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Abstract

The phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products
encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself
through the resulting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal
associations of various genes working in their natural lifestyles. By analyzing thousands of orthologs across ,600 bacterial
species, we constructed a map of gene-gene co-occurrence across much of the sequenced biome. If genes preferentially co-
occur in the same organisms, they were called herein correlogs; in the opposite case, called anti-correlogs. To quantify
correlogy and anti-correlogy, we alleviated the contribution of indirect correlations between genes by adapting ideas
developed for reverse engineering of transcriptional regulatory networks. Resultant correlogous associations are highly
enriched for physically interacting proteins and for co-expressed transcripts, clearly differentiating a subgroup of
functionally-obligatory protein interactions from conditional or transient interactions. Other biochemical and phylogenetic
properties were also found to be reflected in correlogous and anti-correlogous relationships. Additionally, our study
elucidates the global organization of the gene association map, in which various modules of correlogous genes are
strikingly interconnected by anti-correlogous crosstalk between the modules. We then demonstrate the effectiveness of
such associations along different domains of life and environmental microbial communities. These phylogenetic profiling
approaches infer functional coupling of genes regardless of mechanistic details, and may be useful to guide exogenous
gene import in synthetic biology.
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Introduction

An important challenge in biology is to understand the

relationships between an organism’s genotype and its phenotype,

involving dissection of myriad interdependencies among various

cellular components, such as genes, proteins, and small molecules

[1,2]. Recent efforts to map protein-protein interactions [3,4],

together with efforts to reconstruct metabolic and regulatory

networks at the genome scale [5,6,7], offer promising opportuni-

ties to investigate emergent biological phenomena of interacting

biomolecules inside cells. Complex interdependencies among the

products of individual genes do not necessarily imply molecular

interactions by direct physical contacts but also include more

macroscopic associations exhibited at e.g. biochemical pathway

levels, as has been claimed in epistasis research [8]. These genetic

interdependencies, regardless of their underlying mechanisms,

may leave a trace on the composition of genomes through

evolutionary processes.

One important set of analyses that have been used successfully

over the past decade is based on phylogenetic profiles as

introduced in [9]. Here, we analyze a type of phylogenetic profile

– the patterns of the presence or absence of orthologs across many

organisms – to find genes with favored co-occurrence in the same

genomes (called herein correlogs) or disfavored co-occurrence (called

anti-correlogs) suggesting their putative functional coupling. Such

analysis of correlogy and anti-correlogy can help uncover global

gene associations conserved at the biome level, beyond those

specific to any particular organism. This information is distinct

from genetic interactions inferred from, for example, double-

mutant data [10,11], which relate to gene relationships within the

specific organisms employed in the experiments. In particular,

knowledge of the association of genes not coexisting inside

considered specific organisms can be applied for heterologous

gene expression in synthetic biology [12], and interest in anti-

correlogy itself inevitably tends to target heterologous genes. It

should also be noted that fitness of an organism in its natural

habitat does not necessarily coincide with fitness in a laboratory

[13], and ortholog profiles of organisms may thus encompass

genetic relationships in environmental and ecological contexts not

readily captured by laboratory experiments.

The importance of co-occurring orthologs as a means to gain

insight into gene relationships is well appreciated in many previous
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studies [9,14,15,16,17,18,19]; however, these studies have largely

focused on improving the identification of molecular-level

interactions rather than on systematic analysis of the global

organization of gene associations, as is the focus herein. In

addition, we have included the removals of indirect gene-gene

correlations in analyzing co-occurrence patterns to reduce false

positive associations. We here take a comprehensive and

systematic approach to study from a global perspective the

biome-wide associations of genes as manifest through patterns of

correlogy and anti-correlogy across sequenced bacteria.

Results

Characterization of correlogy and anti-correlogy
We surveyed the presence or absence of gene orthologs across

588 different bacterial species (Table S1) on the basis of orthology

data available from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [20]. Beyond simply measuring co-occurrence

of these genes, we evaluated degrees of correlogy or anti-correlogy

between the genes within the context of direct associations in

biological activities, using methods to help avoid vertical co-

inheritance effects, transitivity effects, and other spurious correla-

tions. In particular, we attempted to reduce the contribution of

indirect (anti-)correlogous relationships that result from transitivity

effects: if genes i and j are each correlated with third common genes

in terms of the presence or absence across species, genes i and j can

also appear to be correlated with each other even in the absence of

direct association between them. Therefore, simple correlations

calculated from the co-occurrence pattern can suffer from these

indirect correlations. Such removal of indirect correlations in this

manner has not generally been taken into account in previous

studies on ortholog profiles [9,14,15,16,17,18,19], or also with

similar types of correlation calculations in other fields to infer

disease comorbidity networks [21,22,23] or social networks [24].

