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Abstract

Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur
early during malignant transformation because they may result in oncogene addiction and thus represent promising targets
for therapeutic intervention. We have previously described a computational approach, called Retracing the Evolutionary
Steps in Cancer (RESIC), to determine the temporal sequence of genetic alterations during tumorigenesis from cross-
sectional genomic data of tumors at their fully transformed stage. Since alterations within a set of genes belonging to a
particular signaling pathway may have similar or equivalent effects, we applied a pathway-based systems biology approach
to the RESIC methodology. This method was used to determine whether alterations of specific pathways develop early or
late during malignant transformation. When applied to primary glioblastoma (GBM) copy number data from The Cancer
Genome Atlas (TCGA) project, RESIC identified a temporal order of pathway alterations consistent with the order of events
in secondary GBMs. We then further subdivided the samples into the four main GBM subtypes and determined the relative
contributions of each subtype to the overall results: we found that the overall ordering applied for the proneural subtype
but differed for mesenchymal samples. The temporal sequence of events could not be identified for neural and classical
subtypes, possibly due to a limited number of samples. Moreover, for samples of the proneural subtype, we detected two
distinct temporal sequences of events: (i) RAS pathway activation was followed by TP53 inactivation and finally PI3K2
activation, and (ii) RAS activation preceded only AKT activation. This extension of the RESIC methodology provides an
evolutionary mathematical approach to identify the temporal sequence of pathway changes driving tumorigenesis and may
be useful in guiding the understanding of signaling rearrangements in cancer development.
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Introduction

New high-throughput sequencing and microarray technologies

provide researchers with access to increasingly large and complex

datasets comprising genome-level alterations in cancer [1,2,3].

Computational algorithms have been designed to sift through this

data with the goal of uncovering mutational patterns that are

typical for a particular cancer type and consistent between sample

sets [1,2,4,5]. However, the ability to functionally validate

recurrent genetic events in transgenic mouse models and human

cell lines is limited by the lack of knowledge of the temporal order

in which these alterations arise during tumorigenesis. The

temporal sequence of events is important since it can inform the

correct genomic background in which a mutation must arise to

confer an oncogenic phenotype to cells. Furthermore, it may

contribute to drug discovery since genomic alterations arising early

during tumorigenesis may be more likely to induce oncogenic

addiction and may thus represent promising therapeutic targets

[6]. In some cancers, such as colorectal cancer, the order of events

can be determined through the analysis of several pre-malignant

stages [7,8]. Most cancer types, however, do not present with

clinically observable precursor stages, and therefore the identifi-

cation of the temporal sequence of events using biological or

clinical approaches is difficult.

There is a growing literature of mathematical, statistical and

computational approaches to determining the temporal sequence

of events arising during tumorigenesis. Previously published

methods include the linear model [7], the oncogenetic tree

PLoS Computational Biology | www.ploscompbiol.org 1 January 2012 | Volume 8 | Issue 1 | e1002337



(oncotree) approach [9,10,11,12], various Bayesian graphical

approaches [13,14], and some clustering-based methods [15,16].

Based upon the seminal work in delineating the temporal sequence

of events in colorectal cancer by Vogelstein and colleagues, the

linear model assumes that there exists a single, most likely order of

mutations, and that all of these mutations arise in sequential order

[7]. The oncogenetic tree approach generalizes the assumption of

a single sequential path by providing a tree structure to the

temporal sequence of mutations, allowing for diverging temporal

orderings of events [9,10]. In probabilistic oncotrees, the tree

structure represents the probabilities of accumulating further

mutations along divergent temporal sequences [9]. An alternative

distance-based oncotree approach involves generating a phyloge-

netic tree over all events using a distance measure between

mutational events, where leaf nodes represent the set of possible

events. The closer a leaf node is to the root, the earlier the

corresponding mutation arises [10]. Further development of the

probabilistic oncotree methodology by Beerenwinkel et al. resulted

in the mixture tree model, in which multiple oncogenetic trees,

each of which can result in cancer development independently, are

included in the model [12]. The consideration of multiple tree

structures allows for inclusion of multiple independent temporal

sequences of events that can result in the development of cancer.

Notably, one tree structure that the mixture tree model includes is

a star-shaped tree predicting that every mutation arises indepen-

dently, accounting for random mutations that arise but are not

involved in any temporal sequence of events. An expectation

maximization algorithm is then used to determine the most likely

tree mixture to fit the data [12]. This approach has often been

used to analyze CGH data [17,18,19,20,21,22,23]. However, one

acknowledged restriction of tree-based methods is that the tree

structure precludes the possibility of converging evolutionary paths

[13] that occur when multiple alterations result in the same

phenotypic effect. Furthermore, tree-based models impose a strict

ordering of events: if an event occurs in a leaf of the tree, then it

necessarily must be preceded by all events between the leaf and the

root of the tree. Bayesian graphical methods, by allowing any

network structure, can include converging evolutionary paths

[13,14], however at the cost of additional computation necessary

to search the expanded multi-dimensional result space.

We have previously described a computational approach, called

Retracing the Evolutionary Steps In Cancer (RESIC) [24], which

determines the temporal sequence of specific genetic events for

primary tumor types for which cross-sectional genomic data is

available (Figure 1A). This approach can be used to resolve the

relative order of genetic events with respect to other alterations of

interest; however, in the absence of further data, the time of

emergence of these events relative to phenotypes such as

malignancy or metastasis cannot be identified. In the RESIC

model, we adopted a different approach as compared to prior

work: RESIC explicitly considers the evolutionary dynamics of

mutation accumulation within a population of patients. Each

patient harbors a collection of self-renewing cells that are at risk of

accumulating the alterations leading to cancer; this cell population

follows a stochastic process known as the Moran model [25]. This

stochastic process model of mutation accumulation was then

approximated with a dynamical systems model whose steady state

distribution across all possible mutational states can be compared

with the frequencies of patients harboring the corresponding

genetic events. The resulting fitness values conferred by genomic

alterations, obtained by an optimization algorithm to minimize the

distance between the observed and predicted patient frequencies,

were then used to determine the relative order of events arising in

a patient population [24]. RESIC analyses are performed for sets

of correlated genetic events, thus resulting in a relative ordering of

alterations. The use of pair-wise comparisons also allows for

converging temporal orderings. A detailed explanation of the

RESIC algorithm is provided in the Methods section.

In many cases, specific genetic alterations are not necessary for

malignant transformation; instead, particular oncogenic pheno-

types must be achieved through the emergence of any of a number

of alternative mutations (Figure 1B) [26,27,28,29,30]. In addition,

many cancers can be subdivided into distinct molecular subtypes

(Figure 1C), which often result from differences in the set of

genetic alterations accumulated and potentially the order in which

they arise. Including pathway and subtyping information may alter

the order in which genetic events arise during cancer progression.

