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Abstract

The availability of metagenomic sequencing data, generated by sequencing DNA pooled from multiple microbes living
jointly, has increased sharply in the last few years with developments in sequencing technology. Characterizing the contents
of metagenomic samples is a challenging task, which has been extensively attempted by both supervised and unsupervised
techniques, each with its own limitations. Common to practically all the methods is the processing of single samples only;
when multiple samples are sequenced, each is analyzed separately and the results are combined. In this paper we propose
to perform a combined analysis of a set of samples in order to obtain a better characterization of each of the samples, and
provide two applications of this principle. First, we use an unsupervised probabilistic mixture model to infer hidden
components shared across metagenomic samples. We incorporate the model in a novel framework for studying association
of microbial sequence elements with phenotypes, analogous to the genome-wide association studies performed on human
genomes: We demonstrate that stratification may result in false discoveries of such associations, and that the components
inferred by the model can be used to correct for this stratification. Second, we propose a novel read clustering (also termed
‘‘binning’’) algorithm which operates on multiple samples simultaneously, leveraging on the assumption that the different
samples contain the same microbial species, possibly in different proportions. We show that integrating information across
multiple samples yields more precise binning on each of the samples. Moreover, for both applications we demonstrate that
given a fixed depth of coverage, the average per-sample performance generally increases with the number of sequenced
samples as long as the per-sample coverage is high enough.
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Introduction

Metagenomic samples are pooled samples of the genomes of

multiple microorganisms living in the same environment. They

can be taken either from the outer environment or from microbial

populations colonizing other living organisms. Metagenomic

studies focus on the taxonomic and functional characterization

of the microbial populations contained in such samples. These

studies have been boosted by advances in Next Generation

Sequencing (NGS) technologies. Particularly, Whole Genome

Shotgun (WGS) sequencing provides reads sampled randomly

along the genomes, and enables simultaneous phylogenetic and

functional analysis of the samples. Although WGS datasets contain

plenty of information, they are hard to decipher, as we will further

explain below. In a nutshell, the natural way to explore their

composition is by aligning the sequencing reads against known

databases of whole genomes or of marker genes, however these

databases are seriously limited and biased. In addition, one cannot

a-priori tell which reads originated from the same genome, and

therefore many methods attempt to cluster the reads according to

species of origin as a preliminary stage; unsupervised binning

methods face an especially hard challenge, and are currently

practiced mostly on extremely simple or simulated datasets.

Along with the increasing availability of single-metagenome

WGS datasets, datasets consisting of multiple metagenomic

samples are also becoming abundant. These datasets typically

include samples taken from similar environments, such as

ocean water sampled from different locations or depths [1], or

microbiomic samples taken from a group of human individuals

[2]. To date, the primary analysis of the resulting sequences is

performed separately for each sample. Our principal observation

is that combining information from multiple samples improves the

characterization of each of the samples. We give two demons-

trations of this principle: First, we present a method for the

unsupervised characterization and quantification of shared hidden

components across samples. Second, we present a binning method

that operates on multiple samples simultaneously in order to

achieve high per-sample precision.

We consider an unsupervised learning approach, in which we

aim at learning the shared components of the different samples in

an attempt to answer the prominent question of metagenomics,

‘‘what’s in the mix’’, without relying on any prior knowledge.

While the use of stored sequences of whole genomes [3] or of

marker genes, such as the 16S rRNA subunit [4], is currently the

most effective way of analyzing large-scale metagenomic samples,

it is considerably hindered by the incompleteness of existing

databases: In addition to including only a small fraction of the

species expected to be found in the samples, the set of species

which these databases do include is highly biased, and this bias in

turn causes a bias in the analysis results. Supervised analyses also

often assume that the properties of the samples which are of

biological or medical interest correspond to known taxonomic or
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functional annotations, although this is not necessarily the case. An

intriguing counter-example is the recently discovered enterotype

classes [5], which are three robust classes to which human gut

metagenomic samples can be classified. Although generated using

a supervised technique, these classes are characterized by a

complex combination of the abundance of many bacterial species,

which do not correspond to specific taxonomic units.