Nevertheless, filtering out these transitivity effects has been of

critical importance in e.g. reverse engineering of transcriptional

regulatory networks [25,26], and we employed such ideas to reduce

transitivity effects when quantifying correlogy and anti-correlogy.

As a result, for every pair of a total of 2085 genes, we assigned wij of

which magnitude increase away from zero measures the magnitude

of correlogy (wij.0) or anti-correlogy (wij,0) between genes i and j

in a pair (see Methods).

Biochemical and phylogenetic properties
It is worthwhile to address how much correlogous relationships

overlap with molecular-level interactions. To test this idea, we

compared the distribution of wij for physically-binding proteins in

Escherichia coli with that for arbitrary pairs of the proteins [27], and

found that highly correlogous proteins are much likely to

physically interact (Figure 1A). Indeed, the average of wij for

directly-binding proteins was 6.8 times larger than that for the

second nearest proteins in the protein interaction network

(P = 7.1610255), and 10.5 times larger than that for all the protein

pairs (P = 8.8610257; Figure 1B and Methods). Instead of wij, if we

use the simple co-occurrence measure rij that precedes wij before

the alleviation of transitivity effects (Methods), the overall

distribution of rij is heavily biased toward positive rij ’s

(Figure 1C), and the enrichment of high rij’s in physically-binding

protein pairs is relatively weak (P = 4.061028 against the second

nearest proteins) although still significant. Moreover, the network-

topological signature appearing for wij in Figure 1B becomes very

distorted for rij with a hump at the tenth nearest proteins in

Figure 1D. Note that a hump at the tenth nearest proteins

represents average rij larger than averages at nearer proteins,

possibly contributed to by indirect correlations from transitivity

but unlikely to be biologically meaningful. Thus, the elimination of

effects caused by transitivity is critical to identifying biologically

meaningful correlogous and anti-correlogous relationships be-

tween genes. Another simple co-occurrence measure we tried, the

mutual information Iij of genes i and j (Methods), reflects better the

physical interactions than rij but still less than wij (P = 3.4610228

against the second nearest proteins; Figures 1E and 1F). Again, Iij

leaves a small hump at the tenth nearest proteins in Figure 1F, and

by its definition does not directly provide positive or negative signs

of gene relationships themselves which are important in our study.

The data in Figure 1A suggest a natural boundary for separating

a regime enriched with functionally-obligatory protein interactions

(wij.0.045) from that with conditional or transient interactions

[28,29]. Specifically, the probability density of wij for physically-

binding proteins deviates strongly from that for arbitrary pairs of

proteins at wij.0.045, but almost overlaps with that for the

arbitrary pairs at the rest wij (except for the absence of strong anti-

correlogy). In the former regime of wij, there thus might be present

functionally-obligatory relationships between physically interacting

proteins to constrain them with large correlogous associations, as

indicated by the rich presence of operonic genes whose

transcriptions are precisely co-regulated in time (Text S1 and

Figure S1). Even if we exclude these operonic gene pairs, the

transcripts of the gene pairs with wij.0.045 still tend to be more

co-expressed than the others (P = 0.03), implying more obligatory

interactions between them (Text S1 and Figure S1). Taken

together, integration of protein-protein interaction data with the

heterogeneous data of correlogous relationships provides a

powerful means for identifying potentially functionally-obligatory

interactions conserved across evolution from mere binding events.

It is of course expected that other forms of molecular

interactions than physically-binding interactions would also

contribute to correlogy and anti-correlogy. Table 1 presents some

cases of the highest |wij|’s; rfbF encodes the enzyme to catalyze the

reaction, CTP+a-D-glucose 1-phosphateRdiphosphate+CDP-

glucose, and the produced CDP-glucose is subsequently converted

by the enzyme from the correlogous gene, rfbG, into CDP-4-

dehydro-6-deoxy-D-glucose. The correlogous relationship between

rfbF and rfbG thus appears to be a consequence of the need for the

Author Summary

Genes in organisms have a number of interactions with
one another in their biological contexts. For example,
proteins produced from one gene may interact with other
proteins produced from another gene to perform together
a particular biological task, and such pairs of cooperative
genes may often reside together in the same organisms.
We analyzed thousands of genes across ,600 bacterial
species, and found genes with favored co-occurrence in
the same organisms (termed correlogs) or disfavored co-
occurrence (termed anti-correlogs). These co-occurrence
patterns are significantly reflective of actual biochemical
interplays between genes, and distinct cliques of correlo-
gous genes are seamlessly interrelated through anti-
correlogous links between the cliques. The ‘sociology’ of
genes inferred by this approach provides useful informa-
tion on how to engineer a cell, such as for production of a
desired byproduct. For example, an important gene in
cellobiose digestion for biofuel production, bglB, is
suggested to function better in a cell factory when co-
activated with another gene rhaM, the correlogous partner
we found in our analysis.