To address these issues, we have extended our RESIC

methodology to consider both pathway-based phenotypic changes

and the subtype-driven context of cancer in order to examine how

the temporal sequence of events differs when such information is

included. These two topics are considered in the analysis of

primary glioblastoma (GBM). Due to its aggressiveness and poor

prognosis, as well as its frequency, patient samples of GBM have

been extensively collected and the data made easily accessible to

researchers. In particular, The Cancer Genome Atlas (TCGA)

project has provided measurements of multiple types of genomic

alterations, with each sample processed in a uniform manner, for a

large set of patient samples of GBMs [3]. The TCGA dataset

provides an opportunity to effectively analyze the temporal

sequence of pathway alterations using RESIC through an

investigation of the specific signaling disruptions common to

GBMs [31,32], its well-defined molecular subtypes [33,34,35], and

the availability of similarly treated patient samples [3]. We chose

the RESIC methodology instead of previous approaches to

investigate these issues since RESIC provides, in addition to the

temporal ordering of events, the relative fitness values of cells

harboring individual combinations of mutations. Furthermore,

RESIC is capable of determining the order of different types of

events, such as point mutations, focal amplifications and deletions,

Author Summary

Cancer is a deadly disease that develops through the
accumulation of genetic changes over time. Many
biological models do not incorporate this temporal aspect
of tumor formation and progression, in part due to the
difficulty of determining the sequence of events through
biological experimentation for most cancer types. We
previously developed a computational algorithm with
which we can quickly and cost-effectively determine the
order in which mutations arise in the tumor even when
large numbers of mutations are considered. In this paper,
we extended our method to incorporate biological
knowledge of the common pathways by which cancer
progresses. We applied these techniques to primary
glioblastoma, the most common form of brain cancer.
We found that when all samples are taken into account, a
temporal sequence of pathway events emerges; however,
different subtypes of glioblastoma vary in their temporal
sequence of events. This algorithm can also be easily
applied to other cancer types as clinical data becomes
available, showing the benefit of computational and
mathematical tools in cancer research. Using temporal
information, cancer biologists will be able to develop more
accurate animal models of tumor formation and learn
more about how mutations interact in time, thus leading
to better treatments for cancer.

Determining the Order of Pathway Alterations
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Figure 1. The methodology of pathway-driven RESIC. A) A schematic diagram of pathway-driven RESIC. For those cancer types for which
clinico-pathologically defined stages can be identified, such as colorectal cancer, the temporal sequence in which genetic alterations arise during
tumorigenesis can be inferred through genotyping of samples from patients at different stages of disease progression. We previously designed an
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as well as whole chromosome and chromosome arm changes.

Finally, RESIC is computationally efficient.

Results

Data and parameters
We gathered copy number alteration (CNA) data from 462

GBM patient samples through the TCGA Data portal at http://

tcga-data.nci.nih.gov [3]. We then applied the GISTIC algorithm

[5] to the segmented CNA data in order to determine the

significance of all copy number alterations. In particular, we

applied our method to focal amplifications and deletions, not

whole chromosome alterations, as the former alterations are more

likely to result in the alteration of only a single gene or a few genes.

A subset of the patient samples (431) also included gene expression

data, which we used for subtyping. Roughly a third of the samples

(145) also included sequencing information [3], which we used to

investigate the robustness of the results obtained when using solely

CNA data. For this validation, we limited point mutations of

interest to non-synonymous point mutations and small insertions

or deletions (indels). For all RESIC analyses, we considered

significant positive correlations between events using one-sided

Fisher’s Exact Test with a p-value cutoff of 0.05, as required for

data pre-processing within our RESIC methodology in order to

ensure co-occurrence of events. If mutational events do not co-

occur sufficiently frequently, then the question about the temporal

sequence of events is meaningless since the events may be

associated with separate subtypes [24]. We used an uncorrected p-

value cutoff of 0.05 instead of applying a correction for multiple

testing in order to broaden the set of mutations to be included in

our analyses. We also limited considered interactions to those pairs

of genes with a marginal and joint frequency of alteration greater

than 5%. Since each CNA may span several genes, the

interpretation of results needs to take the identity of those genes

and likely functional effects into account; a straight-forward

interpretation of the results is to assign the obtained order to CNA

events rather than individual genes. Since the genes within one

CNA arose due to a common mechanism and are thus not

independent, no conclusion can be drawn about the causal

implications of each gene within the CAN for its emergence.

RESIC relies upon the transition rates between mutational

states, which are a function of the number of cells at risk of

accumulating the alterations (the population size), the rate at

which the alterations arise (the mutation rate), and the change in

growth rate that alterations confer to cells (the fitness) [24]. In the

RESIC implementation, the optimization algorithm is used to

identify the fitness values that minimize the distance between

model prediction and patient data while keeping the population

size and mutation rate estimates constant [24]. This choice was

made due to the robustness of the results to changes in these latter

parameters [24]. We calculated the rate at which focal CNAs arise

per cell division by using the copy number alteration rate per locus

per generation as determined in sperm, multiplied by the number

of cell divisions during spermatogenesis (see Methods). Using those

estimates, we obtained a CNA rate per locus per cell division of

2.261027. This rate agrees with argumentation that point

mutation and focal copy number alteration rates must be similar

in scale in order for both types of alterations to be observed with

similar frequency [36]. We used m = 1.061027 as the rate at which

CNAs arise per allele per cell division, and N = 100 as the

population size for computational speed; while the latter number

may not accurately capture the order of magnitude of the number

of stem cells per tissue compartment from which the tumor

initiates, or the number of cancer stem cells per tumor, we have

previously shown that the results of RESIC are not significantly

affected by changes in the population size by orders of magnitude

[24]. This robustness arises due to the scaling of the transition rates

in the Markov process by the magnitude of the population size and

holds as long as the system parameters are within a regime such

that step-by-step evolution applies (i.e. one mutation arises and is

lost or fixed before the next one emerges, [24]).

RESIC analysis of CNA data provides similar results to
analysis of point mutation and CNA data

To ensure the validity of our analysis using solely CNA data, we

performed separate RESIC analyses of the CNA data alone; these

results were then compared to those obtained using CNA and

point mutation data in the subset of the samples for which both

CNA and point mutation information was available. Similarly to

our prior validation analyses [24], we expected that almost all

orderings determined using CNA information only would either

remain the same or weaken in significance. Indeed, we found that

our results varied little when including point mutation data also.

The only exception involved TP53, a gene known to be primarily

altered through point mutations [37]. In the largest set of cases,

23/40 at the paired-gene level and 3/6 at the pathway level, the

resultant orderings remained within 3% of each other while the

dominant order stayed constant. In a second set of orderings, the

findings decreased in significance when only CNA data was

included (13/40 when analyzed using pairs of genes and 1/6 at the

pathway level). The smallest group involved those orderings that

differed between analyses using CNA data only and analyses using

CNA plus point mutations, with 4/40 using gene-pair comparisons

and 2/6 using pathway analyses. In this group, most orderings (5/

6) involved TP53. The remaining ordering involved the PDGFRA

locus, with point mutations occurring in amplified PDGFRA.

