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Abstract

It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important
for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes
that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state
excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests
that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus
does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning
required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic
plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the
framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing
dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis
shows that inhibitory Hebbian plasticity generates ‘negative feedback’ that balances excitation and inhibition, which
contrasts with the ‘positive feedback’ of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the
sensitivity of the learning dynamics to the correlation structure of the excitatory inputs.
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Introduction

Balance of feed forward excitation and inhibition in the
cortex

There is a striking difference between the number of synaptic

contacts received by a typical cortical cell, which is about 3,000 to

10,000, and the required number of about 30 excitatory inputs to

bring the cell to its firing threshold [1,2]. For example, inputs from

1,000 excitatory presynaptic cells firing at a medium rate of 10 spikes/

s will yield 100+10 (mean + standard deviation) input spikes every

10 ms. At this high level of input, the postsynaptic cell is expected to

saturate its firing rate. In addition, whereas in vitro experiments have

shown that cortical cells fire relatively regularly, in vivo recordings

reveal a highly irregular neural response [1]. However, fluctuations in

the excitatory postsynaptic current are expected to be negligible

relative to their mean, and therefore they themselves cannot account

for the irregular firing of the postsynaptic cell, as observed in vivo.

The prevalent explanation for these seemingly contradictory

findings is that excitatory and inhibitory inputs to cortical cells are

balanced; i.e., the mean excitatory and inhibitory inputs to the cell

are on the same order of magnitude. In terms of the balance

hypothesis, the firing of the postsynaptic cell in the above example is

not determined by the mean input of 100 excitatory postsynaptic

potentials every 10 ms, which will be canceled by the mean

inhibitory input, but rather by the fluctuations that are an order of

magnitude smaller. Thus, the firing rate of the postsynaptic cell will

not saturate and will be characterized by a high degree of variability.

There is, however, some confusion as to the nature and origin of

the balanced state. One approach to this problem suggested that

this balance results from recurrent neural dynamics [3]–[7].

Tsodyks and Sejnowski [3] showed that feedback (i.e., recurrent

interactions) in finite chaotic networks can produce the desired

balance. However, this solution requires strong interactions

between the neurons and assumes a high probability of synaptic

failure. Van Vreeswijk and Sompolinsky [6,7] showed analytically

that the balance of steady state excitation and inhibition can be

obtained as a stable solution to the network dynamics, and

requires no special fine tuning of parameters due to the feedback

from the network dynamics. These studies focused on the

balancing of the lateral inputs via feedback of recurrent

interactions and ignored the feed forward inputs to the system.

However, empirical findings have shown there is a fast balance of

transient inputs to a barrel cortical cell [8,9]. An alternative model

suggested by Newsome and Shadlen [2], argues for the importance

of balancing feed forward excitation and inhibition inputs in feed

forward (propagating) neural networks. However, it remains

unclear what mechanism underlies the fine tuning required for

balancing feed forward excitatory and inhibitory inputs.

Spike-timing-dependent plasticity of excitatory synapses
Experimental characterization. The overwhelming majority

of scientific works on synaptic plasticity has focused on excitatory

synapses. It is generally believed that synaptic plasticity is the basis

for learning and memory. According to Hebb’s rule [10], which

PLoS Computational Biology | www.ploscompbiol.org 1 January 2012 | Volume 8 | Issue 1 | e1002334



remains the foundation of current assumptions on the nature of

learning and memory, the interaction strength between two cells that

are co-activated will facilitate synaptic efficacy. This rule has been

extended to the temporal domain, where it is known as spike-timing-

dependent plasticity (STDP). In many cases, the following causal

relationship is assumed to exist: an excitatory synapse undergoes

long-term potentiation if presynaptic firing precedes postsynaptic

firing, and long-term depression is induced when the temporal order

of firing is reversed [11–20]; this relationship is termed ‘temporally

asymmetric Hebbian spike timing dependent plasticity’, Figure 1A

(but see also [21,22] for examples of temporally asymmetric anti

Hebbian plasticity, Figure 1B).

Theoretical characterization. Considerable theoretical

effort has been devoted to studying the characteristics of STDP

learning of excitatory synapses [23–43]. The canonical STDP rule

shown in Figure 1A induces positive feedback in the following sense.

If a certain synaptic weight is large, a presynaptic spike is more likely

to elicit firing of the postsynaptic cell, following firing of the

presynaptic cell. This will strengthen the synaptic weight, according

to the STDP rule, which, in turn, will increase the likelihood of

eliciting firing of the postsynaptic cell following firing of the

presynaptic cell. On the other hand, if the synaptic weight is weak,

then pre- and post-firing will be uncorrelated and the learning

process will sample the STDP curve randomly. If the total depression

(area under the acausal branch: post firing before pre) is larger than

the total potentiation (area under the causal branch), then the

synapse will be further weakened. Theoretical studies have shown

that this positive feedback generates a bimodal distribution of

excitatory synaptic weights. Note that this bimodal distribution of

synaptic weights will exist for a limited range of parameters. Other

choices of parameters will cause all the weights to cluster around

either their upper or lower boundary. Further investigation has

shown that a unimodal distribution can be obtained by scaling the

amount of plasticity with the synaptic weight [40,41,42,43].

Theoretical studies have also explored the development of

neuronal response properties [28,29,36,39,42]. In the absence of a

reward signal, the STDP rule acts as an unsupervised learning

algorithm. In unsupervised learning, the postsynaptic cell ‘learns’

salient features of the statistics of the presynaptic cell’s activity,

such as the correlation structure. Correlated synaptic inputs from a

large group of cells are more likely to cause the postsynaptic cell to

fire and, hence, strengthen their synaptic weights, whereas the

STDP rule induces competition between different groups of

correlated presynaptic cells. The origin of correlated activity of

presynaptic cells in primary sensory regions reflects shared

preferences for external stimuli. These results have been used to

explain the development of ocular dominance columns. Recent

theoretical studies have also managed to investigated learning of

recurrent excitation [44–47].