Genetic Co-Occurrence Network
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second reaction to proceed when the first occurs in order to

achieve the relevant biological functions. On the other hand, two

NAD+ synthases, one utilizing ammonia as an amide donor to

produce NAD+ and the other utilizing glutamine as an amide

donor instead, are highly anti-correlogous to each other, and the

anti-correlogy reflects that both processes operating simulta-

neously in the same organism have been consistently selected

against. This fact might be related to the distinct modes of

regulating cellular nitrogen inside bacteria, as pleiotropic

nitrogen utilization mutations can be found at NAD+ synthases

[30]. In general, genes associated with similar functions were

enriched with correlogous and anti-correlogous relationships

(Figure S2 and Text S1). Indeed, the average of wij.0 for

isozymes based on the same Enzyme Commission numbers was

5.8 times larger than that for arbitrary pairs of enzymes

(Z = 83.69), and the average of wij,0 for the isozymes was 2.9

times larger than that for arbitrary enzyme pairs (Z = 24.11).

Thus, isozymes exhibit high levels of correlogy and anti-correlogy

compared to arbitrary enzyme pairs, although the effect is more

pronounced for the correlogy side.

To evaluate the overall correlogous couplings around individual

genes, we defined for a given gene i, S
p
i ~

Pwijw0

j

wij , where the

summation was taken over all other gene j’s satisfying wij.0.

Likewise, we can define Sn
i ~

Pwijv0

j

wij

�� ��. Si
p and Si

n quantify how

tightly gene i is associated to other genes through correlogy and anti-

correlogy, respectively. Having both the largest Si
p and Si

n was gene

rpmJ, which encodes ribosomal protein L36. The next largest were

Si
p and Si

n of DNA-modifying genes, while the smallest ones were

owned by flagella-related genes (Table S2). In general, Si
p and Si

n of

each gene i are very positively correlated (Text S1 and Figure S3).

How broadly genes are phylogenetically distributed would affect

or be affected by the strength of interactions with other genes.

Therefore, the degree of phylogenetic spread of any given gene is

expected to be correlated with its Si
p and Si

n. Rather surprisingly,

our analysis suggests that species-level spread of genes does not

exhibit such correlations (Figure 2A), but spread at a higher

taxonomic level – at the phylum level – reveals clear correlations

with Si
p and Si

n; as genes inhabit diverse phyla, their Si
p and Si

n tend

to increase continuously until saturated at a plateau (Z = 79.94;

Figure 2B and Methods). Since different phyla (phylogenetically

distant) may represent disparate cell types more clearly than

different species (phylogenetically close), our result suggests that how

many such disparate cellular conditions genes inhabit at the phylum

level could substantially evolve or be influenced by the strength of

the genetic interdependencies around the genes.

Global organizational properties
To systematically view the essential structure of correlogous and

anti-correlogous relationships from a global architectural perspec-

tive, we constructed a maximum relatedness subnetwork (MRS)

