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Abstract

Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle
redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of
neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation
can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a
redundant neural network model makes it possible to investigate these functional roles while varying the number of model
neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum
value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether
the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in
neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes
recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the
shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal
redundancy is to maximize learning speed.
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Introduction

In the human brain, numerous neurons encode information

about external stimuli, e.g., visual or auditory stimuli, and internal

stimuli, e.g., attention or motor planning. Each neuron exhibits

different responses to stimuli, but neural encoding, especially in the

visual and auditory cortices, can be explained by the maximization

of stimulus information [1–3]. This maximization framework can

also explain learning that occurs when the same stimuli are

repeatedly presented; previous neurophysiological experiments

have suggested that perceptual learning causes changes in neural

encoding to enhance the Fisher information of a visual stimulus

[4]. However, a recent study has suggested that information

maximization alone is insufficient to explain neural encoding.

Salinas has suggested that ‘‘how encoded information is used’’

needs to be taken into account: neural encoding is influenced by

the downstream circuits and output units to which neurons

project, and it is ultimately influenced by animal behavior [5]. In

the motor cortex, neural encoding is influenced by the

characteristics of muscles (output units) because motor cortex

neurons send motor commands to muscles through the spinal

cord. In adaptation experiments, some motor cortex neurons

exhibit rotations in their preferred directions (PDs), and these

rotations result in a population vector that is directed toward a

planned target [6]. Neural encoding therefore changes to

minimize errors between planning and behavior, suggesting that

neural encoding is influenced by behavior and properties of output

units.

A critical problem exists in the relationship between motor

cortex neurons and output units: the neuronal redundancy

problem, or overcompleteness, which refers to the fact that the

number of motor cortex neurons far exceeds the number of output

units. Many different combinations of neural activities can

therefore generate identical outputs. Neurophysiological and

computational studies have revealed that the motor cortex exhibits

neuronal redundancy [7,8]. However, it remains unknown how

neuronal redundancy influences neural encoding. In other words,

we do not yet understand the functional roles of neuronal

redundancy in motor control and learning, though other types of

redundancies are known to play various functional roles [9].

One of these types of redundancy is muscle redundancy: many

combinations of muscle activities can generate identical move-

ments. The functional roles of this muscle redundancy include

impedance control to achieve accurate movements [10], reduction

of motor variance by constructing muscle synergies [11], and

learning internal models by changing muscle activities [12].

Another redundancy is kinematic redundancy: many combina-

tions of joint angles result in identical hand positions. This

redundancy ensures the stability of posture even if one joint is

perturbed [13], and it facilitates of motor learning by increasing

motor variance in a dimension irrelevant to the desired

movements [14]. Redundancies therefore play important func-

tional roles in motor control and learning.

Similar to the muscle and kinematic redundancies, neuronal

redundancy likely has functional roles in motor control and

learning. However, the functional roles of this redundancy are
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unclear. Here, using a redundant neural network, we investigate

these functional roles by varying the number of model neurons

while holding the number of output units constant. This

manipulation allows us to control the degree of neuronal

redundancy because, if a neural network includes a large number

of neurons and a small number of output units, many different

combinations of neural activities can generate identical outputs. It

should be noted that we used a redundant neural network model

that can explain neurophysiological motor cortex data [7]. The

key conclusion arising from our study is that one of the functional

roles of neuronal redundancy is the maximization of learning

speed.

Initially, a linear model with a fixed decoder was used.

Analytical calculations revealed that neuronal redundancy is a

necessary and sufficient condition to maximize learning speed.

This maximization is invariant whether the distribution of PDs is

unimodal [6] or bimodal [15–17]; both distributions have been

reported in neurophysiological investigations. Second, numerical

simulations confirmed the invariance of our results, even when the

neural network included an adaptable decoder, a nonlinear

activation function, recurrent connections, or nonlinear muscle

units. Third, we show that our results do not depend on learning

rules by using weight and node perturbation, both of which are

representative stochastic gradient methods [18]. Finally, we

demonstrate that our hypothesis does not depend on the shape

of the generalization function which shape depends on the task

(broad or sharp in force field [19,20] or visuomotor rotation

adaptation [21], respectively). Our results strongly support our

hypothesis that neuronal redundancy maximizes learning speed.

Results

Neuronal redundancy is defined as the dimensional gap

between the number of neurons N and the number of outputs

M. It is synonymous with overcompleteness [22]: many

combinations of neural activities A[RN|1 can generate identical

outputs x[RM|1 through a decoder Z[RM|N (x~ZA) because

there are more neurons than necessary, i.e., N&M (Figure 1). It

should be noted that neuronal redundancy is defined not by N but

by the relationship between N and M. In most parts of this study,

the number of constrained tasks T is the same as M and is set to

two, i.e., M~T~2, so there is neuronal redundancy if Nw2.

Thus, throughout this paper, the extent of neuronal redundancy

can be expressed simply using the number of neurons. In this

study, we can change only the neuronal redundancy; N can be

increased while T is held constant at two, enabling the

investigation of the functional roles of neuronal redundancy. In

the Importance of Neuronal Redundancy section, we distinguish the

effects of neuronal redundancy from the effects of neuron number

by varying both N and T .