Spike-timing-dependent plasticity of inhibitory synapses
In contrast to the considerable number of empirical studies on

excitatory synaptic plasticity, much less is known about inhibitory

plasticity. Nevertheless, evidence for STDP of inhibitory synapses

is beginning to emerge [48–56]. Woodin et al. [49] found that in

hippocampal cultures and acute hippocampal slices, inhibitory

synapses are potentiated if pre- and post-spikes are paired to fire

within about 20 ms of each other and are depressed when the time

difference is larger than about 20 ms, irrespective of the order of

firing (e.g., similar to the STDP curve illustration in Figure 1D). In

Figure 1. Illustration of different types of STDP curves. The
synaptic weight modification as a function of a Dt~tpost{tpre

caricature of four cases. A Hebbian temporally asymmetric STDP, e.g.,
Bi and Poo [11] for an excitatory synapse. B Anti-Hebbian temporally
asymmetric STDP, e.g., [21,22]. C Hebbian temporally asymmetric STDP
- inhibitory (entorhynal) cortical synapse, e.g., Haas et al. [50]. D
Hebbian temporally symmetric STDP - inhibitory hippocampal synapse,
e.g., Woodin et al. [49].
doi:10.1371/journal.pcbi.1002334.g001

Author Summary

One of the longstanding enigmas in neuroscience is the
origin of inherent neural noise. It has been suggested that
this noise results from a careful balance of excitatory and
inhibitory inputs to neurons. Obtaining this balance
requires fine tuning of the relative strengths of the
inhibitory and excitatory inputs to each cell. However
the mechanism that enables this fine tuning of parameters
remains unclear. We suggest that a balance of excitatory
and inhibitory inputs can be achieved via a process of
unsupervised learning of the inhibitory synaptic strengths.
We find that whereas Hebbian learning induces strong
positive feedback on excitatory inputs that acts as a force
that pulls them towards their boundaries, Hebbian
learning of inhibition induces negative feedback. This
negative feedback acts to balance the average excitatory
input to the cell and makes the learning process less
sensitive to the statistics of the inhibitory inputs.
Surprisingly, this balance increases the sensitivity of
learning to the statistics of the excitatory inputs. Thus,
the balance of feed-forward excitation and inhibition
emerges as a natural outcome of Hebbian learning applied
to the inhibitory inputs to the cell.

Balance via Inhibitory Plasticity
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the entorhinal cortex, Haas et al. [50] reported a temporally

asymmetric Hebbian STDP rule, in which an inhibitory synapse is

potentiated if the inhibitory presynaptic cell fires 5–15 ms before the

postsynaptic cell and is depressed if the postsynaptic cell fires 5–

15 ms before the presynaptic cell, Figure 1C.

Here we investigate the hypothesis that the temporally asym-

metric Hebbian STDP of inhibitory synapses is responsible for the

balance of transient feed forward excitation and inhibition. This

issue is addressed in the framework of a stochastic dynamical model

for learning feed forward inputs to a single postsynaptic cell, and

then illustrated using numerical simulations or the learning

dynamics of feed forward connections onto an integrate and fire

neuron. We start by analyzing the stochastic learning dynamics of a

single inhibitory synapse. Then we turn to investigate the learning

dynamics of a population of inhibitory feed forward synapses.

Finally we study a model that incorporates learning of both feed

forward excitatory and inhibitory inputs to a single postsynaptic cell.

Results

Learning of a single inhibitory synapse
Considerable theoretical attention has been devoted to the study

of learning a single excitatory synapse, see e.g., [41,43], and in

particular the distribution of resultant synaptic weights. Two forces

work to shape this distribution. The first is the positive feedback of

learning an excitatory synapse (see above) that pushes the synaptic

weights to their high and low saturation boundaries and hence

contributes to a bimodal distribution. The second is the weight

dependence of the STDP rule, which is able to decrease the

strength of the positive feedback close to the saturation boundaries

and hence contributes to a unimodal synaptic distribution.

Following the results of Haas et al. [50] (but see also Woodin et

al. [49]), we studied a family of temporally asymmetric STDP rules

for the inhibitory synaptic weight wI of the form:

DwI~+lf+(wI )K(jtj) ð1Þ

where wI[½0,1� is the dynamic variable that describes the synaptic

strength, DwI is the change in the synaptic strength following pre

({) or post (z) synaptic firing, t is the time difference between the

pre- and post-synaptic firing, l is the learning rate, and f (:) and

K(:) are the weight dependence and temporal filter of the STDP

rule, respectively. For convenience we adopted a notation similar

to that of [42]. Equation (1) defines the synaptic change due to a

single pair of pre-post spikes. We shall assume that the STDP rule

is additive with respect to all pairs of pre-post spike times.

Equation (1) describes a temporally asymmetric STDP rule, as

reported in Haas et al. [50]. The temporal filter, K(t), can be

modeled by a decaying exponent with a characteristic timescale of

about 20 ms (see Figure 1A, e.g., [11]), or by a gamma

distribution, similar to the results of Haas et al. [50] (see

Figure 1C). For concreteness throughout the paper in all of our

numerical simulations we used K(t)~e{jtj=t with t~20ms. Note

that the STDP rule is temporally asymmetric and not antisym-

metric due to the different scalings of depression and potentiation

in wI , which is expressed in the f+(wI ) dependence of the synaptic

update rule. The structure of f+(wI ) is somewhat less clear from

the empirical literature; thus, for convenience of analysis, we

adopted the formulation in [42], which generalizes, e.g., [23], [41]

(but see [27]):

fz(wI )~(1{wI )m ð2Þ

f{(wI )~a(wI )m ð3Þ

where m[½0,1� is a parameter that characterizes the weight

dependence of the STDP rule. Following equation (1), changes

in the synaptic weight, wI , occur only at times where either pre or

post synaptic cells have fired:

wI (tzdt)~wI (t)zlfz(wI )r̂r
post

fire
[½t,tzdt)

� �X?
j~1

K(t{t
pre
j ) ð4Þ

zlf{(wI )r̂r
pre

fire
[½t,tzdt)

� �X?
j~1

K(t{t
post
j )

where r̂r
post=pre

fire
[½t,tzdt)

� �
is a stochastic variable which is

one if the post/pre fired at time interval ½t,tzdt) and zero

otherwise; ftpost=pre
j g are the spike times of the post/pre synaptic

neuron, respectively; the summation is over past times: t
post=pre
j vt.

Note that the summation over all past spike times results from our

assumption that the synaptic update rule, equation (1), is additive

with respect to all pre-post spike time pairs. Taking the short time

limit, dt?0, yields

lim
dt?0

wI (tzdt){wI (t)

dt

~
dwI (t)

dt
ð5Þ

lim
dt?0

1

dt

r̂r
pre

fire
[½t,tzdt)

� �
~rI

pre(t) ð6Þ

where rI
pre(t)~

P
j d(t{t

pre
j ) describes the spike train of the

inhibitory pre-synaptic neuron in terms of a series of delta function

pulses at the spike times of the cell, ftpre
j g

?
j~1 (the summation is

over all the spike times). Similarly rpost(t) describes the post

synaptic spike train. We obtain:

_wwI~lfz(wI )Lz(t){lf{(wI )L{(t) ð7Þ

Lz(t)~

ð t

{?
dt’rpost(t)r

I
pre(t’)K(t{t’) ð8Þ

L{(t)~

ð t

{?
dt’rpost(t’)r

I
pre(t)K(t{t’) ð9Þ

In the limit of slow learning rate, the synaptic weight, wI , is

relatively fixed over long periods of time, O(1=l), during which

the right hand side of equation (7) is sampled by the dynamics such

that we can neglect its fluctuations around its mean in the limit of

l?0. This approximation yields deterministic dynamic equations

for the mean synaptic weights:

_wwI~lfz(wI )Lz{lf{(wI )L{ ð10Þ

Balance via Inhibitory Plasticity
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L{~

ð t

{?
dt’Srpost(t’)r

I
pre(t)TK(t{t’) ð11Þ

Lz~

ð t

{?
dt’Srpost(t)r

I
pre(t’)TK(t{t’) ð12Þ

where S:T denotes averaging with respect to the distribution of the

neural firing, for a given fixed synaptic weight, wI . To proceed

with the analysis we need to specify the cross-correlation function

between the pre-synaptic input and the post-synaptic response,

and in particular its dependence on the synaptic weight, wI .