RESIC analyses involving three-gene mutation diagrams were not

significant due to the smaller set of samples available compounded

with the larger number of samples required for three-gene

analysis. Thus, with the exception of genes most commonly

altered by point mutations, the orders determined using CNA

information only are equivalent or weaker than those using point

mutation data and CNA data. As such, use of CNA data alone at

most provides weaker temporal sequences and at best provides

evolutionary computational algorithm called Retracing the Evolutionary Steps In Cancer (RESIC) to determine the temporal order of somatic
mutations for cancer types that are diagnosed de novo without detectable precursor lesions (e.g. primary glioblastoma) through the use of genomic
data from a large number of samples (one per patient) of a particular histological type [24]. We extended this methodology to analyze the temporal
sequence of functional alterations in signaling pathways. We begin with a genomic dataset of patient samples classified as the tumor (sub)type of
interest. As Step 1, we use an algorithm such as GISTIC [5] to identify recurrent genetic aberrations in the dataset. In Step 2, we combine genetic
alterations identified as impacting specific signaling pathways into single alteration events. In Step 3, we identify statistically significantly correlated
events that occur sufficiently frequently. In Step 4, the most likely sequence for each set of associated events is identified using RESIC. The results
generated from the RESIC analyses are used to reconstruct the order in which pathway alteration events arise during the development of a particular
cancer type (Step 5). Our methodology is applicable to large-scale datasets and can be used to identify the temporal sequence of pathway alterations
in cancer. B) Functional modules in signaling result in single events analyzed in RESIC. C) Gene expression-based subtypes can be split up into
separate RESIC analyses or analyzed as a combined dataset.
doi:10.1371/journal.pcbi.1002337.g001

Determining the Order of Pathway Alterations
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equivalent temporal sequences as compared to analyses including

point mutations also, unless a gene is known to be primarily

altered via point mutations.

A pathway-based RESIC analysis of GBM determines a
consistent overall order of events

In many cancer types, a variety of genetic and/or epigenetic

alterations result in a common phenotype required for cancer

initiation and progression. In an effort to categorize the effects of

specific genetic alterations, we classified these changes into the

signaling pathways to which the altered genes belong. This choice

was made since commonly mutated genes that reside in the same

signaling pathway are expected to affect the progression of cancer

in a similar manner; indeed, such commonality in phenotypic

effects has been observed in multiple pathways involved in GBM

[31,38,39,40,41,42]. Therefore, any alteration in the set of genes

within a single signaling pathway is expected to result in the same

(or very similar) effects onto the reproductive success of cells

carrying such alterations. We thus defined a pathway alteration as

an event in which at least one of the genes involved in the pathway

is genetically altered; for our purposes, pathways are defined

following the approach of the TCGA project [3,31,32] (see

Methods for details and a discussion of alternative approaches for

pathway definition). Through the combination of mutational

events into pathways, we are then able to obtain a broad view of

the order of events in cancers in which conflicting signals obscure

the order of events at the single gene level. We considered the

TP53, PI3KC1/AKT, PI3KC2, RAS, and RB signaling pathways

in GBM (Table 1). Inactivation of the TP53 pathway was defined

by amplification of MDM2/4 or deletion of TP53 or CDKN2A;

since sequence information was not available for most samples,

point mutations inactivating TP53 could not be included.

Activation of the PI3KC1/AKT pathway was defined by

amplification of AKT1/2/3, GAB1, IRS1, PIK3CA/B/D/G,

PIK3R1/2, PDPK1, or SRC, or deletion of PTEN. Activation of

the PIK3C2 pathway referred to amplification of PIK3C2A/B/G.

RAS pathway activation was defined by amplification of ARAF/

BRAF/HRAS/KRAS/NRAS, EGFR, ERBB2/3, FGFR1/2,

GRB2, IGFR, MET, PDGFRA/B, or RAF1, or deletion of

CBL, ERRFI1, or SPRY2. RB pathway inactivation referred to

amplification of CCND1/2, CCNE1, or CDK2/4/6, or deletion

of CDKN1A/B, CDKN2A/B/C, or RB1 (Table 1). These

pathways were defined as previously described using the Pathway

Commons approach to investigate TCGA GBM data [31,32].

We then applied the RESIC algorithm to pairs of co-occurring

pathway alterations and determined a general order for signaling

pathway disruptions. When using all GBM samples in a single

computational analysis, we found that RB signaling alteration

occurs early during gliomagenesis. In contrast, AKT and PI3K2

signaling alterations occur late, while RAS and TP53 signaling

changes arise in between the early and late events (Figure 2). As

observed in the CNA-only versus CNA with point mutation

validation analysis, the addition of point mutation information

leads to earlier placement of point mutation-driven alterations.

Thus, TP53 pathway alteration may actually arise earlier, given

that TP53 alteration tends to be due to point mutation. In no case

were these signaling pathway alterations driven primarily by a

single mutation. While the placement of RAS pathway alterations

before AKT/PIK3C1 pathway changes seems to be in contrast to

our previous results involving EGFR (part of the RAS pathway)

and PTEN (included in the AKT/PIK3C1 pathway) [24], in

actuality, the earlier result does not preclude the possibility that

other mutations in the RAS pathway arise even earlier. The

benefit of the pathway-driven approach is that these sporadic

mutations can be combined into a single event for a better

comparison of functional consequences such as (in)activation of

pathway signaling. For the detailed output of the orderings

determined by RESIC for the GBM dataset, see Text S1.

While biological investigations of primary GBMs have not

determined the order in which pathways are altered, the possibility

arises to compare our results to secondary GBMs, for which the

order of events can be inferred from the tumor grade. We thus

compared the results of our RESIC pathway analysis against

literature evidence about the order of events in secondary

glioblastomas. Disruption of RB signaling as an early event is

consistent with both the necessity of passing the G1/S cell cycle

checkpoint to allow the development of a tumor and the

observation of RB pathway mutations in the majority of low-

and high-grade gliomas [43]. While TP53 loss-of-function point

mutations occur in most low-grade gliomas [44,45], our restriction

to solely CNAs excludes such mutations from the analysis. Despite

not including TP53 point mutations in the analysis, we obtained

the results that TP53 pathway alteration occurs early during

tumorigenesis via MDM2 and MDM4 alterations. Inclusion of

point mutations would only increase the frequency of TP53

Table 1. The definition of pathways.

Positive Effects

TP53 PIK3C1/AKT PI3KC2 RAS RB

CDKN2A AKT1 PIK3C2A ARAF CDKN1A

TTP53 AKT2 PIK3C2B BRAF CDKN1B

AKT3 PIK3C2G EGFR CDKN2A

GAB1 ERBB2 CDKN2B

IRS1 ERBB3 CDKN2C

PIK3CA FGFR1 RB1

PIK3CB FGFR2

PIK3CD GRB2

PIK3CG HRAS

PIK3CR1 IGFR

PIK3CR2 KRAS

PDPK1 MET

SRC NRAS

PDGFRA

PDGFRB

RAF1

Negative Effects

TP53 PIK3C1/AKT PI3K2 RAS RB

MDM2 PTEN CBL CCND1

MDM4 ERRFI1 CCND2

SPRY2 CCNE1

CDK2

CDK4

CDK6

We split all genes into those with negative effects on the pathway and those
with positive effects. Each column is headed by the name of the signaling
pathway in which the genes reside, followed by the list of genes. A gene with
positive effect increases the generation of the pathway’s product when
amplified, while a negative effect gene decreases its production when
amplified. Deletion of a gene has the reverse effect on the pathway.
doi:10.1371/journal.pcbi.1002337.t001

Determining the Order of Pathway Alterations
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pathway alterations and thus place TP53 pathway events even

earlier, as seen in our CNA data-only validation analyses. In vitro

studies confirm the positioning of the remaining pathway

alterations: previous results in cell lines showed that AKT signaling

alteration contributes to the progression of anaplastic astrocytomas

to GBMs [46], but cannot initiate tumorigenesis without RAS

activation [47]. Additionally, previous work showed that RB

alteration, TP53 inactivation and hTERT expression in combi-

nation with RAS activation resulted in the malignant transforma-

tion of normal cells; however, the emergence of PI3 kinase

alterations with RB, TP53, and hTERT changes without RAS

alterations were not capable of inducing similar responses [48],

thereby placing both AKT/PIK3C1 and PI3KC2 pathway

alterations relatively late during malignant transformation. These

in vitro studies in secondary GBMs provide independent support

for our results in primary GBMs.