In this study, we discuss the relationship between neuronal

redundancy and learning speed by assuming adaptation to either a

visuomotor rotation or a force field. These tasks are simulated by

using a rotational perturbation R~
cos w { sin w
sin w cos w

� �
where w is

the rotational angle. Due to this perturbation, if an error occurs

between target position tk(t)~( cos hk(t), sin hk(t))
T and output

(motor command) x in the tth trial, neural activities A(hk(t)) are

modified to minimize the error, where hk(t) is the angle of the

k(t)th target which is radially and equally distributed

(t~1,:::,Trial, k(t)[1,:::,K , hk(t)~2p
k(t)

K
). To model the learning

process in the motor cortex, we used a linear rate model, which

Author Summary

There are overwhelmingly more neurons than muscles in
the motor system. The functional roles of this neuronal
redundancy remains unknown. Our analysis, which uses a
redundant neural network model, reveals that learning
speed reaches its maximum value if and only if the model
includes sufficient neuronal redundancy. This result does
not depend on whether the distribution of the preferred
direction is uniform or a skewed bimodal, both of which
have been reported in neurophysiological studies. We
have confirmed that our results are consistent, regardless
of whether the model includes recurrent connections, a
nonlinear activation function, or nonlinear muscle units.
Additionally, our results are the same when using either a
broad or a narrow generalization function. These results
suggest that one of the functional roles of neuronal
redundancy is to maximize learning speed.

Figure 1. Graphical model of a redundant neural network.
doi:10.1371/journal.pcbi.1002348.g001

Neuronal Redundancy Maximizes Learning Speed
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can reproduce neurophysiological data [7] and be easily analyzed.

In this model, x is given by a weighted average of A, and each

component of Z is accordingly set to O(
1

N
), i.e., (i,j)th

component of Z is defined as Zij~
1

N
zij , where zij is a variable

that is independent of N. Because of this assumption, the learning

rate is set to NB such that the trial-to-trial variation of x do not

depend on N (O(1)), but the optimized learning rate g� is O(N)
(see Text S1), i.e., g�~NB�, suggesting that we consider the quasi-

optimal learning rate in this study. It should be noted that, because

the following results do not depend on B, our results hold when the

optimal learning rate is used. Furthermore, even when each

component of Z isO(1), the following results are invariant if we set

the learning rate to its optimal value (see Text S1). Our study

shows that neuronal redundancy is necessary and sufficient to

maximize learning speed.

Neuronal redundancy maximizes learning speed
Fixed homogeneous decoder. In the case of a fixed

decoder, Z~ 1
N

cos Q1 ::: cos QN

sin Q1 ::: sin QN

� �
, the ith neuron has

uniform force amplitude (FA) ( 1

N2 ( cos2 Qiz sin2 Qi)~
1

N2) and

force direction (FD), Qi, which is randomly sampled from a

uniform distribution. Because of its uniformity, we refer to this

decoder as a fixed homogeneous decoder. This model corresponds

to the one proposed by Rokni et al. [7].

In this case, the squared error can be calculated recursively as

Etz1~
1

2
(etz1)T etz1~

1

2
(et)T (I{BL)T (I{BL)et, ð1Þ

where e~t{x~t{RZA. Here, we assume that a single target is

repeatedly presented for simplicity (general case is discussed in the

Methods section), I is the identity matrix, L~NRZZT RT , NB is

the learning rate, and neural activity A is updated as

Atz1~AtzBNZT RT et ð2Þ

for the tth trial to minimize the squared error. Multiplication by N
in equation (2) is included for the purpose of scaling; it ensures that

the amount of trial-to-trial variation in A does not explicitly

depend on N. Equation (1) can thus be simplified as

Etz1~
1

2
(vtz1)T vtz1~

1

2
(vt)T (I{l)T (I{l)vt, ð3Þ

where the diagonal elements of l, l1 and l2, are eigenvalues of L,

L is decomposed as VT lV (VT V~I), vt~Vet, and learning speed

is therefore determined based on the eigenvalues of

L~
1

N

XN

i~1
cos2 (Qi{w)

XN

i~1
cos (Qi{w) sin (Qi{w)XN

i~1
cos (Qi{w) sin (Qi{w)

XN

i~1
sin2 (Qi{w)

0
@

1
Að4Þ

each component of which is O(1). The larger li becomes, the

faster learning becomes (i~1,2). It should be noted that learning

speed and li do not explicitly depend on N.

Analytical calculations can yield necessary and sufficient

conditions to maximize learning speed (see the Methods section).

The following self-averaging properties [23] maximize learning

speed or maximize the minimum eigenvalue of L:

1

N

XN

i
cos2 Qi~

ð2p

0

dQP(Q) cos2 Q~
1

2
, ð5Þ

1

N

XN

i
sin2 Qi~

ð2p

0

dQP(Q) sin2 Q~
1

2
, ð6Þ

and

1

N

XN

i
cos Qi sin Qi~

ð2p

0

dQP(Q) cos Q sin Q~0, ð7Þ

where P(Q) is the probability distribution in which FDs are

randomly sampled. It remains unknown what kind of conditions

can satisfy the self-averaging properties. The self-averaging

properties are satisfied if and only if the neural network model

includes sufficient neuronal redundancy. In other words, learning

speed is maximized if and only if N??. If the neural network

includes neuronal redundancy, the self-averaging properties exist.

Conversely, if the self-averaging properties exist, the neural

network model should include sufficient neuronal redundancy

because Monte Carlo integration shows a fluctuation of O(1=
ffiffiffiffiffi
N
p

)
[24]. Thus, in the case of a fixed homogeneous decoder, neuronal

redundancy plays a functional role in maximizing learning speed.

We numerically confirmed the above analytical results.

Figures 2A and 2B show the learning speed and learning curves

calculated using the results of 1,000 sets of randomly sampled Q
values, an identical target sequence (K~8), and w~p=3. The

more neuronal redundancy grows, the faster learning speed

becomes. Figure 2C shows the relationship between learning speed

and neuronal redundancy. The horizontal axis denotes the

number of neurons, and the vertical axis denotes the increase in

learning speed. Although a saturation of the increase can be seen,

greater neuronal redundancy still yields faster learning speed.