[24], in which each gene i points to two other genes j and j9 by

different categories of edges that represent the most correlogous

(maxj wij.0) and anti-correlogous (minj9 wij9,0) genes to gene i,

respectively (Figures 3A–3C and Table S3). By definition, genes in

MRS are not necessarily reciprocally linked. As such, one can easily

recognize that following a series of genes in either of correlogy or

anti-correlogy direction of links, the magnitude of wij of each link

increases until encountering reciprocal links. MRS provides the

‘backbone’ structure of a considered network, and has been

demonstrated as particularly useful for detecting modular structures

of complex networks [24]. One example is for two isocitrate

dehydrogenases, IDH1 and IDH3, which encode similar enzymes

depending on NADP+ and NAD+, respectively, and are anti-

correlogously associated in the MRS. Consistent with our

observations, their distinct phylogenetic profiles have been discussed

in previous studies [31]. Also in the MRS, IDH1 is correlogously

associated with gltA that encodes citrate synthase, and the enzyme

activities from IDH1 and gltA are indeed known as elaborately

coordinated in a cell for efficient growth on acetate [32]. For

another example, b-glucosidase (bglB), which breaks down cellobi-

ose into b-D-glucose and can be industrially useful for lignocellulose

conversion for biofuel production [33], is correlogously associated in

the MRS with L-rhamnose mutarotase (rhaM). We expect that this

mutarotase may convert the product of b-glucosidase into a-D-

glucose if the host cell prefers the a form to the b form, and thus

expressing both the two genes, bglB and rhaM, may introduce a

synergetic effect in cellobiose metabolic engineering. Furthermore,

Figure 3C illustrates that, along correlogy direction, the MRS

arranges sequentially xylose transport protein (xylF), xylose

isomerase (xylA), and xylulokinase (xylB), the same order as their

arrangement in the xylose metabolism pathway (Figure 3D). It is

Figure 1. Biochemical properties of correlogous and anti-
correlogous gene associations. (A) The probability density of wij for
physically-interacting protein pairs (red) and that for all protein pairs
(black) in the E. coli protein interaction network. The probability density
means the fraction of protein pairs in a unit interval of wij. Note that the
red line is not only skewed into wij.0 but is also rapidly truncated at
wij,0 compared with the black line, indicating that physically-
interacting proteins are highly enriched for wij.0 compared with
arbitrary pairs of proteins. (B) The average wij for each value of the
shortest path length among pairs of proteins in the protein interaction
network. (C and D) Plotted for rij in the same ways as (A) and (B). (E and
F) Plotted for Iij in the same ways as (A) and (B). Gray horizontal lines in
(B), (D), and (F) indicate the global average, and error bars represent
standard deviations.
doi:10.1371/journal.pcbi.1002340.g001

Genetic Co-Occurrence Network
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interesting to note that the MRS brings relatively less characterized

genes such as xylF to attention by informing of their strong

correlogous relationships with other genes. As such, Figure 3C does

specify the identities of genes important for xylose metabolic

engineering [34] that may benefit from simultaneous heterologous

expression of xylF, xylA, and xylB. Also, by their link directionality

the MRS provides the information that xylA and xylB are more

associated than xylA and xylF.

We found that all genes in the MRS are decomposed into 483

different small subgroups (Table S3), of which each includes

correlogously associated genes yet not linked correlogously to any

genes in the other subgroups. Nevertheless, the vast majority

(99.5%) of anti-correlogy links bridge the gaps between different

modules in the MRS, binding all of them as a single giant

component (Figures 3B and 3C). Thus, the MRS results in clear

modular structure among correlogs, with these modules interre-

lated through anti-correlogous relationships. Different genes in

each correlog group are highly likely to perform biological tasks in

a common functional category (Z = 43.16 for KEGG categories;

see Methods). For every pair of possible functional categories, we

also analyzed how likely genes of the functional categories in a pair

would belong together to the same correlog groups (Methods). As

expected, genes of the same KEGG functional categories tend to

belong to the same correlog groups, but deviations from this

behavior are also informative (Figure 4A and Table S4). For

example, genes of functional category Folding, sorting and degradation

and those of another category Metabolism of other amino acids

significantly tend to be affiliated to the same correlog groups

(P,1024). The former category involves a number of molecular

chaperones and RNA helicases, while the latter involves enzymes

to synthesize glutathione and D-glutamate. Since glutathione

serves as the major endogenous antioxidant and D-glutamate

decorates bacterial cell walls, our results support the previous

observation that the corresponding enzymes are likely to be

actively in concert with chaperones and RNA helicases when

subject to oxidative or cell-wall stress [35,36]. Likewise, genes of

functional category Xenobiotics biodegradation and metabolism and those

of category Folding, sorting and degradation are highly likely to be

together in the same correlog groups (Figure 4A and Table S4),

which can be understood in the similar context of cellular stress

response induced by xenobiotic compounds such as benzoate and

bisphenol [37].

We found that the number of genes in each correlog group

approximately follows an exponential distribution (Figure 4B). We

expect that each correlog group may serve as a toolbox for

importing exogenous genes and functions into a cell, as xylF, xylA,

and xylB above form a single correlog group themselves (Figures 3C

and 3D). Furthermore, the prevalence of anti-correlogy links

between correlog groups as shown in Figures 3B and 3C extends

the concept of anti-correlogy from single genes to correlog groups

and allows for evaluating the anti-correlogous associations

between, rather than within, the correlog groups (Table S5 and

Text S1). For example, a correlog group containing aldehyde-

related dehydrogenases was anti-correlogously associated with

another group containing perR, peroxide stress response regulator,

and this anti-correlogy between the two groups might be involved

in a problem that arises in controlling cellular redox state [38].