RESIC identifies distinct temporal sequences of pathway
alterations for GBM subtypes

Recent findings demonstrate the existence of distinct molecular

subtypes of GBMs [33,34,35], and we hypothesized that the order

in which pathways alterations arise may vary between subtypes.

We used gene expression profiling following the approach of

Verhaak et al. [35] to cluster GBM samples into the previously

described subtypes. In brief, we used Consensus Clustering, a form

of hierarchical clustering with agglomerative average linkage, to

determine the set of clusters in the gene expression data (Figure 3A

and B) [49]. Positive silhouette widths were then used to identify

the subset of samples that fit well into each subtype (Figure 3C)

[50]. Thus, we obtained 98 samples of the classical subtype, 157 of

the mesenchymal, 43 of the neural, and 120 of the proneural

subtype (see Methods for details). These frequencies of samples in

each subtype were similar to the frequencies determined in

previous studies [5,34,35,51,52]. Additionally, since some previous

subtyping efforts were done utilizing TCGA data, we compared

these results to ours and found a very high concordance (.90%) in

the subtyping of the shared samples [35]. These results implied

that the clusters we determined corresponded to the subtypes

previously determined. By applying our pathway-based RESIC

approach to each of these clustered sets of samples individually, we

then tested whether the temporal order of pathway alterations

detected at the subtype level corresponded to the same or similar

order of events as detected earlier when all samples were analyzed.

Each subtype-specific RESIC analysis was performed in the same

manner as the overall pathway-based GBM analysis (see Methods).

We detected a significant temporal order for the two largest

subtypes (proneural and mesenchymal GBM), some correlations

but no significant order in the second smallest type (classical

GBM), and no correlations in the smallest subtype (neural GBM).

We found distinct differences between the subtypes with significant

temporal sequences, as outlined in the following.

Proneural GBM
The second largest cluster of samples was the proneural subtype

with 120 samples. This subtype is characterized by PDGF-related

amplifications and TP53 point mutations [35]. We found that the

temporal sequence of pathway alterations in this subtype closely

recapitulated the overall pathway order results. The primary

difference between the two was a lack of a significant ordering

involving the RB pathway in this subtype. Additionally, RAS

pathway alteration was placed before TP53 pathway inactivation.

Interestingly, we detected a divergence in the temporal order

between PIK3C1/AKT (AKT1/2/3, GAB1, IRS1, PIK3CA/B/

D/G, PIK3R1/2, PDPK1, SRC, PTEN) and PIK3C2

(PIK3C2A/B/G) signaling (Figure 4A) even though both

pathways involve the lipid-kinase activity of PI3K family enzymes

[53]. In particular, we found that PIK3C2 pathway alterations

require subsequent TP53 pathway inactivation, through alteration

of MDM2/4, TTP53, and/or CDKN2A, while PIK3C1/AKT

alterations do not (Figure 4A). This difference may be explained

through the downstream effects of PIK3C1 signaling: specifically,

in the PIK3 class 1 pathway, PIK3 class 1 family proteins produce

PIP3, which results in downstream activation of AKT and

activation of the MDM2 gene; the latter then inactivates TP53

signaling [53]. By contrast, PIK3 class 2 enzymes catalyze

formation of PI-3-P, which does not activate AKT to inactivate

TP53 signaling [53]. As such, the set of samples with AKT/

PI3KC1 signaling activation may not require TP53 signaling

inactivation while for the set of samples with PIK3C2 activation,

inactivation of the TP53 network may be necessary. Thus, the two

divergent temporal sequences may represent a difference in the

Figure 2. Temporal sequence of pathway alterations in all
samples. Alterations included as alterations of each pathway are
defined in Table 1. Each arrow indicates the order in which the two
alterations arise. The first number represents the frequency with which
the displayed temporal sequence occurs. The second number
represents the percent of all bootstrap iterations in which the order
determined acts as the dominant temporal sequence.
doi:10.1371/journal.pcbi.1002337.g002

Determining the Order of Pathway Alterations
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biology of PIK3 class 1 mutated versus class 2 mutated patients in

the proneural subtype. For the detailed output of the orders

determined by RESIC for the proneural subtype, see Text S2.

Mesenchymal GBM
The largest GBM subtype was the mesenchymal subtype with

143 samples. Even though this subtype is characterized by NF1

alterations [35], our GISTIC analyses did not detect any

significant copy number alterations of the NF1 locus. Indeed, loss

of the NF1 protein can be driven by multiple mechanisms

including heterozygous copy number changes, inactivating point

mutations, and low levels of gene expression without genomic

alterations [3]. We therefore excluded NF1 from our analysis and

focused on the remaining copy number changes. Unlike the

proneural subtype and in contrast to the overall results derived

from all samples, RESIC predicted that samples of the

mesenchymal subtype first accumulate TP53 pathway inactiva-

tion, followed by PIK3C2 and RB pathway alterations, and

concluding with RAS and PIK3C1/AKT changes (Figure 4B).

One possibility for the early placement of TP53 pathway

inactivation is that in this subtype, the TP53 pathway is frequently

altered via MDM2, MDM4, or CDKN2A CNA events, leading to

an increased number of samples with CNA in the TP53 pathway

and thus an early placement of that pathway. The lack of an

inferred order between the RAS and PIK3C1/AKT pathways

may potentially be the result of increased crosstalk between the

two pathways in this subtype: cell line experiments have shown

that while both RAS and PIK3C1/AKT pathway alteration may

be necessary to initiate cancers, either pathway alone is sufficient

to maintain tumor growth [54]. In addition, we observed that in a

subset of cases, AKT alteration was predicted to occur after RB

signaling disruption and before TP53 inactivation, representing

the reverse order of the overall temporal sequence. This finding

may be due to the accumulation of multiple mutational hits at

different times in one or more of the pathways, or due to feedback

between the gene products in the pathways. Given that the

reversed ordering had less weight than the overall order, a second

hit in a subset of samples could also potentially account for this

reversed order. For the detailed output of the orders determined

by RESIC for the mesenchymal subtype, see Text S3.