Therefore, these figures support our analytical results: in the case

of a fixed homogeneous decoder, neuronal redundancy maximizes

learning speed.

Fixed non-homogeneous decoder. The question remains

whether it is necessary for FD and FA to be distributed uniformly,

so we assume that the values (Z1i,Z2i) are randomly sampled from

the probability distribution P(Z1,Z2) to make FD and FA non-

homogeneous, i.e., FDs are non-uniformly distributed, and FAs

are different for each neuron. In the case of a non-homogeneous

decoder, the necessary and sufficient conditions to maximize

learning speed are also the following self-averaging properties:

1

N
Z2

1i~
1

N
Z2

2i u
ð?

{?
dZ1P(Z1)Z2

1~

ð?
{?

dZ2P(Z2)Z2
2

uVar(Z1)z(Mean(Z1))2~Var(Z2)z(Mean(Z2))2

ð8Þ

and

1

N
Z1iZ2i~

ð?
{?

dZ1dZ2P(Z1,Z2)Z1Z2~

0 u Cov(Z1,Z2){Mean(Z1)Mean(Z2)~0,

ð9Þ

where P(Z1) and P(Z2) are marginalized distributions. Figures 3A

and 3D show distributions of Z that satisfy equations (8) and (9). Z
is randomly sampled from unimodal and bimodal Gaussian

distributions in Figures 3A and 3D, respectively. Because these

Neuronal Redundancy Maximizes Learning Speed
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Figure 2. Relationship between learning speed and neuronal redundancy (K~8). (A): Learning speed when N~4,10,100, or 1000. The bar
graph and error bars depict sample means and standard deviations, both of which are calculated using the results of randomly sampled sets of 1000
Q values. (B): Learning curves when N~2,4, or 100. These curves and error bars show averaged values and standard deviations of errors. (C):
Relationship between learning speed and the number of model neurons when B~0:1,0:2,0:3, or 0:4. The horizontal axis represents the number of
neurons N and the vertical axis represents f (N){f (N{1), where f (N) is the learning speed when the number of neurons is N . Dotted and solid
lines denote the average learning speed and power functions fitted to the values, respectively.
doi:10.1371/journal.pcbi.1002348.g002

Figure 3. Network properties when P(Z1,Z2) satisfies equations (8) and (9). (A): Scatter plot of NZ when Z1i and Z2i are randomly sampled
from a unimodal Gaussian distribution (i~1,:::,N). (B), (C): Histogram of preferred direction and modulation depth when Z is randomly sampled as
shown in (A). (D): Scatter plot of NZ when (Z1i ,Z2i) are randomly sampled from a bimodal Gaussian distribution. (E), (F): Histograms of preferred
direction and modulation depth when Z is randomly sampled as shown in (D).
doi:10.1371/journal.pcbi.1002348.g003

Neuronal Redundancy Maximizes Learning Speed
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figures show the non-uniformity in both FD and FA, neuronal

redundancy maximizes learning speed regardless of these non-

uniformities.

Distribution of preferred directions. Some neurophy-

siological studies have suggested that the distribution of PD is a

skewed bimodal [15–17], but other neurophysiological studies

have suggested that the distribution of PD is uniform [6]. We

investigated whether our results were consistent with the results of

these neurophysiological studies. Figures 3B and 3E depict the

distribution of preferred directions (PDs) that results when Z is

randomly sampled as shown in Figures 3A and 3D, respectively,

with PDs calculated as PDi~ arg maxh Ai(h) (see the Methods

section). Figures 3B and 3E show that both a skewed bimodal

distribution and a uniform distribution can be observed when

P(Z1,Z2) satisfies equations (8) and (9), suggesting that our

hypothesis is consistent with the results of previous

neurophysiological experiments.

Figures 3C and 3F show the distribution of modulation depth,

which is calculated as mi~ maxh jAi(h)j (see the Methods section).

Our results suggest that the distribution of modulation depth is

skewed.

Adaptable decoder. We have analytically elucidated the

relevance of neuronal redundancy to learning speed only when Z
is fixed, but the question remains of whether neuronal redundancy

can maximize learning speed even when Z is adaptable. In this

case, it is analytically intractable to calculate learning speed, so we

used numerical simulations. Figure 4A shows the learning speed

when N~2,4,10,100, or 1000 in the case of an adaptable decoder.

Although there was no significant difference in learning speed

between the cases in which N~100 and N~1000, neuronal

redundancy maximized learning speed even if the decoder was

adaptable. Figure 4B, which shows the learning curve when

N~2,4, or 100, also supports the maximization.

Importance of neuronal redundancy
Although we have revealed that neuronal redundancy maxi-

mizes learning speed when T~2, it is important to verify that the

effect is caused by the neuronal redundancy, i.e., the dimensional

gap between N and T , and not simply the number of neurons N.

In this section, we investigate this question by varying both N and

T while assuming that each component of t is randomly sampled

from a Gaussian distribution.

Figures 5A and 5B show the learning speed and the learning

curve produced when N~T~10,50, and 100 with a fixed

non-homogeneous decoder. If N alone were important for

maximizing learning speed, learning speed would be faster when

N~T~100 than when N~T~10 or N~T~50. However, the

results shown in these figures support the opposite conclusion, i.e.,

learning speed becomes slower when N~T~100 compared to

the other cases. This result suggests that the number of neurons

alone is not important for maximizing learning speed.

