity

scores. Given each microenvironment-pair, we derive Tc scores

from the above dataset and fit these score into normal distribution.

Comparing two binding sites
Given the FEATURE microenvironments from two binding

sites, we exhaustively calculate the raw Tc scores of all permissible

microenvironment-pairs. We then normalize the Tc scores using

the background frequency [34]:

S(Tc)~
2

1z(Tc=Tc0)2
{1

Tc0 is the value at which S(Tc) is zero.

In practice, Tc0 is the Tc score at the mode on the fitted

cumulative distribution function (CDF) of a given type of

microenvironment-pair (See Background calculation). The nor-

malized value, S(Tc), measures the similarity between two

microenvironments and is thus the microenvironment simi-
larity score.

We search for the mutual best-scoring microenvironment-pairs

between two binding sites and assign alignment to such pairs using

an cutoff of S(Tc) less than 20.3. For example, between site A

(microenvironments A1, A2, A3, A4 and A5) and site B

(microenvironments B1, B2, B3, B4 and B5), we align A1 to B1

only when (1) S(Tc) between A1 and B1 is smaller than those

between A1 and B1, B2, B4 B5, also smaller than those between

B1 and A2, A3, A4, A5; (2) S(Tc) between A1 and B1 is smaller

than 20.3. The sum of all aligned microenvironment-pairs is the

overall similarity score between two binding sites, and is termed

the binding site similarity score. We can vary the cutoff for S(Tc) to

change the precision and resolution of the comparison.

Benchmark datasets
We perform two sets of benchmark. The first benchmark

identifies pairs of proteins that bind adenine-containing ligands,

using two datasets [6] provided by Bourne group from USCD.

Dataset I consists of 247 sites from non-redundant protein

structures known to bind an adenine-containing ligand (ATP,

ADP, NAD, FAD, SAH and SAM); Dataset II consists of 101

cavities from non-redundant protein structures believed not to

bind an adenine-containing moiety. From Dataset I, we have

30381 pairs of sites that both bind adenine-containing ligands.

Between Dataset I and II, we have 24947 control pairs of sites in

which one site binds adenine-containing ligands and the other

does not.
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The second benchmark recognizes FAD binding sites from a

large-scale dataset. A dataset consisting of 6958 druggable binding

sites (Dataset-6958) was derived from scPDB entries [35] by

filtering out PDB entries where atom coordinates of binding

residues were incomplete. The binding sites were defined by

including all the protein residues with at least one atom within 6

Angstrom of any ligand atom. Dataset-6958 includes a total of 249

FAD-binding proteins.

Predicting inhibitor-binding profiles of kinases
We derive a subset of 984 binding sites from Dataset-6958,

including proteins classified in eight different EC families: EC

2.7.1, EC 2.7.2, EC 2.7.3, EC 2.7.4, EC 2.7.10, EC 2.7.11, EC

2.7.12 and EC 2.7.13. A total of 203 sites bind to ATP, ANP or

ADP. The other 781 structures bind to 633 other ligands.

Using the 203 sites involved in binding ATP, ANP or ADP, we

generate pairs of binding sites from functionally and structurally

distant kinases by applying two rules: (1) two kinases are from

different EC sub-subgroups; (2) the identity of structural alignment

by MAMMOTH [36] between the two kinases is not higher than

30%. This results in 6058 pairs of sites that bind to ATP, ANP or

ADP.

We perform validation using experimental data from CHEMBL

[28] and Ambit panel [29]. Ambit panel contains binding assays

between 37 inhibitors (21 tyrosine kinase inhibitors, 15 serine-

threonine kinase inhibitors, and 1 lipid kinase inhibitor), which are

classified according to the targets for which they were originally

developed, and 317 human kinases (287 different human protein

kinases, three lipid kinases and 27 disease-relevant mutant

variants). Staurosporine is a non-selective kinase inhibitor and is

therefore removed from the validation dataset.

We use two standards to identify candidate inhibitors from

Ambit panel: a stringent cutoff of Kd,1 uM and a ratio of off-

target to primary target affinities (Kd off-target/Kd primary

target) ,100. Our local database downloaded from CHEMBL

includes binding assays between 3199 protein domains and

541,137 compounds. It is a collection of assays from a variety of

experimental studies and therefore the standards applied to Ambit

Panel are not applicable to CHEMBL data. We first filter out data

with confidence level less than seven. We then use either (1) a

cutoff of IC50 less than 1 uM or (2) a cutoff of Kd less than 1 uM

or (3) inhibition level higher than 90% at 1 uM as an indication of

inhibition.

From the 6058 pairs of divergent kinases, we first search for

pairs for which experimental data, from CHEMBL or Ambit, are

available for both kinases. Given such a pair, if at least one

compound/inhibitor satisfies the standards above for both kinases,

the pair shares ligand binding and is a ‘‘positive-pair’’; otherwise

this pair is a ‘‘negative-pair’’.
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