Neural and classical GBM
For samples belonging to the neural and classical subtypes of

GBM, no significant temporal sequence of pathway alterations was

Figure 3. Cluster analysis of the TCGA GBM patient data. The
stability of the clusters increases with the number of clusters and
stabilizes around four clusters. A) Consensus matrix. The entry (i, j) in
the consensus matrix measures the proportion of iterations of
clustering in which the ith sample clusters with the jth sample.
Assuming perfect clustering, all entries (i, j) in the consensus matrix
would be either 0 or 1, representing either sample i never clustering
with sample j, or always clustering with sample j. When the samples in
the matrix are ordered according to their cluster, perfect consensus
results in a block-diagonal matrix. Note that the stability of the clusters
stabilizes at k = 4. B) Consensus CDF of the entries of the consensus
matrix. With perfect clustering, all entries would be zero or one,
resulting in a CDF consisting of a flat line at the percentage of zero
entries in the consensus matrix and ending with a spike at one. The
closer the CDF approaches this limit, the better the clustering. Note that
the clustering stabilizes at k = 4, with little increase afterwards. C)
Silhouette plot of the four clusters. Positive values on the silhouette
plot identify samples that most stably represent each subtype. We
exclude samples with zero or negative silhouette values to ensure only
samples that fit the subtype are used in the subtyped RESIC analyses.
doi:10.1371/journal.pcbi.1002337.g003
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determined. There were only 43 samples classified as neural GBM,

which is a limited number of samples on which to perform RESIC

analyses. In addition, the neural subtype is often subject to

contamination, a finding supported by the observation that normal

tissue samples cluster together with samples of this subtype [35].

We then analyzed the 98 samples belonging to the classical GBM

subtype. Huse et al. recently found that all samples categorized as

classical GBM according to Verhaak et al. [35] can instead be split

evenly into the remaining three subtypes [55] when following the

previous classification scheme by Philips et al. [34]. Thus, for this

subtype, we expected to detect an even distribution of temporal

orderings corresponding to the other subtypes. Indeed, we found

no significant temporal orderings of events, but an even

distribution of the flow through the mutational network (see Text

S4 and S5).

RESIC identifies distinct temporal sequences of genetic
alterations for GBM

After determining the order of pathway alterations both in all

GBM samples and in specific subtypes, we sought to establish the

temporal sequence of specific genetic alterations underlying these

pathway alterations. We identified all correlated alterations within

the TCGA dataset with a p-value of 0.05 and analyzed the results

using the RESIC algorithm. We first analyzed the alterations on a

pairwise basis: if two alterations were correlated, we performed a

RESIC analysis on the pair and determined the relative order of

the two alterations. We then combined all relative orderings into a

single network (see Methods). In these analyses of genetic

alterations, there was no instance in which one alteration was

placed early by one analysis but late by another analysis,

demonstrating consistency between the results despite the

assumption of independence between individual analyses

(Figure 5A). Additionally, our results involving EGFR and PTEN

correspond closely to the findings obtained previously [24]: we

found a loss of significance of the ordering when only CNA data

was included, resulting in frequencies of 43.5% versus 46.3% for

the flux with PTEN before EGFR and low level amplification of

EGFR before PTEN loss, respectively, which is consistent with our

current results of 43.8% versus 45.9%. We did, however, obtain a

result that was not consistent with the progression of events

inferred from secondary glioblastomas: PTEN loss was placed

early in our analyses while in secondary GBMs, PTEN loss tends

to occur late, rarely occurring in astrocytomas; in contrast, PTEN

alterations are prevalent in GBMs [56]. This result may be due to

differences in progression between primary and secondary

gliomas.

Additionally, in contrast to our pathway-driven analyses, we

found that many of the resulting orderings were weaker when

using individual gene-based analyses (Figures 2 and 5). For

example, in pathway-based analyses (Figure 2), four out of the six

temporal orderings were determined to occur with more than 70%

frequency as well as in 100% of all bootstrap iterations. In

contrast, in gene-based analyses (Figure 5), only four of ten

temporal orderings occurred with more than 70% frequencies and

in less than 100% bootstrap iterations. This difference exposes the

additional level of noise that gene-based approaches encounter

due to the similarity of the effects of mutations within genes

Figure 4. Temporal sequence of pathway alterations within subtypes. The classical and neural subtypes did not result in any significant
orderings of pathway alterations. Mutations included as alterations of each pathway are defined in Table 1. Each arrow indicates the order in which
the two alterations arise. The first number represents the frequency with which the displayed temporal sequence occurs. The second number
represents the percent of all bootstrap iterations in which the order determined acts as the dominant temporal sequence. A) The proneural subtype.
B) The mesenchymal subtype.
doi:10.1371/journal.pcbi.1002337.g004
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belonging to the same pathway. With the exception of the

placement of PTEN in the AKT/PIK3C1 pathway, many of the

orderings determined at the pathway level were the same at the

gene level. However, in gene-based analyses, the true orderings

can be obscured by the fact that multiple genes are involved in

each pathway. Other consistencies between pathway- and gene-

level analysis include RB pathway alteration through RB deletion

occurring before P53 pathway inactivation through MDM4 and

before PIK3C2 pathway inactivation through PIKC2B, RAS as

an earlier event through EGFR amplification, and TP53 mutation

arising before PIKC2B (Figure 5).

We then aimed at investigating the robustness of the RESIC

results to inclusion of further genomic alterations into each

individual analysis. Addition of further alterations may perturb the

ordering determined in the pairwise RESIC analysis by providing

an alternative set of paths through the network. That is, while the

total numbers of patient samples harboring unmutated cells, low-

level alteration, and high-level alterations remain the same, these

numbers are distributed among a larger number of mutational

states due to the inclusion of further alterations in the network. If a

significant fraction of the flux through the network is then diverted

to one particular mutational state, then the predicted order of

events might change. In principle, to determine the most accurate

sequence of events in cancer progression, all alterations involved in

tumor development would need to be included in a single RESIC

analysis. However, such an analysis is infeasible: combinatorial

expansion of the number of mutational states precludes the

existence of a sufficiently large number of samples to populate a

significant fraction of the mutational states. Instead, to test the

effects of including additional alterations on the obtained RESIC

results, we performed three-way RESIC analyses on the full

TCGA data set. We thereby independently tested the effect of

including every additional alteration correlated with the pair of

alterations investigated in the pair-wise analyses. We found that in

all cases in which a single temporal sequence of events arises at

least 58% of the time at the pair-wise gene level, the results were

stable between pair-wise and three-way analyses and thus

unaffected by the addition of further alterations to the analysis

(Figure 5B). In some cases, notably for networks of EGFR and

TP53 and networks of RB and MDM4/PIK3C2B, the order of

events remained constant between pairwise and three-mutation

analyses; however, an additional alteration was placed in between

these changes. Thus, an additional temporal ordering was

determined by using three-mutation analyses (Figure 5B).

Subtype-specific RESIC analyses of somatic alterations
Since we detected differences between the GBM subtypes when

analyzing the temporal order of alterations of signaling pathways,

we expected those differences to also appear at the genetic level.

Thus, we analyzed the subtype-specific sequence of somatic

genomic alterations. Due to the small sample numbers, the

temporal order of alterations within subtypes could be determined

in only a few cases (Figure 6). Consistent with results obtained

using the pathway-based approach, we obtained no significant

temporal orderings for samples belonging to the classical subtype.