Figures 5C and 5D show the learning speed and learning curve

produced when T~10,50, or 100 with N~50 and a fixed non-

homogeneous decoder. If neuronal redundancy were important,

the learning speed would be faster when T~10 than when T~50
or T~100. These figures support this hypothesis; learning speed

increased when T~10 compared to the other cases. Taken

together, these results indicate that the important factor for

maximizing learning speed is in fact neuronal redundancy and not

simply the number of neurons.

In addition, we investigated whether neuronal redundancy or

neuron number is important when Z is adaptable. In this case, we

only show learning curves because learning speed cannot be

exponentially fitted, which makes it impossible to calculate

learning speed. Figures 5E and 5F show the learning curves

calculated when N~T~10,50, or 100 and T~10,50, or 100
with N~50. These figures show the same results as the case when

Z is fixed; even when Z is adaptable, the important factor for

maximizing learning speed is neuronal redundancy, not simply the

number of neurons.

Generality of our results
The generality of our results should be investigated because we

analyzed only linear and feed-forward networks, but neurophys-

iological experiments have suggested the existence of recurrent

connections [25] and nonlinear neural activation functions [26].

Also, only a linear rotational perturbation task was considered, so

we need to investigate whether our results hold when the

constrained tasks are nonlinear because, in fact, motor cortex

neurons solve nonlinear tasks. The neurons send motor commands

and control muscles whose activities are nonlinearly determined:

muscles can pull but cannot push. Using numerical simulations, we

show that neuronal redundancy maximizes learning speed, even

when the neural network includes recurrent connections (Figure

S1), when it includes nonlinear activation functions (Figure S2),

and when the task is nonlinear (Figure S3).

In addition, we used only deterministic gradient descent, so the

generality regarding the learning rule needs to be investigated. In

Figure 4. Relationship between learning speed and neuronal redundancy when the decoder is adaptable (K~8). (A): Bar graphs and
error bars depict sample means and standard deviations both of which are calculated using the results from 1000 sets of Z0 values. (B): Learning
curves when N~2,4, or 100. These curves and error bars show averaged values and the standard deviations of the errors.
doi:10.1371/journal.pcbi.1002348.g004

Neuronal Redundancy Maximizes Learning Speed
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fact, previous studies have suggested that stochastic gradient

methods are more biologically relevant than deterministic ones

[27,28]. Analytical and numerical calculations confirm that our

results are invariant even when the learning rule is stochastic

(Figure S4). Our results therefore have strong generality.

Activity noise and plasticity noise. Although our results

have strong generality, there is still an open question regarding the

robustness of noise: does neuronal redundancy maximize learning

speed even in the presence of neural noise? Actually, neural

activities show trial-to-trial variation [29], and the neural plasticity

mechanism also includes trial-to-trial fluctuations [7]. This section

investigates the relationships between neuronal redundancy,

learning speed, and neural noise.

Figures 6A and 6D show the variance of learning curves when

sa~0,0:1,0:2,0:3,0:4,0:5 and sp~0,0:05,0:1,0:15,0:2, respectively,

with N~4,10,100, or 1000 and sa and sp representing the standard

deviations of activity noise and plasticity noise, respectively. The

definition of the variance is 1
Trial

XTrial

t~1
Var(Et), which is a measure

of the stability of learning. Examples of learning curves are shown in

Figures 6B, 6C, 6E, and 6F. These figures show that neuronal

redundancy enhances the stability of learning by eliminating the

influences of activity and plasticity noise. Neuronal redundancy

therefore not only maximizes learning speed but also facilitates

robustness in response to neural noise.

Shape of the generalization function. In many situations,

learning in one context is generalized to different contexts, such as

different postures [30], different arms [31], and different

movement directions [19–21], with the degree of generalization

depending on the task. In this study, we define the generalization

function as the degree of generalization to different movement

directions. The performance of reaching towards hk(t) is

generalized to that of reaching towards h, and the degree of this

generalization is determined by the generalization function

f (h{hk(t)). In visuomotor rotation adaptation, the generalization

function is narrow in the direction metric [21]. In contrast, the

generalization function is broad in force field adaptation [19,20].

To investigate the generality of our results with respect to various

kinds of tasks, it is necessary to investigate the relationships

between neuronal redundancy, learning speed, and the shape of

the generalization function.

Figure 7 shows the relationship between the shape of the

generalization function and learning speed. Figures 7A and 7B

show the learning speed and learning curve calculated when the

generalization function is broad (Figure 7C). Figures 7D and 7E

Figure 5. Importance of neuronal redundancy (K~1). (A): Learning speed when N~T~10, N~T~50, or N~T~100, where N and T are the
number of neurons and constrained tasks, respectively. The bar graphs and error bars depict the sample means and standard deviations, both of
which are calculated using the results of 1000 sets of Z0 values. (B): Learning curves when N~T~10, N~T~50, or N~T~100. These curves and
error bars show the average values and the standard deviations of the errors. (C): Learning speed when T~10,50, or 100, and N~50. The bar graphs
and error bars depict the sample means and the standard deviations, both of which are calculated using the results of 1000 sets of Z0 values. (D):
Learning curves when T~10,50,100, and N~50. These curves and error bars show the average values and the standard deviations of the errors. (E):
Learning curves calculated when N~T~10, N~T~50, or N~T~100 and decoder Z is adaptable. (F): Learning curves calculated when T~10,50,
or 100; N~50; and the decoder Z is adaptable.
doi:10.1371/journal.pcbi.1002348.g005

Neuronal Redundancy Maximizes Learning Speed
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show the learning speed and learning curve calculated when the

generalization function is narrow (Figure 7F). Although these

figures show that narrower generalization results in a slower

learning speed, neuronal redundancy maximizes learning speed

independently of the shape of the generalization function.