If a correlog group represents a repertoire of genes that tend to

coexist in the same organisms, genes in individual organisms when

mapped to MRS should be densely distributed around the

correlog groups rather than distributed uniformly. This hypothesis

can be straightforwardly checked by enumerating the number of

Table 1. Three most correlogous or anti-correlogous pairs of genes.

wij KEGG identifier Name Description

Correlogous

0.4037 K05878 dhaK Dihydroxyacetone kinase, N-terminal domain

K05879 dhaL Dihydroxyacetone kinase, C-terminal domain

0.3982 K00978 rfbF Glucose-1-phosphate cytidylyltransferase

K01709 rfbG CDP-glucose 4,6-dehydratase

0.3975 K01977 16S rRNA, rrs 16S ribosomal RNA

K01980 23S rRNA, rrl 23S ribosomal RNA

Anti-correlogous

20.2188 K03785 aroD 3-dehydroquinate dehydratase I

K03786 aroQ, qutE 3-dehydroquinate dehydratase II

20.2107 K01916 nadE NAD+ synthase

K01950 NADSYN1, QNS1, nadE NAD+ synthase (glutamine-hydrolysing)

20.1817 K00756 pdp Pyrimidine-nucleoside phosphorylase

K00758 deoA Thymidine phosphorylase

doi:10.1371/journal.pcbi.1002340.t001

Figure 2. Correlation with phylogenetic dispersion. (A) The
average Si

p of genes for each number of species where the genes are
present, and (B) that for each number of phyla where the genes are
present. For (A) and (B), Si

n also behaves similarly to Si
p (Text S1 and

Figure S3). Gray horizontal lines indicate the global average, and error
bars represent standard deviations.
doi:10.1371/journal.pcbi.1002340.g002

Genetic Co-Occurrence Network
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different correlog groups that the genes are mapped to, and

comparing this value with the number of different correlog groups

harboring the same number of genes but mapped randomly. If the

former is smaller than the latter, the genes can be regarded as

more clustered around correlog groups than by chance. As would

be expected, genes from each bacterial species show much more

clustered behaviors than by chance (213.20#Z#23.68 for all

bacteria; Figures 4C–4E and Methods). To the MRS, we can also

map orthologs in each species from the other superkingdoms,

archaea and eukaryotes. Interestingly, although the MRS in this

study is based on bacterial data, orthologs from archaea and

eukaryotes show somewhat weakened but still significantly

clustered behaviors around the correlog groups, reflecting a

significant conservation of gene associations across different

domains of life [25.97#Z#22.64 for archaea except for one

species with Z = 21.32 (Figure 4C) and 26.47#Z#22.23 for

eukaryotes except for five species with 21.93#Z#21.39

(Figure 4D); see Methods]. Among these observations, less

significantly clustered behaviors come from the species having

small numbers of genes mapped to the MRS, and this result might

be due to insufficient mappings or minimally-required diversity of

genes for any biological systems. On the other hand, considering

that correlogs tend to coexist in individual organisms, it might be

challenging to examine the above clustering issues for environ-

mental microbial communities [39], as each of the environmental

samples typically contains a number of different species. Again, we

mapped to the MRS the genes from twelve diverse environmental

sources such as human and mouse guts, deep-sea whale fall

carcasses, and uranium contaminated ground water [40], and

found still significant clustering of those genes around the correlog

groups (29.26#Z#22.10 except for one sample with less

significant Z = 20.95; Figure 4E and Methods). Accordingly, this

result encourages us to even conjecture the identities of undetected

but existing genes in environmental samples based on those of

detected genes by applying the knowledge of correlogous gene

associations. It would also be interesting to identify correlog groups

harboring cosmopolitan genes [41] in a given environment, as

these groups can represent together environment-specific genetic

contents rather than species-specific ones.

Discussion

Recent advances in understanding genome-scale intracellular

networks have been enabled by the availability of high-throughput

Figure 3. MRS of gene associations. (A–C) Large-scale to small-scale overviews of the MRS. A part of the whole MRS in (A) is magnified in (B) to
reveal its clear modular structure. Circles represent genes, and each gene i is arrowed to gene j having the largest |wij| with wij.0 (dark arrow) or
wij,0 (light arrow). Size of each circle corresponds to Si

p of the gene, and circles are colored the same if linked via wij.0. In (B) and (C), different
groups of genes linked via wij.0 are shown to be seamlessly connected by links of wij,0. In (C), gene names or KEGG identifiers appear for relevant
circles. (D) Transport and biochemical conversions of xylose catalyzed by the proteins from genes in (C).
doi:10.1371/journal.pcbi.1002340.g003

Genetic Co-Occurrence Network
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experimental techniques that permit network data to be collected

on a scale far larger than previously possible [1,2]. These networks

help capture and quantify the functional interplay amongst genes

that drives essentially all cellular phenotypes in the environment.