By contrast, for samples of the neural subtype, we obtained

significant orderings of somatic alterations (Figure 6A). However,

the frequency of the dominant temporal sequence for those cases

was only slightly greater than 50%, suggesting that these findings

were not robust. Indeed, the use of Bonferroni corrected p-values

for correlations removed the significance of these results, as did the

use of three-way analyses. For samples belonging to the proneural

and mesenchymal subtypes, we detected only one significant

ordering each, both involving PTEN deletion events (Figure 6B

and C). The order determined for PTEN and CDKN2A in the

mesenchymal subtype, like the ordering found for the neural

subtype, had a flux through the network of about 50% and a p-

value for correlation of 0.05, and therefore was not significant.

The order of PTEN and CDK4 determined for samples belonging

to the proneural subtype, however, passed the threshold of 58%

flux through the network and also had a p-value for correlation of

0.02, and was therefore more likely to be significant. The lack of

significance in the analysis of the subtypes with respect to genetic

versus pathway alterations illustrates the increased ability of the

pathway-driven approach to detect the temporal sequence of

events with fewer samples.

In summary, the use of pathway information for the RESIC

analyses clarified the order of events in several ways. First,

combining mutational events into pathways allowed for the

detection of an ordering in cases in which fewer samples and

potentially conflicting genetic signals obscured any significant

ordering of events at the genetic level (Figures 4 and 6). In cases in

which an order could be determined at the genetic level, the

increased number of events often resulted in an additional level of

noise, thereby obscuring the results. In addition, using pathway

information removes some potentially incorrect orderings through

merging of specific alterations with the remaining events in the

pathway. However, the use of pathway information could also

hide clinically relevant mutational anomalies that should arise

separately from alterations of the remainder of the pathway. In our

GBM analyses, the placement of PTEN loss is such a concern.

Discussion

In this paper, we have extended the RESIC methodology [24],

originally designed to identify the temporal sequence of somatic

genetic alterations from cross-sectional tumor samples, to address

the order in which modifications of molecular signaling pathways

arise during tumorigenesis. This modification considerably

Figure 5. Temporal sequence of somatic mutations in all samples. Each arrow indicates the order in which the two alterations arise. A) Map
of the temporal order of all CNAs determined using pairwise RESIC analyses. The first number represents the frequency with which the displayed
temporal sequence occurs. The second number represents the percent of all bootstrap iterations in which the order determined acts as the dominant
temporal sequence. B) Map of all CNAs made using three-mutation RESIC analyses. We tested the effects of including additional mutations in RESIC
analyses by first testing the addition of a single mutation independently to each analysis. Investigation of further additions of mutations would
require more samples; furthermore, we would expect any epistatic effects on the order of mutations to show some level of effect from each gene
independently. Arrows in black are significant orderings, confirmed in at least 80% of the bootstrap iterations. Gold arrows are orderings found
significant by three-way interactions, but not by pairwise interactions. Thickness of lines denotes the number of interactions that maintained the
ordering. Since multiple three-gene analyses correspond to some arrows, the specific frequencies of orderings and the number of bootstrap
iterations are not displayed, although included in the Supplementary Information. The results of using two mutations per RESIC analysis (A) do not
differ significantly from the three mutation results (B). In no case is an order determined to be significant in pairwise analyses later found to be
reversed in three way analyses. Additionally, we found that most results are stable (confirmed in three-way analyses) as long as the most likely
evolutionary path through the mutational network comprises at least 58% of the flow. With the exception of the placement of PTEN of the AKT/
PIK3C1 pathway, many of the orderings determined at the pathway level are robust at the gene level.
doi:10.1371/journal.pcbi.1002337.g005
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reduced the noise compared to the use of individual genetic

alterations. Furthermore, it makes RESIC applicable to tumor

types in which individual mutations may be so infrequent that they

rarely co-occur in samples, thus leading to the absence of

statistically significant associations among events. In such cases,

a pathway-based application of RESIC groups together these

sporadic events and allows for the analysis of the temporal

sequence of events.

We have applied our methodology to primary glioblastomas

(GBMs) and have identified the temporal ordering of both

pathway-level and gene-level alterations. These investigations

were performed on the entire group of glioma samples and each

of four previously defined molecular subtypes of GBMs [35]. The

subtypes are characterized by unique RNA expression and

mutational patterns [55] and, interestingly, differed in their

chronologic acquisition of molecular events. The order of events

was clearest for the proneural and mesenchymal subgroups. This

observation was consistent with data suggesting that these two

groups are more distinct and reproducible between large

expression analyses of GBM tumor collections. Moreover, within

the proneural group, the existence of two distinct mutational

pathways is interesting given the emerging data that this subgroup

may indeed be a mixture of at least two distinguishable molecular

subtypes [55]. It is conceivable that these differences may be

explained by differences in the cell of origin of each subtype;

further work is required to determine whether these two paths of

mutational acquisition are related to the disparate clinical

behavior of this GBM subgroup, although the outcome for

GBM is quite poor in almost all cases [57].

In summary, our method allows the rational investigation of

genetic and pathway alterations arising during tumorigenesis and

will be an important tool for the field to determine the order of

acquisition of events from cross-sectional cancer databases.

Methods

Patients and tumor samples
We obtained copy number alteration (CNA), gene expression,

and sequencing data for all GBM samples for which CNA data

were available from the TCGA Data Portal at http://tcga-data.

nci.nih.gov. These samples were collected and processed by the

TCGA Biospecimens Core Resource [3]. We ensured that each

sample represented a unique case by excluding all patients who

were represented in the database with multiple samples that had

different copy number results for each sample. We thus obtained

462 samples. All three data types were obtained in TCGA Level 3

format. For gene expression data, this means that all data had

been previously log-transformed and median centered, while CNA

data had been processed from microarray fluorescence amplitudes

into segmented data files. Sequencing data had been called from

amplitude data as specific indels or point mutations [3].

Descriptions of the TCGA levels can be found at http://tcga-

data.nci.nih.gov/tcga/tcgaDataType.jsp.

Detection of copy number alterations (CNAs)
In order to determine significant CNAs, we applied the GISTIC

algorithm [5] to the segmented TCGA GBM copy number data.

Independent runs of the algorithm were performed on the

complete set of samples as well as samples belonging to individual

subtypes. These analyses were run using the GenePattern analysis

software [58].

Determination of the CNA rate
We considered the accumulation of focal CNAs. Unlike whole

chromosome or chromosome arm gains or losses, these CNAs are

not caused by gross karyotypic abnormalities, likely due to

chromosomal instability [36]. Indeed, selective pressure and the

fitness effects of mutations can drive their accumulation without

the need of elevated mutation rates [36,59,60,61]. We calculated

the rate of focal copy number alterations based on a per

generation copy number alteration rate of 4.261025 alterations

per locus in sperm [62,63]. As previously determined, the number

of cell divisions, Nx, that sperm germ cells undergo is determined

by the following formula: Nx = 30+23 (x2xp)+6 = 36+23 (x2xp),

where x is the age of the male and xp is the age at puberty [64,65].