However, the calculation of dependence of the temporal structure

of the pre-post firing probability on the synaptic weight, even in

the simple case of an integrate and fire neuron is a first-passage

time problem [57,58], which is not a trivial task. Recently, Ostojic

et al [59] succeeded in analyzing the cross-correlation function

between two integrate and fire neurons assuming the synaptic

coupling is sufficiently weak such that the firing rate of the

postsynaptic cell can be approximated by a linear function of the

presynaptic input. Similarly, in this section, we assume that the

synaptic coupling is sufficiently weak such that we can approxi-

mate the postsynaptic firing rate by a linear function of the

presynaptic input (see also [43,60,61]), yielding

Srpost(t)r
I
pre(t’)T~

rpostrpre(1{wI c(t{t’)), twt’

rpostrpre, tvt’

(
ð13Þ

where rpre=post is the pre/post synaptic mean firing rate; and the

function c(t{t’) describes the decrease in the conditional firing

rate of the postsynaptic neuron at time t following an inhibitory

input spike at time t’vt.

Substituting equation (13) into equation (10) one obtains:

_wwI~{lrprerpost
�KK Df (wI )zwI cK

�KK
fz(wI )

� �
ð14Þ

where Df (wI ):f{(wI ){fz(wI ), and �XX:
Ð

X (t)dt. This model

highlights the following three major differences between the

dynamics of inhibitory and excitatory synapses.

1. The temporally asymmetric Hebbian STDP rule, equation (1),

yields a negative feedback, which is characterized by a unimodal

distribution for the inhibitory synapses. This contrasts with the

temporally asymmetric Hebbian STDP rule for an excitatory

synapse, which yields a positive feedback and allows for bi-

stable solutions.

2. As there is only one stable fixed point for the drift velocity,

which is stable for all m[½0,1�, there is no theoretical need for

m=0, which was introduced to weaken the positive feedback of

the excitatory STDP. Hence, we can take m~0.

3. The relative strength of the depression needs to be weaker than

the potentiation; i.e., in the m~0 case, the ratio a of the area

under the acausal and the causal branches of the STDP curve

needs to be av1, to prevent decay of all inhibitory synapses to

zero.

Numerical simulations of inhibitory STDP. To test our

results beyond the analysis of the above simplified model we

performed numerical simulations of the learning dynamics of a

feed forward inhibitory synapse to a conductance based integrate

and fire postsynaptic neuron (see Methods for details). Figure 2

shows the spike triggered average firing rate of a single presynaptic

inhibitory cell as a function of time relative to the firing of the

postsynaptic cell (negative times imply pre fired before post), for

different fixed values (i.e., without learning) of the synaptic

coefficient strength wI~0:1, 0.2, 0.3, 0.4, and 0.5 in red, orange,

green, blue, and purple circles, respectively. The dashed lines

show fits of the form STA(t)~rpre(1{wI c(t)) with c(t)~
ac sin (vcjtj)e{jtj=tc . For short times preceding the postsynaptic

firing rate the conditional mean firing rate of the inhibitory

presynaptic neuron is less than its marginal mean (rpre~10 spike/s

in the specific example of Figure 2). This decrease is approximately

linear in the synaptic weight; whereas for long times, the spike

triggered average converges to rpre. Hence, equation (13) provides

a fair description of the pre-post correlations.

We simulated the learning dynamics of a single inhibitory

synapse, keeping the rest of the inhibitory and excitatory inputs to

the cell fixed. Figure 3 shows the temporal evolution of the

empirical distribution of the synaptic weight. The empirical

distribution was obtained by averaging over 1999 realizations of

the stochastic learning dynamics of a single inhibitory synapse with

uniformly distributed initial conditions. As expected from theory,

the synaptic weight converges to a single fixed point, wI
0, regardless

of initial conditions or noise realization. Figures 4A and B show

the dependence of the asymptotic synaptic weight, wI
0, on different

parameters of the learning dynamics. The solid red lines show the

theoretical prediction; i.e., the fixed point of equation (14), that

was calculated using the function c(t) that was obtained from the

fit to the spike triggered average, Figure 2. The dashed blue lines

show the fixed point solution to equation (14) using an optimized

value for cK= �KK to best fit the simulation results.

Learning a feed forward inhibitory synaptic population
Before deriving the full model for studying the learning

dynamics of both feed-forward excitatory and inhibitory synapses,

Figure 2. Spike triggered average of inhibitory presynaptic
cell. The conditional mean firing rate of the inhibitory presynaptic cell
given the postsynaptic cell has fired at time t~0, is plotted as function
of time, for different values for the strength of the presynaptic weight
wI~0:1, 0.2, 0.3, 0.4, and 0.5 in red, orange, green, blue and purple
circles, respectively. The dashed lines show the fits of the form
STA(t)~rpre(1{wI c(t)) with c(t)~ac sin (vcjtj)e{jtj=tc . The parameter
vc was set to match the zero crossing point of c(t), and we optimized
the fit over the parameters ac and tc .
doi:10.1371/journal.pcbi.1002334.g002
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it is instructive to first study the artificial case of learning only the

inhibitory inputs. We model a population of NI inhibitory synaptic

weights, fwI
j g

NI

j~1, from NI presynaptic inhibitory neurons pro-

jecting onto a single postsynaptic cell. Let us denote by rI
i (t)

the spike train of the ith presynaptic inhibitory neuron:

rI
i (t)~

P?
j~1 d(t{ti

j) where fti
jg

?
j~1 are the spike times of cell i

(we shall omit the subscript pre hereafter). As noted above, the cross-

correlation function between the pre and postsynaptic cells is an

important quantity that affects the neural dynamics. In the previous

section we calculated the cross-correlation function using a linear

approximation to an ‘exact’ model. Instead, here and in the

following section we will use an exact solution of a simplified linear

model of a more abstract neuron. For analytical tractability the

postsynaptic response, rpost(t), is modeled to be a delayed linear

sum of its inputs: rpost(tze)~Iexc{
1

NI

XNI

i~1
wI

i rI
i (t); where e is

small and positive to ensure causality, and Iexc represents a constant

excitatory input to the cell. For simplicity we assume that the

correlations are instantaneous, SrI
i (t)rI

j (t’)T~r2zcijd(t{t’). We

shall further assume that the statistics of the input neuron

responses are isotropic; i.e., no input neuron is statistically special.