Correlogy and anti-correlogy can be regarded as the natural

outcome of such ubiquitous interactions between genes, molded

through a long evolutionary process that tests beneficial effects of

numerous gene combinations for a cell. The resulting ‘sociology’ of

genes provides rich implications in rapidly growing fields such as

function prediction of uncharacterized genes [27], gap-filling in

genome-scale biochemical model reconstruction [42], and syn-

thetic biology [12]. In synthetic biology, information on both

correlogs and anti-correlogs may be useful to screen additional

gene candidates to be expressed or silenced contingent on primary

genes of interest, and such considerations should inform attempts

to construct optimal recombinant strains. Intriguingly, the

information on correlogy and anti-correlogy can be uncovered

even when the underlying mechanisms of these gene associations

are unknown. Finally, future extension of our work towards

archaea and eukaryotes will allow comparative analysis of

correlogy and anti-correlogy for different domains of life, offering

a fascinating opportunity of understanding evolution of genetic

associations.

Methods

All methods used in this study, including the methods of various

data analysis, are provided in Text S1 with a detailed description.

Below, we present an abbreviated version that describes the

essence of our analysis.

Quantification of correlogy and anti-correlogy
We downloaded orthology data from the KEGG database [20],

and surveyed the presence or absence of each ortholog across

different bacterial species (see Table S1 for the full list of the

bacterial species considered here). In order to capture functional

interactions of genes reflected in their co-occurrence patterns

across species, we take into account the genes (i.e., orthologs) not

too lowly nor too highly prevalent across species; in the case of too

lowly (highly) prevalent genes, there do not exist so many species

with (without) the genes, making it hard to judge whether these few

co-presences (co-absences) of the genes actually come from their

functional interactions. In other words, without filtering, spurious

correlations from non-functional origins may emerge, simply by

vertical co-inheritance of genes or by chance. Specifically, if Ei

denotes the number of species containing gene i and N denotes the

total number of species, one can define Xi = min(Ei, N2Ei) for each

gene i. The probability density of Xi approximately follows the

power-law decay as long as Xi$Xth = 80, and we chose the genes

with Xi$Xth to prevent spurious correlations that could occur at

low Xi deviating from the power-law trend observed at large Xi.

To evaluate direct gene associations while alleviating transitivity

effects in charge of indirect correlations between genes, we applied

the partial correlation method employed in graphical Gaussian

models [26], of which superiority over many other methods was

demonstrated in reverse engineering of transcriptional regulatory

networks [25]. To implement this method, we start with

calculating the Pearson correlation rij for binary variables of

presence and absence of genes i and j:

rij~
CijN{EiEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EiEj N{Eið Þ N{Ej

� �q ,

where Cij is the number of species containing both genes i and j.

Next, to reduce indirect correlations between genes i and j, we

calculate the partial correlation wij using rij:

Figure 4. Characteristics of correlog groups in the MRS. (A)
Plotted in descending order is how likely genes in a given pair of
functional categories belong to the same correlog groups (plotted for
P,1023). Data of intermediate values are omitted for visual clarity, and
all of them can be found in Table S4. Blue is for the same functional
categories in a pair, and red is for different functional categories in a
pair. Functional categories are abbreviated as the followings. T:
Membrane transport; M: Cell motility; C: Carbohydrate metabolism; A:
Amino acid metabolism; G: Glycan biosynthesis and metabolism; K:
Kinase and peptidase; S: Signal transduction; Oa: Metabolism of other
amino acids; F: Folding, sorting and degradation; P: Biosynthesis of
polyketides and terpenoids; Os: Biosynthesis of other secondary
metabolites; X: Xenobiotics biodegradation and metabolism. (B) The
probability density of the number of genes in each correlog group. (C–
E) Clustering of genes from individual species and environmental
samples. For each bacterial species, the number of genes mapped to
the MRS (x axis) and the number of different correlog groups including
the genes (y axis) are plotted in yellow. In the same way, for each
archaeal species, plotted in red in (C), for each eukaryotic species,
plotted in green in (D), and for each environmental sample, plotted in
black in (E). In (C)–(E), for comparison with the null model, the number
of different correlog groups including randomly mapped genes is
plotted in blue with the error bars representing standard deviations.
Although for some data points the error bars in blue look overlapped
with the symbols in red and green, this is simply because of the large
size of the symbols used to facilitate visual examination. Gray lines at
the upper and lower sides in (C)–(E) denote the number of different
correlog groups with the most sparsely-distributed mapped genes and
the maximally-crowded mapped genes, respectively, while the latter
allows for multiple configurations of gene mappings having standard
deviations denoted by error bars. In other words, the gray lines set the
absolute limits of the number of different correlog groups for each
number of genes. Most data points in yellow, red, green, and black are
located far below blue error bars, illustrating significant clustering of
genes around correlog groups across different domains of life and
environmental microbial communities.
doi:10.1371/journal.pcbi.1002340.g004
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wij~{
pijffiffiffiffiffiffiffiffiffiffi
piipjj
p ,