Then, with an average generation of twenty years and an average

age of puberty of 13, the number of cell divisions in

spermatogenesis is on average 191. Dividing the per generation

rate by the number of cell divisions per generation, we determined

the per cell division per locus rate of CNAs as 2.261027, or

1.161027 per allele. Coincidentally, this rate corresponds well

Figure 6. Temporal sequence of somatic mutations within
subtypes. The classical subtype did not result in any significant
orderings of genetic alterations. A) Neural subtype. B) Proneural
subtype. C) Mesenchymal subtype. In contrast to the results obtained
when using pathway alterations, we obtained no significant results
when performing gene-level analyses. In most cases, the temporal
sequences occur with less than 58% probability, meaning the results are
unlikely to remain robust to perturbation by addition of further genes.
In the neural subtype, the sole significant temporal order determined
involves PTEN loss arising before CDK4 amplification.
doi:10.1371/journal.pcbi.1002337.g006
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with the mutation rate we previously used for point mutations per

allele per cell division [24], and agrees with evidence that point

mutation and focal copy number alteration rates must be similar in

scale such that both mutation types are observed in similar

frequency [36]. We simplified and used m= 1.061027 mutations

per allele per cell. In contrast, whole chromosome or chromosome

arm gains or losses are likely to arise through chromosomal

instability, and may occur at a much higher rate [36].

Gene expression-based subtyping
We used the gene expression profiling to cluster the samples into

the four subtypes of GBM using Consensus Clustering [49]

following the approach of Verhaak et al. [35]. We used the 1,740

genes in Verhaak’s gene signature as input to the Consensus

Clustering algorithm [35]. We applied hierarchical clustering with

agglomerative average linkage as the basis for Consensus

Clustering, with a distance measure of 1 minus the Pearson

correlation coefficient, and 1,000 iterations with a sub-sampling

ratio of 0.8. As the Consensus Clustering algorithm requires as

input the number of clusters, k, in which to place the samples, we

chose 4 clusters [33,34,35], but tested k = 2 to 10 clusters. We

observed increasing stability of clusters via graphical examination

for increasing k until k = 4 clusters (Figure 3A and B), but no

significant gain in stability afterwards. Once the clusters were

determined, we used the silhouette method to restrict the samples

used to only those with positive silhouette widths (Figure 3C).

Silhouette width is defined as the ratio of each sample’s average

distance to all other samples in the same cluster and the average

distance to all other samples [50]. Thus, those samples with

positive widths are more closely related to the samples within the

cluster than the samples outside the cluster, and are likely to reside

in the correct cluster. The R package Silhouette was used to

determine silhouette widths [66].

Determination of pathway events
Mutations in several different genes can result in phenotypically

similar results. Indeed, network analyses of TCGA GBM samples

have detected a tendency for alterations to occur in specific

functional modules instead of particular genes [31]. Investigators

of the TCGA project defined a set of genes commonly mutated in

TCGA glioblastoma samples and mapped them into commonly

altered GBM signaling pathways [3,31,32], visually depicted in

Supplementary Figures 7 and 8 of [3]. Specifically, they mapped

the CNAs and point mutations commonly found in the TCGA

GBM dataset onto a manually generated network diagram of

glioma genetics gleaned from Furnari et al. [67]. We opted to use

this classification of pathways for several reasons: first, the set of

pathways was designed using the TCGA dataset and is specific to

GBMs; it thus provides greatest specificity and applicability to the

sample set we investigated. Second, the pathways were manually

curated from the glioma literature [67], ensuring as much

accuracy in the pathways as currently possible. Finally, the

directionality of the effect of each mutation could be inferred from

this definition of pathways. Manually curated pathways are not the

only option: pathway software such as Ingenuity IPA (http://

www.ingenuity.com) or BioPax [68] can identify the common

pathways in a given dataset based on databases of known gene or

protein interactions. However, these pathways would not be as

specific to GBM data, especially TCGA data, as the pathway

definition used by the TCGA consortium itself. The pathways may

also harbor inaccuracies due to limitations of software parsing of

interactions. Finally, computer-generated pathway definitions tend

to lack the directionality of the effects of mutations. Knowledge of

whether a particular mutation will increase rather than decrease

signaling in a pathway simplifies the analysis.

Using the TCGA classification as a first level approximation

for sets of genes with similar phenotypic effects, we split genes

according to those signaling pathways (Table 1) [31,32]. We

then determined whether a specific alteration in a gene would

result in an increase or decrease in signaling downstream of the

gene. While in this particular pathway definition, the direction-

ality of effect of mutations is known, it is possible to perform a

similar analysis without such information. Should the pathway

information available not include whether a given mutation

increases or decreases pathway signaling, as is the case with

many pathway databases like Ingenuity or Biopax, we assume

that the more frequent alterations of any given gene (e.g.,

amplification or deletion) result in a pro-tumorigenic effect on

cells, as functional mutations detrimental to cancer progression

are unlikely to occur frequently. However, inferring network

and pathway information may introduce further errors, as

pathway events may be wrongly defined. Thus, if non-

directional pathway information is used, caution is needed to

ensure maximum accuracy.

We considered a single alteration event occurring within any of

the genes in the network to be sufficient to result in a change in

signaling of that pathway. Since only focal copy number

alterations were considered, and since in most cases, alterations

within a signaling pathway reside on separate arms of different

chromosomes, we considered the first mutational hit on each gene

to be independent of all other mutations in the pathway. Thus, a

particular pathway alteration had a mutation rate equivalent to

Mm, where M is the number of genes involved in the pathway and

m is the per gene mutation rate. In a similar manner, the TCGA

copy number alteration data [3] was transformed into pathway

alteration data by considering a positive alteration status as having

one or more mutations that increased pathway signaling, a

negative alteration status as having one or more mutations that

decreased signaling down the pathway, and a neutral status when

no mutations within the pathway occurred.

Selection of biologically relevant genomic alterations
We restricted the set of genes related to GBM development to

those that were defined in the pathway diagram in [31,32]. The

list of genes considered for analysis is provided in Table 1.

Calculation of the pairwise temporal order of events
through RESIC analyses

We used the RESIC methodology [24] for the calculation of the

order of genomic events in cancer. RESIC considers an initial

population of N cells at risk of accumulating the genetic changes

leading to cancer. These cells proliferate according to the Moran

process [25], a stochastic process in which a cell is chosen in

proportion to its fitness to divide. Each division results in two

daughter cells, one of which replaces the original cell and the other

replaces a randomly chosen cell. During each division, one of the

daughter cells may accumulate a mutation. The lineage of a

mutated cell can then take over the population (i.e. reach fixation)

or go extinct due to stochastic fluctuations. This Markov process is

used to describe the dynamics of mutation accumulation in a

population of cells, for each patient.

Depending on the fitness values of the various combinations

of potential mutations, each path through the network of

mutations may have a different likelihood of occurring. The

Markov process described above can then be used to calculate

the transition rates between individual mutational states, and

thus the likelihood of each path through the network. This
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model is then used to describe the dynamics of populations of

patients, each harboring a population of cells at risk of

accumulating mutations. The scaling from this micro-model

(on the level of a population of cells within a single patient) to

the macro-model (on the level of a population of patients, each

with a population of cells proliferating according to this

stochastic process) is obtained by multiplying the transition

rates between mutational states within one patient by the

number of patients in each mutational state. We considered the

dynamics of patients in steady state: there is a constant influx

into the unmutated state and an equal constant outflux from the

fully mutated state, accounting for diagnosis of the disease

(influx) and deaths of patients or their cure (outflux). These

parameters are selected to ensure that fitness values are within

biologically meaningful ranges, ie. that a single mutation does

not confer too large a fitness effect to be biologically

implausible. According to this model, patients enter the system

in an unmutated state and then accumulate the mutations of

interest. This starting point could be late during tumorigenesis,

if the mutations of interest are late events, or pre-cancerous if

the mutations of interest are initiating events; either way, since

the predictions of the model are compared to data of patients

after diagnosis of their disease, this starting point in the model is

also after diagnosis of the disease. Note that small influx values

into other mutational states, representing diagnosis with a

different set of alterations, does not significantly alter the

results.