Discussion

We have quantitatively demonstrated that neuronal redun-

dancy maximizes learning speed. The larger the dimensional gap

grows between the number of neurons and the number of

constrained tasks, the faster learning speed becomes. This

maximization does not depend on whether the PD distribution

is unimodal or bimodal, the decoder is fixed or adaptable, the

network is linear or nonlinear, the task is linear or nonlinear, or

the learning rule is stochastic or non-stochastic. Additionally, we

have shown that neuronal redundancy has another important

functional role: it provides robustness in response to neural noise.

Furthermore, neuronal redundancy maximizes learning speed in

a manner independent of the shape of the generalization

function. These results strongly support the generality of our

results.

Figure 6. Relationship between neuronal redundancy and neural noise (K~8). (A): Variance of the learning curve when N~4,10,100, or
1000 and sa~0,0:1,0:2,0:3,0:4,0:5. The bar graphs show the average values of randomly sampled sets of 1000 Q values. (B): Learning curves
calculated when N~4,10, or 100, and sa~0:0. These curves and error bars show the average values and the standard deviations of the errors. (C):
Learning curves calculated when N~4,10, or 100, and sa~0:5. (D): Variance of the learning curve when N~4,10,100, or 1000 and
sp~0,0:05,0:1,0:15,0:2. (E): Learning curves when N~4,10, or 100, and sp~0:0. (F): Learning curves calculated when N~4,10, or 100, and sp~0:2.
doi:10.1371/journal.pcbi.1002348.g006

Figure 7. Relationship between neuronal redundancy, learning speed, and the shape of the generalization function (K~8). (A):
Learning speed when N~4,10,100, or 1000, and a~0:1. The bar graphs and error bars depict sample means and standard deviations, both of which
are calculated using the results of randomly sampled sets of 1000 j values in the case of a broad generalization function. (B): Learning curves
calculated when N~2,4,100, and a~0:1. These curves and error bars show the average values and standard deviations of the errors. (C): The
generalization function with a~0:1. (D): The learning speed when N~4,10,100, or 1000, and a~10. Bar graphs and error bars depict the sample
means and standard deviations when the generalization function is narrow (a~10). (E): Learning curves calculated when N~2,4,100, and a~10. (F):
The generalization function with a~10.
doi:10.1371/journal.pcbi.1002348.g007

Neuronal Redundancy Maximizes Learning Speed
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Neuronal redundancy maximizes learning speed because only T
equalities, x~t, need to be satisfied, and N-dimensional neural

activity A is adaptable (N&T ). This dimensional gap yields the

large (N{T) dimensional subspace of A in which the T equalities

are satisfied. The more N increases, the greater the fraction of the

subspace becomes: limN??
N{T

N
?1. Neuronal redundancy,

rather than the number of neurons, thus enables A to rapidly

reach a single point in the subspace. This interpretation likely

applies even in the cases of an adaptable decoder, recurrent

connections, a nonlinear network, a nonlinear task, and a

stochastic learning rule. Furthermore, this interpretation is

supported by the results shown in Figure 5; the bigger (N{T)
grows, the faster learning speed becomes.

At first glance, our results may seem inconsistent with the results

of Werfel et al. [18], who concluded that learning speed is

inversely proportional to N . In their model, because they

considered the single-layer linear model, N is the same as the

number of input units, which is defined as T ( = M ) in the present

study. A similar tendency can be observed in Figure 5; the more T
increases, the slower learning speed becomes. We calculated the

optimal learning rate and speed as shown in Text S1, and

confirmed that learning speed is inversely proportional to T . Thus,

our results are consistent with Werfel’s study and additionally

suggest that neuronal redundancy maximizes learning speed.

Neuronal redundancy plays another important role: generating

robustness in response to neural noise (Figure 6). Because neuronal

redundancy has the same meaning as overcompleteness, its

functional role is the same as the robustness of overcompleteness

in the face of perturbations in signals [32]. This additional

functional role further supports our hypothesis that neuronal

redundancy is a special neural basis on which to maximize

learning speed. For example, if we increase the learning rate B in a

non-redundant network, the learning speed approaches the

maximal speed in a redundant network in which the learning

rate is fixed to B. As shown in Figure 6, however, a non-redundant

network is not robust with respect to neural noise. Furthermore,

neuronal redundancy minimizes residual errors when the neural

network includes synaptic decay [7] (see the Methods section and

Figure S5). Thus, neuronal redundancy represents a special neural

basis for maximizing learning speed while minimizing residual

error and maintaining robustness in response to neural noise.

Methods

Model definition
Our study assumed the following task: participants move their

arms towards one of K radially distributed targets. If the k(t)th
target is presented in the tth trial, the neural network model

receives the input tk(t)~( cos hk(t), sin hk(t))
T (k(t)[1,:::,K ,

t~1,:::,Trial), where hk(t)~2p
k(t)

K
. The input units project to

neurons (hidden units), the activities of which are determined by

At(hk(t))~Wttk(t)zsaj
t, ð10Þ

where Wt[RN|2 is synaptic weight in the tth trial, sa is the standard

deviation of neural activity noise, jt[RN|1 denotes independent

normal Gaussian random variables, and N is the number of neurons

(Figure 1). The ith neuron has a PD given by PDi~ arctan
Wi2

Wi1
and

a modulation depth mi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Wi1)2z(Wi2)2

q
, where Ai(hk(t))~

mi cos (hk(t){PDi), this cosine tuning having been reported by

many neurophysiological studies.