where pij is the (i, j)th component of an inverse matrix of rij.

However, in this study, the number of genes ( = 2085) is much

larger than the number of species ( = 588), yielding an ill-

conditioned problem for matrix rij. To overcome this problem,

we applied the shrinkage estimation derived by Schäfer and

Strimmer [26]. Specifically, Schäfer and Strimmer obtained a

regularized estimator of rij combining analytic determination of

shrinkage intensity from the Ledoit-Wolf theorem [43]. The

following is the resultant estimator r*ij that simply substitutes for rij
in the above calculation of wij:

r�ij~dijzrij 1{dij

� �
min 1, max 0,1{lð Þ½ �,

where dij is the Kronecker delta symbol and l is given by

l~

X
i=j
S xki{SxkiTkð Þ xkj{SxkjTk

� �� N{1

N
sisj

� �
{rij

	 
2T
k

N{1ð Þ|
X
i=j

r2
ij

:

Here xki = 1 if gene i is present in species k, otherwise, xki = 0,

,???.k denotes the average over species k’s, and si is the standard

deviation of xki over species k’s. As a result, the obtained wij was

used to quantify correlogy (wij.0) or anti-correlogy (wij,0)

between genes i and j. For comparative analysis, the mutual

information Iij of genes i and j between {xki} and {xkj} across

species k’s [14] was also calculated.

Significance analysis of correlation between wij (or rij, Iij)
and protein interaction

We calculated the average of wij (wppi) from the pairs of

physically-binding proteins in E. coli [27], and obtained its P value

by generating the distribution of average wij (wnull) from the same

number of, but arbitrarily-mated pairs of the proteins as distant as

the given shortest path length in the protein interaction network.

The central limit theorem ensured that this null distribution

converged well to the Gaussian distribution, providing the P value

for how frequently wnull exceeds wppi. Similar analyses were also

performed for rij and Iij.

Evaluation of Si
p and Si

n

In order to characterize how tightly each gene i is correlogously

associated to other genes, we calculated S
p
i ~

Xwijw0

j

wij , where the

summation was taken over all other gene j’s satisfying wij.0. In a

similar way, we calculated Sn
i ~

Xwijv0

j

wij

�� �� for anti-correlogous

couplings around gene i.

Significance analysis of correlation between Si
p and

phylum-level dispersion
Let nphyla be the number of different phyla where genes are

present. For genes with nphyla,7 (Figure 2B), we obtained the slope

of Si
p against nphyla by linear regression, and normalized it by

multiplying SnphylaT=SS
p
i T. From surrogate data with randomly-

permuted gene presences across species, we also generated an

ensemble of such normalized slopes for nphyla,7, and calculated

the Z score of the actual value.

Characterization of the maximum relatedness
subnetwork (MRS)

For any given weighted network, one can simplify its structure

by constructing the MRS composed only of highly weighted edges

[24]. Specifically, in the MRS of this study, each gene i points to

only two genes j and j9 by different categories of edges that

represent the most correlogous (maxj wij.0) and anti-correlogous

(minj9 wij9,0) genes to gene i, respectively. We found that all genes

in the MRS here are decomposed into 483 different small

subgroups, of which each includes correlogously associated genes

yet not linked correlogously to any genes in the other subgroups.

These subgroups in the MRS were termed correlog groups.

Functional coherence of correlog groups in the MRS
For given correlog group g in the MRS and given functional

category c of genes, we can calculate = Ñc
g/Ñg, where Ñc

g is the

number of genes affiliated to both correlog group g and functional

category c, and Ñg is the total number of genes affiliated at least to

one functional category in correlog group g. Therefore, fc
g

represents the uniformity of gene functions in a correlog group.

Majority (57.1%) of correlog groups with Ñg.1 were shown to

have at least one functional category c satisfying fc
g = 1 in each g.

To calculate the corresponding Z score, we generated an ensemble

of correlog groups with Ñg.1 by randomly exchanging genes of

the same number of the affiliated functional categories.