This assumption implies that: 1) The mean firing rate of all

inhibitory presynaptic neurons is equal, SrI
i T~r. 2) The

correlation structure of each input neuron with the rest of the

input population (up to a permutation of indices) is the same. In

particular, the correlation of a single input neuron with the total

response of the population,
P

j cII
ij , is equal for all input neurons;

hence, the uniform vector v0~(1,1,1, . . . ,1) is an eigenvector of

the matrix c. We obtain:

_wwI
i ~lfz(wI

i )Lz
i (t){lf{(wI

i )L{
i (t), i[f1, . . . NIg ð15Þ

Lz
i (t)~

ð t

{?
dt’rpost(t)r

I
i (t’)K(t{t’) ð16Þ

L{
i (t)~

ð t

{?
dt’rpost(t’)r

I
i (t)K(t{t’) ð17Þ

As above, in the limit of slow learning rate, l?0, we can neglect

the fluctuations of the synaptic weights around their mean,

yielding

1

lr2t
_wwI

i ~{Df (wI
i ) Wexc{

1

NI

XNI

j~1

wI
j

 !
{fz(wI

i )
1

NI

XNI

j~1

CII
ij wI

j

ð18Þ

where t~
Ð ?

0
K(t)dt, Wexc~Iexc=r, and CII

ij ~
cij

tr2
is a non-

negative symmetric matrix. From the assumption of isotropy the

uniform vector v0~(1,1,1, . . . ,1) is an eigenvector of the correla-

tion matrix, CII v0~NI CI
0v0, with eigenvalue NI CI

0~
PNI

j~1 CII
ij .

Figure 3. The dynamics of the synaptic weight distribution. The
probability density of the synaptic weight, P(wI ,t) is shown in color
code as a function of time. The range of values of wI , ½0,1�, was divided
into one hundred equally sized bins, and the probability of having a
value in a corresponding bin of size of 1/100 was estimated numerically.
The color scale is shown in terms of log 1z Pr (wI ,t)ð Þ. The stochastic
learning dynamics of a single inhibitory synapse was simulated using an
integrate and fire model (see Methods). The probability density was
estimated from the simulations by averaging over 1999 repeats with
different realizations for the noise (stochasticity of the presynaptic
neurons’ firing) and with initial conditions that were uniformly spaced
in the interval (0, 1). Here we used a~0:5, m~0:5, and l~10{3 .
doi:10.1371/journal.pcbi.1002334.g003

Figure 4. The asymptotic synaptic weight, wI
0 , in learning dynamics of

a single inhibitory synapse is shown as a function of A the ratio
between potentiation and depression, a (for m~0:5) B the parameter m
(for a~0:5). The open blue squares show the results obtained in
simulating the stochastic learning dynamics using an integrate and fire
postsynaptic neuron (see Methods). The solid red line shows the fixed
point of equation (14), calculated using the function c(t) that was
obtained from the fit to the spike triggered average, Figure 2. The
dashed blue line shows the fixed point solution to equation (14) using a
value for cK=�KK that was optimized to best fit the simulation results.
doi:10.1371/journal.pcbi.1002334.g004
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From the assumption of isotropy, a homogeneous solution,

wI
i ~wI

0, Vi[f1, . . . Ng, to the dynamics exists and obeys

1

lr2t
_wwI

0~{Df (wI
0)(Wexc{wI

0){fz(wI
0)CI

0wI
0 ð19Þ

with Df (wI )~f{(wI ){fz(wI ). The fixed point equation for the

homogeneous solution, wI
i ~wI

0, Vi[f1, . . . Ng, is given by

f{(wI
0)

fz(wI
0)
:a

wI
0

1{wI
0

� �m

~1{CI
0

wI
0

Wexc{wI
0

ð20Þ

The left hand side of equation (20), a
wI

0

1{wI
0

� �m

, starts from 0

at wI
0~0, increases monotonically in the range of wI

0,

log
wI

0

1{wI
0

� �m� �0
w0, VwI

0[(0,1), and diverges to infinity as

wI
0?1. The right hand side of equation (20) decreases monoton-

ically 1{CI
0

wI
0

Wexc{wI
0

� �0
v0, VwI

0vWexc, starts from the value of

one at wI
0~0, crosses zero at wI

0~
Wexc

1zCI
0

and is continuous in the

range ½0,Wexc). Hence, equation (20) has a unique solution, wI�
0 , in

the range of wI
0[(0, minf1,Wexcg)[(Wexc{wI�

0 )w0, implying a

net positive input to the postsynaptic cell. For wI
0vwI�

0 the

temporal derivative of the homogeneous solution, equation (19),

will be positive, and for wI
0wwI�

0 it will be negative. Hence, the

uniform solution is stable to fluctuations in the uniform direction.

For Wexcv1, equation (20) may have an additional solution with

wI
0wWexc. This solution is not physical, because Wexc{wI

0w0

represents the case where the net input to the postsynaptic cell is

inhibitory. A neuron with net inhibitory input will not fire and

there will be no learning.

To study the stability of the homogeneous solution to general

perturbations, we consider an arbitrary (though small) deviation

from the homogeneous solution, dwI
i ~wI

i {wI
0 (note that we

omitted the � in the notation of the uniform solution). To first

order in the deviations one obtains:

1

ltr2
d _wwI

i ~{g0dwI
i zDf (wI

0)
1

NI

XNI

j~1

dwI
j

{fz(wI
0)

1

NI

XNI

j~1

CijdwI
j :{

XNI

j~1

MijdwI
j

ð21Þ

g0~(Iexc{wI
0)

d

dwI
0

Df (wI
0)zCI

0

d

dwI
0

fz(wI
0) ð22Þ

~m(Iexc{wI
0) awI

0z(1{wI
0)m{1

� �
{mCI

0wI
0(1{wI

0)m{1

At the homogenous fixed point, equation (20), one obtains

g0~am(Wexc{wI
0)

(wI
0)m{1

1{wI
0

ð23Þ

Hence, g0w0. The eigenvalues fMng of the stability matrix M

obey

M0~zg0{Df (wI
0)zfz(wI

0)CI
0 ð24Þ

Mn~zg0zfz(wI
0)CI

n , (n=0) ð25Þ

where CI
n is an eigenvalue of CII=NI , and CI

0 is the specific

eigenvalue in the uniform direction. For stability against

fluctuations in the uniform direction, see above. At orthogonal

directions Mnw0, Vn=0 since CI
n§0 due to the positivity of the

correlation matrix CII. Hence, due to the negative feedback of

Hebbian learning of inhibition, the uniform solution is always

stable.