The neural population generates a force of Ft
k(t) through a

decoder matrix Z[RM|N :

Ft
k(t)~ZAt(hk(t)), ð11Þ

where M is the number of outputs, which, in most cases, is set to 2.

When Z is fixed and homogeneous, the (1,i)th and (2,i)th

components of Z are defined as Z1i~
1

N
cos Qi and Z2i~

1

N
sin Qi,

respectively, where division by N is used for scaling and FD Qi is

randomly sampled from a uniform distribution (i~1,:::,N). When

Z is fixed and non-homogeneous, (Z1i,Z2i) is randomly sampled

from a probability distribution P(Z1,Z2) and divided by N . As a

result, the neural network generates a final hand coordinate

xt
k(t)[RM|1:

xt
k(t)~RFt

k(t)~RZWttk(t) ð12Þ

which means that Ft
k(t) is perturbed by a rotation

R~
cos w { sin w
sin w cos w

� �
which assumes a visuomotor rotation or

curl force field. Rotational perturbations are assumed because

many behavioral studies have used them. Because we discuss only

the endpoint of the movement, we refer to xt
k(t) as the motor

command. The constrained tasks are those that the neural network

generates xk(t) toward tk(t), i.e., xk(t)~tk(t), which means the

number of constrained tasks T is the same as M. We used T
instead of M in the following sections.

If the error occurs between t and x, synaptic weights Wt are

adapted to reduce the squared error, which is defined as

Et~
1

2
(tk(t){xt

k(t))
T (tk(t){xt

k(t))~
1

2
(et

k(t))
T et

k(t), based on a gra-

dient descent method

Wtz1~AWtzNBZT RT et
k(t)t

T
k(t)zspft, ð13Þ

where A is the synaptic decay rate, B is the learning rate (B is set to

0.2 in most parts of the present study), sp is the strength of synaptic

drift, and ft[RN|2 denotes normal Gaussian random variables.

Since each component of Z is O(
1

N
), multiplying B by N allows

trial-by-trial variation of both A and W to be O(1). As shown in

Text S1, the optimal learning rate g� is O(N) (g�~NB�),
suggesting that we consider a quasi-optimal learning rate. It

should be noted that our results hold whether the learning rate is

optimal or quasi-optimal because the results do not depend on B.

It should also be noted that the amount of variation in W does not

explicitly depend on N.

Learning curve
Equation (13) yields the following update rule of squared error:

Etz1~
1

2
(etz1)T etz1~

1

2
(etz(1{A)(AI{BL){1t)T

(AI{BL)T (AI{BL)(etz(1{A)(AI{BL){1t),

ð14Þ

where L~NRZZT RT , and I denotes the identity matrix. At first,

we assume a case in which K~1 for simplicity. Because L is

symmetric, AI{BL can be decomposed as AI{BL~

VT (AI{Bl)V, where each row of V is one of the eigenvectors

(VT V~I) and each diagonal component of a diagonal matrix l is

one of the eigenvalues of L. This decomposition transforms

equation (14) into the simple form

Neuronal Redundancy Maximizes Learning Speed
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Etz1~
1

2
(vtz1

1 )2z
1

2
(vtz1

2 )2

~
1

2
(A{Bl1)2(vt

1z(1{A)
s1

A{Bl1
)2

z
1

2
(A{Bl2)2(vt

2z(1{A)
s2

A{Bl2
)2,

ð15Þ

where vt~(vt
1,vt

2)T~Vet and s~(st
1,st

2)T~Vt. This recurrence

formula yields the analytical form of the learning curve:

vt
i~(A{Bli)

t(v0
i {(1{A)

li

1{li

si)

z(1{A)
A{Bli

1{(A{Bli)
si (i~1,2):

ð16Þ

Equation (16) requires that the larger the eigenvalues become,

the faster the learning speed becomes and the smaller the residual

error becomes (Figure S5). Because

L~

1

N

XN

i~1
cos2 Qi

1

N

XN

i~1
cos Qi sin Qi

1

N

XN

i~1
cos Qi sin Qi

1

N

XN

i~1
sin2 Qi

0
BB@

1
CCA ð17Þ

whose component is O(1), simple algebra gives the analytical form

of the eigenvalues,

l~
1

2
(N
XN

i~1
Z2

1izN
XN

i~1
Z2

2i

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N
XN

i~1
Z2

1i{N
XN

i~1
Z2

2i)
2z4(N

XN

i~1
Z1iZ2i)

2

r
),

ð18Þ

which are also O(1), suggesting that learning speed does not

depend explicitly on N. Because the learning speed is determined

by the smaller eigenvalue, the necessary and sufficient conditions

to maximize learning speed, or to maximize the smaller

eigenvalue, are

N
XN

i~1
Z2

1i~N
XN

i~1
Z2

2i u
1

N

XN

i~1
cos Q2

i

~
1

N

XN

i~1
sin Q2

i

ð19Þ

and

N
XN

i~1
Z1iZ2i~0 u

1

N

XN

i~1
cos Qi sin Qi~0: ð20Þ

What kind of conditions can simultaneously satisfy equations

(19) and (20)? The only answer is sufficient neuronal redundancy,

i.e., N??, because sufficient neuronal redundancy enables self-

averaging properties to exist in a neural network, i.e.,

1

N

XN

i~1
cos2 Qi~

ð2p

0

dQP(Q) cos2 Q~
1

2
, ð21Þ

1

N

XN

i~1
sin2 Qi~

ð2p

0

dQP(Q) sin2 Q~
1

2
, ð22Þ

and

1

N

XN

i~1
cos Qi sin Qi~

ð2p

0

dQP(Q) cos Q sin Q~0, ð23Þ

where P(Q) is the probability distribution in which FDs are

randomly sampled. Conversely, if equations (21), (22), and (23) are

satisfied in all of the sets of randomly sampled FDs, the number of

neurons needs to satisfy N?? because the fluctuation of Monte

Carlo integrals is O(1=
ffiffiffiffiffi
N
p

) [24]. Therefore, to maximize learning

speed, the necessary and sufficient condition is sufficient neuronal

redundancy.