At steady state, the population is distributed across all possible

states; this steady state distribution can then be compared to the

numbers of clinical samples with the corresponding genotypes,

where the total number of patients in a dataset is equal to the sum

of patients in all states. Since all samples analyzed are collected

from patients after diagnosis of their disease, the earliest time point

identifiable using such datasets is the time of diagnosis. As outlined

above, this definition does not imply that the first mutation arose

exactly at the time of diagnosis: since the event resulting in patients

entering the system is diagnosis, and all considered events are

observable in the patient samples, many events arise prior to

diagnosis. This mapping is used to optimize a subset of parameters

in the Markov process model (i.e. the fitness values of cell types) by

minimizing the difference between the prediction and the

observed frequencies in the dataset. Other parameters, such as

cellular population size, mutation rate and influx rate, are

estimated from experimental results [36,69] and tested for

robustness over several orders of magnitude [24]. The output of

RESIC is given as percent of the flux through the network via each

particular path. We found previously that within multiple orders of

magnitude, changes in the population size, mutation rates, and in-

and out-flux values have little influence on either the relative order

of the fitness values determined for each combination of

mutations, or the final percent flux through each evolutionary

trajectory.

Similarly, Beerenwinkel et al. found that the selective advantage

of mutations has the largest effect on the evolutionary dynamics of

tumorigenesis [70]. While their model was designed using the

Wright-Fisher stochastic process rather than the Moran process in

our model, both of our approaches found that changes in

population size and mutation rate alter the absolute fitness values

necessary to result in the same trajectory towards cancer [24,70].

Thus, there is a dependence on the dynamics of the system onto

parameters such as the fitness values of cells harboring particular

combinations of alterations. In our model, these changes in fitness

values, however, are so small that they still result in similar results

for the temporal sequence of mutations [24].

Determination of independent temporal sequences of
events

We applied the RESIC methodology [24] to the set of events of

interest (gene-based or pathway-based, subtyped samples or total

sample set). We determined the level of correlation between all

altered pathways using Fisher’s Exact Test. Positive correlation is

required to ensure that events co-occur sufficiently frequently to

allow for a determination of the temporal sequence. Applying a p-

value cutoff of 0.05, we identified all significantly correlated

pathway alterations and performed RESIC analyses on each pair

of correlated altered pathways. We used the following set of

parameters: the mutation rate was set to m= 2.061027 per gene in

the pathway per cell division and the stem cell population size per

niche was set as N = 100. This choice of value for N was made for

computational speed; we had previously found that an order of

magnitude variation in this parameter value results in robust results

[24]. As the RESIC algorithm is stable to order of magnitude

changes in the mutation rate as well [24], these parameter choices

led to robust results. A particular order of alterations was considered

significant if at least 80% of all bootstrap iterations resulted in the

same dominant sequence. The bootstrapping procedure was

performed independently for each analysis. In each analysis, we

took our original data set of N patients and then obtained a

bootstrap sample of size N by using sampling with replacement from

the counts of patients with each potential combination of mutation.

We performed 10,000 bootstrap iterations per analysis. We then

applied the RESIC algorithm on the bootstrap sample to determine

the temporal sequence of events given the bootstrapped patient

population. The bootstrap percentage for a given order of events is

the percent of all bootstrap iterations in which a given order of

events is the most likely order of events. The frequency of a given

order of events displayed in our figures is the average frequency over

all bootstrap iterations.

Validation of robustness of the results to exclusion of
point mutation rate

We applied the RESIC methodology to the 145 TCGA patient

samples for which CNA and point mutation data was available.

We analyzed two sets of data: the dataset including CNA only, and

the dataset containing CNA and point mutation date. We

analyzed both datasets through our pathway-based approach as

well as the gene-based approach using pairwise and three-way

analyses. We compared the resulting temporal orderings, consid-

ering the order to be consistent between the two data types when

the percent flux through the mutational diagram varied by no

more than three and the dominant temporal sequence remained

dominant. We considered an ordering to be weakened if either

fewer alleles of a gene could be analyzed, the percent flux

decreased by more than three, or a pair or triplet of events could

no longer be analyzed when using CNA data only. We considered

an ordering to be inconsistent if the dominant temporal order

changed between the two analyses, or if an ordering could be

determined when using CNA data only, but not when using CNA

and point mutation data.

Combining individual RESIC analyses to determine the
overall sequence of events

In pair-wise analyses, the temporal order of all alterations can be

determined simply by combining the pairs of genetic or pathway

alterations in the predicted order. For example, if mutation A arises

before mutation B, and mutation C arises before mutation A, the

order of events is CRARB. Figure S1 depicts all possible

combinations of pairs of mutations that result in a three-mutation

Determining the Order of Pathway Alterations

PLoS Computational Biology | www.ploscompbiol.org 13 January 2012 | Volume 8 | Issue 1 | e1002337



ordering. Unlike pair-wise analyses, three- or more-way analyses

cannot be done simply by combining the sets of genes involved,

since there may be overlap between the results. Instead, we built

upon the pair-wise results we had determined first and then overlaid

the three-way results. Pair-wise orderings of genes that were

confirmed in multiple three-way analyses represent stable temporal

sequences of events. The resulting temporal ordering of all

mutations, with thicker lines for pairs of genes for which multiple

analyses confirmed the same order, is shown in Figure 6B.

Supporting Information

Figure S1 Pairwise comparison of three genes results in an

ordering of all three genes. We perform pairwise comparisons

between alterations to determine the overall order of events. Here

we depict all possible combinations of two pairwise orderings that

can result in a single linear order of events. We denote the three

events A (in red), B (in blue), and C (in green). Black arrows denote

the determined orders and gray arrows denote the set of pairwise

orderings that result in a three-event order.

(EPS)

Text S1 RESIC analysis results for all GBM samples. The results

from the pairwise, three-way, and pathway-based RESIC analyses

are displayed.

(TXT)

Text S2 RESIC analysis results for GBM samples belonging to

the proneural subtype. The results from the pairwise, three-way,

and pathway-based RESIC analyses are shown.

(TXT)

Text S3 RESIC analysis results for GBM samples belonging to

the mesenchymal subtype. The results from the pairwise, three-

way, and pathway-based RESIC analyses are displayed.

(TXT)

Text S4 RESIC analysis results for GBM samples belonging to

the neural subtype. The results from the pairwise, three-way, and

pathway-based RESIC analyses are shown.

(TXT)

Text S5 RESIC analysis results for GBM samples belonging to

the classical subtype. The results from the pairwise, three-way, and

pathway-based RESIC analyses are shown.

(TXT)
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