The STDP learning rule is an unsupervised learning rule and as

such can learn salient features of the statistics of its inputs. The

input statistics are expressed in the learning dynamics, equation

(18), by the effective interactions between the synapses generated

via the input correlations, CII
ij , and the learning dynamics. Such

sensitivity to input statistics may be manifested in solutions to the

fixed point of the synaptic dynamics, equation (18), that reflect the

correlations’ structure of the input population. However, the

homogenous solution, in which wI
i ~wI

0, Vi[f1, . . . Ng, always

exists from the assumption of isotropy and is stable. Thus, unlike

the learning dynamics of excitatory synapses, temporally asym-

metric Hebbian learning stabilizes the homogeneous solution.

Numerical simulations of inhibitory STDP. Numerical

simulations corroborate the claim that the negative feedback of

inhibitory plasticity stabilizes the homogeneous solution. Figures 5A,
B and C show two examples of the stochastic learning dynamics of

a population of NI~40 inhibitory synapses (the values of the

excitatory synaptic weights were held fixed). The weight of every

synapse is depicted as a function of time. In the example in Figure 5A
the system is homogeneous with uniform correlation structure between

all inhibitory presynaptic neurons, with a correlation coefficient of

cc~0:1 (see inset). After a transition period, which scales linearly

with the learning rate, all memory of their initial conditions are lost

and the system converges to a uniform solution. Figure 5B shows an

example of a non-homogeneous system, where the inhibitory

presynaptic population is composed of two sub-populations of

equal size with a correlation coefficient of cc~0:2 between cells

from the same sub-population and a correlation coefficient of cc~0
between cells from different sub-populations (see inset). The

different sub-populations are depicted by different hues of red and

yellow versus green and blue and are also distinguished by the range

of their initial conditions. Nevertheless, as can be seen from the

figure, the homogeneous solution remains stable, in line with the

above analysis. Moreover, because Hebbian learning of inhibition

induces negative feedback, the non-uniform correlations accelerate

the convergence to a uniform solution (compare Figure 5A and 5B).

Figure 5C shows another example of a heterogenous population with a

more elaborate correlation structure (see inset), yet the

homogeneous solution of the STDP dynamics remains stable.

The fixed point, equation (20), for the m~0, is given by

wI
0~

Wexc

1z
CI

0

1{a

ð26Þ

Figure 6 shows the asymptotic value of the learned synaptic

uniform weights wI
0 as a function of the strength of the excitatory

input to the postsynaptic cell, Wexc. The deviations from the linear

relation at low levels of excitatory input result from the non-linearity
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of the integrate and fire neuron used in the simulations. In

particular, note that the linear interpolations (dashed lines) do not

cross the abscissa at the origin, but rather at a positive value,

representing the effect of a positive threshold in the I{n curve (i.e.,

input current vs. output firing rate) of the postsynaptic neuron.

Figure 7 shows the asymptotic value of the learned synaptic uniform

weights wI
0 as a function of the strength of the uniform correlation

coefficient between the inhibitory presynaptic cells.

Learning feed forward inhibitory and excitatory ‘synaptic
populations’

We now turn to generalize the above formalism to study the effect

of Hebbian inhibitory synaptic plasticity in the framework of a

simplified model for learning NE excitatory synapses, fwE
i g

NE

i~1, and

NI inhibitory synapses, fwI
i g

NI

i~1, constituting feed-forward input to

a single postsynaptic cell. We denote by r
E=I
i (t) the spike train of the

ith excitatory/inhibitory neuron, r
E=I
i ~

P?
j~1 d(t{t

E=I ,i
j ) where

ftE=I ,i
j g?j~1 are the spike times of the cell. As above, the postsynaptic

response, rpost(t), is modeled to be a delayed linear sum of its inputs:

rpost(tze)~
1

NE

XNE

j~1
wE

j rE
j (t){

1

NI

XNI

j~1
wI

j rI
j (t) (where e is

small and positive). We further assume that the system is isotropic,

the mean firing rates are equal for all presynaptic neurons, SrX
j T~r

(V i[f1, . . . NXg, X[fI ,Eg), correlations are instantaneous,

SrX
i (t)rX

j (t’)T~r2zcXX
ij d(t{t’), and inhibitory and excitatory

inputs are uncorrelated. The excitatory synapses also follow

temporally asymmetric Hebbian spike timing dependent plasticity

according to equations (1)–(2) with aEw1 and mE[½0,1�. In the limit

of a slow learning rate the mean field synaptic dynamics are given by

1

lr2t
_wwE

i ~{Df (wE
i )

1

NE

XNE

j~1

wE
j {

1

NI

XNI

j~1

wI
j

 !

zfz(wE
i )

1

NE

XN

j~1

CEE
ij wE

j

ð27Þ

Figure 5. The stochastic learning dynamics of a population of
NI ~40 pre synaptic inhibitory neurons. Each trace shows the
dynamics of a single synaptic weight. We color cells 1–10 in blue, 11–20
in green, 21–30 in yellow, and 31–40 in red. The firing rate statistics of
the inhibitory neurons followed Poisson statistics with a mean rate of
rpre~10 spikes/s. Initial conditions were distributed evenly from 1 to 0
for cells 1to 40, respectively, i.e., wI

1(t~0)wwI
2(t{0)w . . . wwI

40(t~0).
Thus, cells from the ‘blue’ population have higher initial conditions than
cells from the ‘green’ population and so on. The different hues of each
color distinguish the cells on the basis of their initial conditions. The
thick black line shows the population average of the synaptic weights.
Panels A, B and C differ in the correlation structure of the pre-synaptic
neurons, shown in the inset. A Homogeneous population with uniform
correlations. The correlation coefficient between all inhibitory cell pairs
was cc~0:1 (see Methods). B Heterogeneous population. The population
of NI ~40 inhibitory neurons was composed of two homogenous sub-
populations of 20 cells each (sub-population one: blue and green, sub-
population two: yellow and red). We used a correlation coefficient of
cc~0 between all cells from different sub-population and uniform
correlation coefficient of cc~0:2 between cells from the same sub-
population (see Methods). C Heterogeneous population. The population
of NI ~40 inhibitory neurons was composed of four homogenous sub-
populations of 10 cells each. The different colors distinguish the cells
belonging to the different populations. The correlation coefficient
within each sub-populations was cc~0:3. The correlation coefficient
between cells in the blue sub-populations and the green sub-
populations, and pairs from yellow and red was cc~0:1. All other
correlation coefficients were zero. Here we used a~0:85, m~0, and
l~2:10{4 .
doi:10.1371/journal.pcbi.1002334.g005

Figure 6. Balance of excitation and inhibition. The asymptotic
value of the uniform synaptic coefficient, wI