The above analytical calculations hold even when Kw1.

Equation (13) yields the recurrence equation of the squared error:

Etz1
k(tz1)~

1

2
(etz1

k(tz1))
T etz1

k(tz1)

~
1

2
(et

k(tz1){BLet
k(t))

T (et
k(tz1){BLet

k(t)),

ð24Þ

where A is set to 1 for simplicity. Using L~VT lV, this equation

can be written as

(vtz1
i,k(tz1))

2~(vt
i,k(tz1){Bli cos (hk(tz1){hk(t))v

t
i,k(t))

2(i~1,2):ð25Þ

The larger the eigenvalue becomes, the faster learning speed

becomes if vt
i,k(tz1) and vt

i,k(t) cos (hk(tz1){hk(t)) have the same

sign, or if vt
i,k(tz1)| cos (hk(tz1){hk(t))v

t
i,k(t)w0. This inequality is

appropriate if the equality vT
k(tz1)vk(t)~eT

k(tz1)V
T Vek(t)~

C cos (hk(tz1){hk(t)) can be proved, where C is a positive constant.

To prove this equality, let us assume that in the 1st trial after the

rotational perturbation R is applied, output can be written as

xk(t)~Rtk(t) because the neural network can generate accurate

outputs if there is no perturbation. In this case,

eT
k(tz1)V

T Vek(tz1)~eT
k(tz1)ek(t)~tT

k(tz1)(I{R)T (I{R)tk(t)

~2(1{ cos w) cos (hk(tz1){hk(t)),
ð26Þ

where 2(1{ cos w) is a positive constant. Thus, the larger li

becomes, the faster learning speed becomes even when Kw1;

analytical calculations show that neuronal redundancy maximizes

learning speed even when Kw1.

Fixed non-homogeneous decoder
When Z is fixed and non-homogeneous, i.e., Mean(Z1)~m1,

Var(Z1)~s2
1, Mean(Z2)~m2, Var(Z2)~s2

2, and Cov(Z1,Z2)
~scov, the necessary and sufficient conditions for maximizing

learning speed are given by the following equations:

s2
1zm2

1~s2
2zm2

2~s2, ð27Þ

scov{m1m2~0, ð28Þ
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with neuronal redundancy assumed. Equations (27) and (28) can be

satisfied when, for example,

P(Z’)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(2p)2j
X
j

s
exp ({

1

2
Z’T

X-1

Z’), ð29Þ

(shown in Figure 3A with
X

~
1:1 0

0 1:1

� �
and N~100000), or

P(Z’)~0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(2p)2j
X
j

s
exp ({

1

2
(Z’{m1)T

X{1

(Z’{m1))z

0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(2p)2j
X
j

s
exp ({

1

2
(Z’{m2)T

X{1
(Z’{m2)),

ð30Þ

(shown in Figure 3D with
X

~
0:7 0:4
0:4 0:7

� �
, m1~(

ffiffiffiffiffiffiffi
0:4
p

,{
ffiffiffiffiffiffiffi
0:4
p

),

m2~{m1 and N~100000), where Z’~(Z1,Z2)T . Because the

learning rate of motor commands is determined by Bs2 (see the

following section), s is determined based on the results of behavioral

studies [33]. We cannot analytically calculate the general class of

P(Z1,Z2) and the distributions of PDs satisfying equations (27) and

(28), but broad classes of those distributions can satisfy these equations

because the classes include even asymmetric distributions, e.g., whenX
~

0:7
ffiffiffiffiffiffiffiffiffi
0:08
pffiffiffiffiffiffiffiffiffi

0:08
p

0:9

� �
, m~(

ffiffiffiffiffiffiffi
0:4
p

,{
ffiffiffiffiffiffiffi
0:2
p

).

Learning rule of decoder Z
When Z is adaptable, this is also adapted to minimize the

squared error:

Ztz1~ZtzBZRT et
k(t)t

T
k(t)W

t, ð31Þ

where Z0 is set to g0=N, g0 is a normal Gaussian random variable,

and BZ is set to 0.1 in the Adaptable Decoder section and 0.05 in

the Importance of Neuronal Redundancy section. This learning

rule corresponds to back-propagation [34].

High dimensional tasks
In the Importance of Neuronal Redundancy section, the neural

network generates the output x[RT|1, which is determined by

xt~ZtWtt ð32Þ

for the tth trial. An initial value of Z0 is randomly sampled from

the normal Gaussian distribution and divided by N for scaling.

The input t is randomly sampled from the normal Gaussian

distribution and is normalized to satisfy tT t~1 to avoid the

effect of this value on learning speed. In addition, we used a

fixed value of t because the generalization function (see the

following section) strongly depends on T , i.e., tt~t. It should be

noted that learning speed does not explicitly depend on T

because learning speed is determined only by the minimum

eigenvalue of NZZT .