For a given pair of functional categories c1 and c2, we can also

define their overlapping ratio (Figure 4A and Table S4) as:

Yc1,c2~

X~NNg
w1

g

H
Xi=j

i,j

ai,c1aj,c2di,gdj,g

 !

X~NNg
w1

g

H
X

i

ai,c1zai,c2ð Þdi,g

" # ,

where i and j are indices of genes, ai,c is 1 if gene i belongs to

functional category c, otherwise 0, di,g is 1 if gene i belongs to

correlog group g, otherwise 0, and H(x) is 1 if x.0, otherwise 0.

Yc1,c2 quantifies how likely genes in c1 and c2 belong to the same

correlog groups (0#Yc1,c2#1). The corresponding P value was

obtained by generating the null distribution in the same way as in

the case of fc
g above.

Effectiveness of correlog groups for different domains of
life and environmental samples

For each species or environmental sample, we counted the

number (n) of correlog groups harboring the genes mapped to the

MRS. We also obtained the mean (g) and the standard deviation

(s) of such numbers of correlog groups when the same number of

genes are randomly mapped to the MRS (Figure 4C–4E):

g~�nn{
X

g

1{
NX

g

Ng

0
BB@

1
CCA

Ng

,

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

g

1{
NX

g

Ng

0
BB@

1
CCA

Ng

{ 1{
NX

g

Ng

0
BB@

1
CCA

2Ng
2
664

3
775

vuuuuut ,
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where N is the number of genes mapped to the MRS, g is the index

of each correlog group, Ng is the total number of genes in correlog

group g, and �nn is the total number of correlog groups in the MRS.

Accordingly, we calculate the Z score of n [Z = (n2g)/s].

Supporting Information

Figure S1 Distinct regimes of protein interactions with

different wij’s. In the left panel, plotted is the fraction of gene

pairs belonging to the same operons among the gene pairs of

given wij, which encode physically binding (solid line) or non-

binding (dashed line) protein pairs. In the central panel, plotted

are the probability density of wij for binding protein pairs (red)

and that for arbitrary protein pairs (black), of which both were

obtained by excluding the gene pairs belonging to the same

operons. Considering only these non-operonic pairs, the right

panel shows the averages and standard deviations of the Pearson

correlation rij’s of the transcript profiles for every gene pair with

wij,0.045 or wij.0.045, among binding protein pairs (red) and

among arbitrary protein pairs (black). For more details, refer to

Text S1.

(TIF)

Figure S2 Overall strengths of correlogous (left panel) and anti-

correlogous (right panel) associations between genes in given

functional categories. Each grid is colored according to Vp
c1,c2

(left panel) or Vn
c1,c2 (right panel) following the scale bar on the

rightmost side, where c1 and c2 denote the functional categories

on the horizontal and vertical axes of the grid, and Vp
c1,c2 and

Vn
c1,c2 correspond to overall strengths of correlogous and anti-

correlogous associations between c1 and c2, respectively. For

more details, refer to Text S1.

(TIF)

Figure S3 For each gene, scatter plot between Si
p and Si

n (left

panel) and that between Si
p and wi

nmax (right panel). For more

details, refer to Text S1.

(TIF)

Table S1 List of bacterial species used for evaluating correlogy

and anti-correlogy between genes.

(PDF)

Table S2 Genes of the largest or smallest Si
p’s and Si

n’s.

(PDF)

Table S3 Details of the MRS constructed in this study. Gene i in

each row is arrowed to gene j (wij.0) and gene j9 (wij9,0) in the

MRS. The 1st through 3rd columns contain the annotation

information of gene i, and the 5th through 8th columns contain

information for genes j and j9 that receive incoming links from

gene i. The annotation information of genes j and j9 is found in the

rows in which the 1st column includes the same KEGG identifiers

as those of genes j and j9. The 4th column contains the correlog

group indices assigned to gene i. If gene i’s belong to the same

(different) correlog groups, they are assigned the same (different)

indices in the 4th column.

(PDF)

Table S4 Pairs of functions highly likely to be assigned to the

same correlog groups (P,1023; see Methods). The 1st and 2nd

columns contain the names of functions in each function pair, the

3rd column records the fraction of correlog groups having both

functions in the pair among correlog groups having either of

functions in the pair, and the 4th column is for the corresponding

P values.

(PDF)

Table S5 Pairs of correlog groups associated via significant anti-

correlogy with Z.10 (see Text S1). For each index of correlog

groups, the corresponding genes can be found in Table S3.

(PDF)

Text S1 Supporting methods and results.

(PDF)
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