0 is shown as a function of
the total excitatory input to the cell, for different levels of uniform
correlations between the presynaptic inhibitory neuron population,
cc~0, 0.03, 0.1, and 0.5 from top to bottom. The strength of the
excitatory synapses were uniform and were held fixed during each
simulation. In this simulation we used a~0:9, m~0, and the correlations
between the inhibitory cells were uniform. The dashed lines show linear
regression lines for comparison. The regression was computed using
only the points with wexc that were in the range of [0.5, 0.85].
doi:10.1371/journal.pcbi.1002334.g006
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1

lr2t
_wwI

i ~(1{aI )
1

NE

XNE

j~1

wE
j {

1

NI

XNI

j~1

wI
j

 !
{

1

NI

XNI

j~1

CII
ij wI

j ð28Þ

where CXX
ij ~

CXX
ij {r2

r2t
, X[fI ,Eg. Note that equation (28) uses

m~0 for the inhibitory synapses. The homogeneous solution,

wI
i ~wI

0, Vi and wE
j ~wE

0 , Vj, to the fixed point equations of the

dynamics always exists, and obeys:

wI
0~

1

1z
CI

0

1{aI

wE
0 ð29Þ

0~{f E
{(wE

0 ) wE
0 {wI

0

� �
zf E

z(wE
0 ) (1zCE

0 )wE
0 {wI

0

� �
ð30Þ

where from our assumption of isotropy the uniform vector is an

eigenvector of the non-negative symmetric matrix CXX (X~E,I )

with the corresponding eigenvalue NI CX
0 ~

P
j CXX

ij . Fluctuation

analysis around the homogeneous fixed point yields:

1

lr2t
d _wwE

i ~{gE
0 dwE

i {Df (wE
0 ) dwE

0 {dwI
0

� �

zfz(wE
0 )

1

NE

XNE

j~1

CEE
ij dwE

j

ð31Þ

1

lr2t
d _wwI

i ~(1{aI ) dwE
0 {dwI

0

� �
z

1

NI

XNI

j~1

CII
ij dwI

j ð32Þ

gE
0 ~ wE

0 {wI
0

� � df E
{(wE

0 )

dwE
0

{ (1zCE
0 )wE

0 {wI
0

� � df E
z(wE

0 )

dwE
0

ð33Þ

~2 wE
0 {wI

0

� � df E
{(wE

0 )

dwE
0

§0

Let us denote by vX
n the eigenvectors of CXX (X~E,I ) with the

corresponding non negative eigenvalue NX CX
n ; note that vX

0

is the uniform NX dimensional vector. The eigenvectors of

the full stability matrix, M, which is given by equation

d

dt

dwE

dwI

� �
~{M

dwE

dwI

� �
, are of the form a1

vE
0

0

� �
za2

0

vI
0

� �
,

and
vE

n

0

� �
,

0

vI
n

� �
for n=0.

Using the fixed point equations (29)–(30) one can show that the

homogeneous solution is always stable to fluctuations in the

homogeneous direction. Additionally, similar to the analysis of the

previous section, the homogeneous solution is always stable to

fluctuations in directions of modifying the inhibition,
0

vI
n

� �
.

However, the homogeneous solution is not always stable with

respect to fluctuations in non-homogeneous directions of the

excitation. This point has been discussed at length in [28,29,42].

Essentially, as the positive feedback of the STDP dynamics of the

excitatory synapses becomes strong (i.e., for small mE ) the

homogeneous solution of the excitatory synapses loses its stability

and the learning dynamics becomes more sensitive to the

correlation structure of its excitatory inputs. Specifically, the

eigenvalues of the stability matrix M in the directions of non-

homogeneous fluctuations of the excitatory synapses,
vE

n

0

� �
(n=0), are: Mn~gE

0 {CE
n ~2 wE

0 {wI
0

� � df E
{(wE

0 )

dwE
0

{CE
n . The term

gE
0 has to stabilize non-homogeneous fluctuations in the nth

excitatory direction, CE
n . For small gE

0 and sufficiently large CE
n the

homogenous solution will lose its stability. In addition, note that

here gE
0 is proportional to the deviation from the balance

gE
0 ! wE

0 {wI
0

� �
, which is governed by the correlations between

the inhibitory inputs wE
0 {wI

0!
CI

0

1{aIzCI
0

. As the correlations

between the inhibitory neurons decrease the net input to the

postsynaptic cell becomes more balanced and thus the homoge-

neous solution becomes less stable.

Nevertheless, since the learning dynamics of the inhibitory

neurons, equation (28), is only sensitive to the mean excitatory input,

1=NE

P
j wE

j , and the directions of instability of the homogeneous

solution are only in a heterogenous direction of the excitatory

synapses and not the inhibitory, inhibition is still expected to

remain uniform, obeying:

wI
i ~

1

1z
CI

0

1{aI

1

NE

XNE

j~1

wE
j ð34Þ

Hence, importantly, we find from equation (34) that the negative

feedback of inhibitory plasticity works to balance the net excitatory

input to the cell. In the absence of cross-correlations between

inhibitory synapses, CII
ij !dij[CI

0!1=NI , our model predicts that

Hebbian STDP dynamics converge to a complete balance of

excitation and inhibition 1
NE

PNE
j~1 wE

j { 1
NI

PNI
j~1 wI

j

� 	
?0, in

Figure 7. The effect of correlations on the excitation and
inhibition balance. The asymptotic value of the uniform synaptic
coefficient, wI

0 is shown as a function of the level of the homogeneous
correlations in the firing of the inhibitory presynaptic population, for
different values of a~0:75, 0.8, 0.85, and 0.9 for red, green, blue, and
purple, respectively. The dashed line shows the linear interpolation of

the data, (wI
0){1~a

cc

1{a
zb; a~5:3 and b~1:7. In this simulation we

used m~0, the correlations between the inhibitory cells were uniform

and were varied in the range cc~0,0:05, . . . 0:5, for every value of a.
doi:10.1371/journal.pcbi.1002334.g007
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the limit of large NI . In the presence of correlations, the net

inhibitory input will scale linearly with the net excitatory input (for

mI~0); however, with a coefficient that is less than one. In this

case; i.e., in the presence of correlations, the deviation from exact

balance will scale with the magnitude of the fluctuations. Thus, the

fluctuations in the feed forward synaptic inputs to the cell will not

be negligible relative to their mean.

Numerical simulations of inhibitory and excitatory

STDP. We simulated the learning dynamics of a population of

NI~40 inhibitory and NE~120 excitatory feed forward synapses

onto a single integrate and fire post synaptic cell. Figure 8 shows

an example in which every population (excitatory and inhibitory)

is composed of two correlated subpopulations. As can be seen from

the figure, although the correlation structure destabilizes the

homogeneous solution to the excitatory synapses, Figure 8B, the

homogeneous solution to the inhibitory synapses remains stable.

Figure 9 shows the dependence of the homogeneous inhibitory

asymptotic weight on the asymptotic population average of the

excitatory weights, wE~ 1
NE

P
j wE

j . Note that since the integrate

and fire neuron is not a ‘linear’ neuron, as was used for the

analysis, an exact linear relation is not expected. For example, the

linear regression line (dashed line) crosses the abscissa at positive

wE , which is a manifestation of a threshold effect of the I -n (the

relation between input current and output mean rate) curve of the

postsynaptic neuron. Nevertheless, the inhibitory synaptic weights

are uniform and increase monotonically with the mean excitatory

input.