The generalization function and the update rule for
motor commands

Equation (13) yields the following update rule for motor

commands:

xtz1
k(tz1)~Axt

k(tz1)zBRZZT RT et
k(t)t

T
k(t)tk(tz1): ð33Þ

If equations (27) and (28) (or (22) and (23)) are satisfied, equation

(33) can be written as

xtz1
k(tz1)~Axt

k(tz1)zBs2f (hk(tz1){hk(t))e
t
k(t), ð34Þ

where the cross term of tT
k(t) and tk(tz1) determines the

generalization function f (hk(tz1){hk(t)), e.g., f (hk(tz1){hk(t))

~ cos (hk(tz1){hk(t)), if we define tk(t)~( cos hk(t), sin hk(t))
T .

We set B and s2 to satisfy Bs2~0:2. It should be noted that

equation (34) corresponds to a model for sensorimotor learning

that can explain the results of behavioral experiments [35],

suggesting that our hypothesis is consistent with the results of

behavioral experiments.

Because the shape of the generalization function depends on the

task, we need to confirm the generality of our results with regard to

the shape of the generalization function. To simulate various

shapes of generalization functions, we used the von-Mises function

tk(t)(h)~
1

ZI

( exp (a cos (hk(t){mi))

{
1

NI

XNI

nI ~1

exp (a cos (h{mnI
))),

ð35Þ

where a, mi, and NI are the precision parameter, the preferred

direction of the ith input unit, and the number of input units,

respectively. The normalization factor ZI is determined to make

tT
k(t)tk(t)~1 to avoid the influence of this value on the learning

speed, where t~(t1,:::,tNI
)T . This normalization permits us to

investigate the influence of the shape of the generalization function

alone on learning speed. The larger the value of a, the sharper the

shape of the generalization function becomes. We set NI to 100

throughout this study.

Numerical simulation procedure
We conducted 100 baseline trials with w~0 and K~8 to

identify the baseline values of W. The initial value of W, W0, was

set to 0. After these trials, 100 learning trials were conducted using

w~
p

3
and K~8. Learning speed b was calculated by fitting the

exponential function ÊEt~a exp ({bt)zc to Et. All the figures

denote b which was obtained only in learning trials. The present

study calculated learning speed and learning curves by averaging

the results of 1000 sets of baseline and learning trials, each set

including an identical target sequence that was randomly sampled,

and each set using different FD values.

For all of the statistical tests, we used the Wilcoxon sign rank

test. It should be noted that the p-value was indicated only if the

value was significantly different from 0; no statistically significant

differences were detected.

Supporting Information

Figure S1 Relationship between learning speed, neuro-
nal redundancy, and adaptable recurrent connections
(K~8). (A): Learning speed when N~4,10,50,100 and

BM~0,0:025,0:05,0:075,0:1. The whiter the color, the faster the

learning speed. (B): Learning curves obtained when N = 10, 50, or

100 and BM~0:025. These curves show the average values of

1,000 randomly sampled sets of Q. Error bars represent the
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standard deviations of the errors. (C): Learning curves obtained

when BM~0,0:05,0:1 and N~10. These curves and error bars

show average values and standard deviations. (D): Variance of the

learning curve when BM~0,0:05,0:1 and N~100 (K~8). These

variances are average values from 1,000 randomly sampled sets of Q.

(EPS)

Figure S2 Relationship between learning speed and
neuronal redundancy in the case of a nonlinear neural
network (K~8). (A): Learning speed when N = 10, 50, 100, and

1000. The bar graphs and error bars depict sample means and

standard deviations, both of which are calculated using the results

of 1,000 randomly sampled sets of Q values. (B): Learning curves

obtained when N~4,10, or 100. These curves and error bars

show average values and the standard deviations of the errors.

(EPS)

Figure S3 Relationship between learning speed and
neuronal redundancy when the neural network includes
nonlinear muscle units (K~8). (A): The bar graphs and error

bars depict sample means and standard deviations, both of which

were calculated using the results of 1,000 randomly sampled sets of

C values. (B): Learning curves obtained when N~10 or 100.

These curves and error bars show average values and the standard

deviations of the errors.

(EPS)

Figure S4 Relationship between learning speed and
neuronal redundancy in the case of weight perturbation
and node perturbation (K~8). (A): Learning speed when

N~4,10,100, or 1000, with weight perturbation as the learning

rule. The bar graphs and error bars depict sample means and

standard deviations, both of which are calculated using the results

of 1,000 randomly sampled sets of Q. (B): Learning curves obtained

when N~4,10, or 100, with weight perturbation as the learning

rule. These curves and error bars show the average values and the

standard deviations of the errors. (C): Learning speed when

N~4,10,100, or 1000, with node perturbation as the learning

rule. The bar graphs and error bars depict sample means and

standard deviations, both of which are calculated using the results

of 1,000 randomly sampled sets of Q. (D): Learning curves

obtained when N~4,10, or 100, with node perturbation as the

learning rule. These curves and error bars show average values

and the standard deviations of the errors.

(EPS)

Figure S5 Relationship between residual error, learn-
ing speed, and neuronal redundancy with synaptic decay
included (K~8). (A): Residual error when A~0. The bar

graphs and error bars denote sample means and standard

deviations, both of which are calculated using the results of

1,000 randomly sampled sets of Q values. (B): Learning speed when

A~0. The bar graphs and error bars depict sample means and

standard deviations. (C): Learning curves obtained when N~4,10,

and 100 and A~0. These curves and error bars show average

values and standard deviations. (D): Residual error when

A~0:005. (E): Learning speed when A~0:005. (F): Learning

curve when A~0:005. (G): Residual error when A~0:01. (H):

Learning speed when A~0:01. (I): Learning curve when A~0:01.

(EPS)

Text S1 Generality of our results. This file contains the

detailed descriptions of Generality of our results section.

(PDF)
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