The sensitivity of excitatory plasticity to the statistical structure

of the presynaptic input layer is illustrated in the example of

Figure 8B: The homogenous solution loses its stability and the

synaptic weights are segregated according to the correlation

structure of two competing subgroups. Figure 10 shows the

difference in the mean excitatory synaptic weight of each such

subgroup as a function of within-group correlation coefficient

(between-group correlations were zero). The sensitivity of the

learning dynamics can be thought of as the degree in which the

correlation structure is express in the resultant weights. As mE is

increased the difference between the two subgroups decreases, and

the sensitivity vanishes. However, the learning dynamics is more

sensitive to the correlation structure of the excitation with

inhibitory plasticity (Figure 10B) than without inhibition

(Figure 10A). Nevertheless we note that: 1. Although the effect

Figure 8. The learning dynamics of a population of NI~40
inhibitory and NE~120 excitatory presynaptic neurons. Each
trace shows the temporal evolution of a single synaptic weight for: A
Inhibitory population B Excitatory population. The firing rate statistics
of the presynaptic neurons followed Poisson process statistics with a
mean rate of rpre~10 spikes/s. Each group of excitatory and inhibitory
populations was composed of two sub groups of equal sizes with a
uniform correlation coefficient within each group of cc~0:1 and a zero
correlation coefficient between cell pairs from different sub groups (see
Methods). The subgroups are distinguished by the different colors red
and blue. There were no correlations between excitatory and inhibitory
neurons. The thick black line shows the population average of the
synaptic weights. Here we used aE~2, aI ~0:99, mE~mI ~0:1, and
l~10{4 .
doi:10.1371/journal.pcbi.1002334.g008

Figure 9. Excitation inhibition balance. The asymptotic value of
the homogeneous inhibitory synaptic weight is shown as a function of
the asymptotic mean excitatory synaptic weights, wE . Learning
dynamics of a population of NI ~40 inhibitory and NE~120 excitatory
feed forward synapses onto a single integrate and fire post synaptic cell
were simulated (see Methods). The firing rate statistics of the
presynaptic neurons followed a Poisson process with uniform rates of
10 spikes/s. The firing of different inhibitory neurons were taken to be
independent, whereas the excitatory neurons were modeled to have
uniform correlations. To obtain different values for the mean excitatory
input to the cell we varied the level of the uniform correlations between
all presynaptic excitatory neurons ccexc~0,0:005, . . . 0:06, from bottom
to top. Here we used the following parameters aE~1:5, aI~0:99, and
mE~mI ~0. The dashed line shows a linear regression line, for
comparison.
doi:10.1371/journal.pcbi.1002334.g009
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of increased sensitivity exists, it does not appear to be dramatic in

the numerical simulations (note the values of mE ). 2. The increased

sensitivity results from the presence of the inhibition and not

necessarily from their learning dynamics (examine the stability

analysis of the homogeneous solution, above).

Discussion

We have studied the computational effect of temporally

asymmetric Hebbian plasticity of feed forward inhibition. Hebbian

plasticity of inhibition generates negative feedback, in contrast to

the positive feedback generated by Hebbian plasticity of excitation.

This can be understood by the following intuitive explanation. If

the feed forward inhibitory synapse is very strong, then it is less

likely that a postsynaptic spike will follow a presynaptic spike. As a

result more pre-post spike pairs will fall on the acausal branch of

the STDP learning curve than on the causal branch. This, in turn,

will depress the strong synapse. On the other hand, if the synapse

is weak, then pre and post spike times will be largely uncorrelated

and the STDP dynamics will sample uniformly both branches of

the STDP curve with equal probability. If the area under the

acausal branch is smaller than the area under the causal branch,

av1 (for m~0), the weak synapse will potentiate (the case of aw1
is not interesting since it reduces all inhibitory synapses to zero).

This negative feedback, in the case of temporally asymmetric

Hebbian plasticity and instantaneous correlations as was studied

here, implies that the inhibitory synaptic weight distribution is

unimodal and that the homogeneous solution of learning

a population of inhibitory synapses is stable, even when the

homogenous solution for the excitatory synapses loses its stability.

However, in our analysis we focused on a simple case where there

are no correlations between excitatory and inhibitory neurons.

Incorporating such correlations to our model adds a term of the

form 1
NE

P
j CIE

ij wE
j to the right hand side of equation (28). This

term will cause the homogeneous solution for the inhibition to

cease to exist when the uniform solution to the excitation loses its

stability. Yet the increased stability of the homogeneous solution of

the inhibition suggests that the inhibitory feed forward input to a

cell is expected to be more broadly tuned than the excitatory

input.

In addition we found that inhibitory Hebbian plasticity works to

balance the net excitatory inputs of the cell. Two terms govern the

homogeneous fixed point of the inhibitory synapses. The first term

results from the contribution of the product of the mean firing

rates to the pre-post full-correlations(this is a generalization of the

fixed point equation of equation (28) to the m=0 case):

{Df (wI
0) wE{wI

0

� 	
, where wE~ 1

NE

P
j wE

j . The second term

results from the contribution of covariation in the firing:

fz(wI
0)CI

0wI
0. The first term, works to balance the net inhibitory

and excitatory inputs to the post-synaptic cell. In the absence

of correlations between the pre-synaptic inhibitory neurons,

CII
ij !dij , the contribution of the covariance term will decay as

1=NI . In this case, neglecting the covariance term, the inhibitory

fixed point will balance the net excitatory input: wE{wI
0

� 	
~0, as

long as the net excitatory input is not too large: wE
v

1

1z
ffiffiffi
am
p .

Thus, in the absence of correlations, Hebbian STDP of inhibition

will balance the excitation, even for the mw0 case.

In the presence of correlations, for the m~0 case, inhibition will

balance excitation in the sense that it will scale linearly with it, this

balance is skewed towards excitation, as was reported, e.g., in Heiss

et al. [9]. For mw0, inhibition will not scale linearly with excitation.

However, the deviation from exact balance (i.e., wE{wI
0) is

expected to scale (not necessarily linearly) with the magnitude of the

fluctuations, CI
0 , for both the m~0 and mw0 cases.

The balance has a twofold effect. First, balancing the mean

excitation and inhibition inputs to the cell increases the relative

contribution of the fluctuations to the cell’s response. Note that we

find that even if exact balance is not obtained the fluctuations are

not expected to be negligible relative to the mean input. Second,

the exact balance reduces the stability of the homogeneous

solution to the learning dynamics to fluctuations of excitatory

synaptic weights in a non-homogeneous direction. Hence, it

increases the sensitivity of the STDP dynamics to the structure of

the excitatory input.

Our analysis was performed using the framework of simplified

models of postsynaptic neural response. Although these simplified

Figure 10. Sensitivity of excitatory plasticity. The learning
dynamics of a population of NI inhibitory and NE~120 excitatory
presynaptic neurons was simulated. The firing rate statistics of the
presynaptic neurons followed Poisson process statistics with a mean
rate of rpre~10 spikes/s. The inhibitory population was homogeneous
and without correlations. The excitatory population was composed of
two subgroups of equal size with a uniform correlation coefficient
within each group, cc, and a zero correlation coefficient between cell
pairs from different subgroups (see Methods). The figure shows the
mean synaptic weight of each excitatory subgroup (+ standard
deviation) at the end of the learning process, as a function of the
within-group correlation strength for different values of mE . A Without
inhibition, NI ~0. B With learning of a homogenous population of
NI ~40 inhibitory synapses. Here we used aE~1:5, aI ~0:99, mI~0,
and l~5:10{4 . The points on the graph represents the mean over the
last 600 minutes, simulation time was 2400 minutes.
doi:10.1371/journal.pcbi.1002334.g010
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models provide a mere caricature of the rich response dynamics of

a neuron to its synaptic inputs, they further our analytical

understanding of the possible outcomes of Hebbian inhibitory

synaptic plasticity, which cannot be achieved if the neural response

dynamics need to be solved numerically. Furthermore, numerical

simulations support our analytical results qualitatively beyond the

framework of the simplified linear neuron model.

We introduced several additional simplifying assumptions to our

model. First, we focused on temporally asymmetric Hebbian

STDP for the inhibitory synapses. However, STDP rules may be

highly variable and this variability may be manifested by a

qualitative difference from our results. For example an anti-

Hebbian STDP rule, such as depicted in Figure 1B, may generate

positive feedback to the inhibitory plasticity, instead of the

negative feedback reported here. Woodin et al. [49] reported a

temporally symmetric STDP rule in which the learning rule acts as a

coincidence detector of post- and pre-spikes, Figure 1D. This

learning rule may act to shape the timing of postsynaptic cell spikes

by ‘selecting’ the inhibitory inputs that fired in a specific time

interval around the excitatory input. Such a mechanism would

require a specific temporal correlations structure between the

input inhibition and excitation.

Of particular interest is the ‘thalamocortical’ circuit, in which

feed forward excitatory inputs arrive directly from thalamus to

cortex whereas inhibitory inputs result from a relay of the thalamic

input via local (cortical) interneurons. This network architecture

manifests in a rich temporal and functional (similarity of preferred

stimuli) correlation structure between excitation and inhibition,

which may have a significant qualitative effect on learning

dynamics. However, here we assumed a very basic correlations

structure between the responses of the presynaptic neurons. The

investigation of the different effects of various STDP rules and the

elaborate spatial and temporal correlations structure of presynap-

tic neuron responses is beyond the scope of the current paper.

Nevertheless, this work suggests a theoretical framework for

addressing these issues.

Methods

Details of numerical simulations
The leaky integrate and fire model. We simulated learning

dynamics of feed forward synaptic inputs into a single post

synaptic integrate and fire cell. Following Song et al [37] and

Gütig et al [42] the dynamics of the membrane potential of the

postsynaptic cell, V (t), obey:

Cm
dV

dt
~ILzIsyn ð35Þ

IL~
1

Rm

(Vrest{V ) ð36Þ

Isyn~gE(EE{V )zgI (EI{V ) ð37Þ

where Cm~200pF is the membrane capacitance, Rm~100MV is

the membrane resistance, the resting potential is Vrest~{70mV ,

and the excitatory and inhibitory reversal potentials are EE~0mV
and EI~{70mV , respectively. An action potential is fired once the

membrane potential crosses the firing threshold of Vth~{54mV ,

after which the membrane potential is reset to the resting potential.

The synaptic conductances, gE and gI are given by

gX (t)~g0
X

XNX

i~1

wX
i (t)

X
j

½t{tj �ze{(t{tj )=tX , X[fE,Ig ð38Þ

where ½t�z~t for tw0 and 0 otherwise. For convenience we used

tE~tI~5 ms.

For the conductance, we introduced a scaling mechanism on the

values used by Gütig et al [42] with the following rationale. The

synaptic conductances, g0
X , were scaled with a scaling factor, gs

X ,

that decreased with the size of the population: g0
X ~�ggX gs

X . For the

excitation Gütig et al [42] used g0
E~30 nS for 1000 excitatory

synapses, and g0
I ~50 nS and 200 inhibitory synapses. We used

the same �ggE and �ggI , and in order to have the same average electric

current in different synaptic population sizes we used

gs
E~1000=NE and gs

I~1000=NI (the fact that there is 1000 in

the numerator instead of 200 is explained below). To illustrate the

above let us examine the case where the excitation NE is taken to

be 1000. In this case gs
E will be 1 and it will match the working

point of [42]. When inhibition NI is taken to be 200, the scaling

factor, gs
I will be 5. The reasoning for this amplification is that in

[42] the inhibitory synapses were held constant at their maximum

value 1, whereas we are interested in a dynamic range for our

inhibitory synapses to enable learning.
Details of numerical simulations. The synaptic spike trains

to the integrate and fire neuron were simulated by Bernoulli

processes (i.e., binary vectors - see below for details on generating

these vectors) defined over discrete time bins of duration dt~1 ms.

These vectors are then linearly filtered using a discrete convolution

kernel in the shape of t exp ({t=tX ) with limited length of 10tX

(after which this kernel function is zero for all practical purposes) to

generate the right side sum of equation (38).

Integration of the synaptic and leak currents in equation (38) to

estimate the postsynaptic membrane potential, V (t), was done

using the Euler method with the same step size of dt~1 ms.

The firing rate statistics of all presynaptic cell activity

throughout all our simulations followed Poisson statistics with

stationary mean firing rates of rpre~10 spikes/s. For the

generation of instantaneously correlated Poisson point processes

presynaptic activity (where applicable) we followed Gütig et al

[42]. Using their defined mechanism to choose and generate the

matrices for specific synaptic sub-group guarantees that within this

sub-group the spike trains have the desired firing rates and

instantaneous pairwise correlation coefficients.
The learning rate. For the learning rate, l, equation (1), we

used two approaches as explained below. For purposes of

illustration, e.g., Figures 3, 5, and 8, where we were interested

in showing the learning dynamics, we used a constant learning rate

throughout the entire simulation. In those cases where we were

only interested in obtaining the asymptotic value to which the

synaptic weights converge we accelerated the learning dynamics

by using the following learning rate approach. The simulation

code was flexible to support a given vector of l for each minute

unit. Specifically we used the following formula to generate this

vector.: 10{3½1z15(1{t)10�, where t[(0:1�, is the ratio between

the minute iteration time and the entire simulation time.

Examining the behavior of this function shows that it starts from

a value of 16e-3 and decays significantly fast towards 1e-3, leaving

the trailing 70% of the simulation with more or less the same

learning rate of about 1e-3.
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