Aiming to avoid these disadvantages, we developed a method

for the inference of hidden components within the data, which

leverages on the fact that these unknown components are shared

by the different samples. Each of the components is characterized

by its sequence composition pattern, specifically the frequency of

different short k-mer words in the sequence, which is known to

characterize bacteria at different phylogenetic scales [6,7]. Due to

the unsupervised nature of the method, we do not expect the

components to represent any easily-interpretable biological entity,

but instead to provide a composite characterization of the samples.

Unlike the enterotypes clustering procedure, our method does not

require an alignment stage and does not classify the samples to

distinct classes. Instead, we search for the best components that

explain the data, and each sample is assigned a distribution over

these components; this is done by utilizing Probabilistic Latent

Semantic Analysis (PLSA) [8], a technique applied to fields such as

information retrieval and natural language processing. Despite

these differences, there are some correlations between the

inferred components and the enterotypes, which we mention in

the Discussion.

Unsupervised component estimation can be used for multiple

purposes, and we choose to demonstrate its applicability to a new

paradigm for studying statistical association between metagenomic

content and phenotypes, which we now introduce. We look for

DNA words - long k-mers - whose abundance in the sequencing

reads of the different samples correlate with the phenotype at

question. For large enough k, differences in the abundance of

certain k-mers would capture differences in the abundance of

specific species, genes or functional domains which cause the

phenotype or are affected by it.

The proposed framework is analogous to the widely used

paradigm of Genome Wide Association Studies (GWAS), which is

used to test for associations between genetic variants in the human

genome and phenotypes. In a typical GWAS the frequency of

millions of variants, spanning the entire genome, is compared

between a group of cases and a group of controls, and variants

whose frequencies differ significantly between the two are

considered to be statistically associated with the condition. In the

context of metagenomic association, the k-mers are analogous to

the genetic variants studied in GWAS, and in both applications the

goal is to find statistically significant associations between the

measured variants and the condition. However, while GWAS

searches for specific mutations which are associated with increased

risk for the condition, we aim to capture modifications in the

bacterial composition - functional or taxonomic - which are

associated with the disease. As in the case of GWAS, the

advantages of our approach are its computational efficiency,

statistical rigor, cross-study comparability, and the fact that it does

not require a supervised stage or comparison to existing databases.

Interestingly, when testing this approach on a publicly available

dataset [2] containing 124 deeply sequenced samples of human

gut microbiomes collected as part of the MetaHIT (Metagenomics

of the Human Intestinal Tract) project, we found that the

abundance of a large fraction of the k-mers vary with some of the

phenotypes, even for k as small as 3. In the GWAS context this is

known as a case of stratification: the null hypothesis of equal

distribution between phenotype groups does not hold for the

typical variant. For example, when the case and control groups

have different ethnic composition, the minor allele frequency of an

exceptionally large number of Single Nucleotide Polymorphisms

(SNPs) may appear correlated with the disease, but these

correlations reflect the fundamental genetic difference between

the groups, instead of being relevant to the disease.

In order to correct for the stratification and conduct a proper

association analysis, we integrate into the association test the

estimates provided by the probabilistic model, specifically the

estimated proportion of each component within each sample. We

chose to characterize the components according to the short k-

mers distribution in the samples. Recently, Meinicke et al. [9]

propose to model the k-mers distribution of a single metagenomic

sample as a mixture over the distributions of already-sequenced

genomes; however, the use of multiple samples in our method

allows our method to remain unsupervised.

As a second demonstration of the joint analysis approach we

consider the task of binning sequence reads into an unknown set of

species. Binning is an important preliminary step for further

metagenomic analysis, and has been heavily investigated in the

past few years, including the development of multiple unsupervised

methods [10–16]; however, all existing methods operate on single

samples only. We suggest an unsupervised coverage-based ap-

proach, and demonstrate that when the samples share a common

species core, information can be integrated between them to

improve binning precision. In other words, if one wishes to bin a

given sample, then the simultaneous binning of other samples would

yield better precision for the original sample. Moreover, we show

that for a fixed depth of coverage, dividing the sequencing reads

between additional related samples improves precision on the

sample of interest.

Methods

Association test for metagenomes
Over the last few years, there have been many reports of

associations between the content of metagenomic samples,

Author Summary

Microorganisms are extremely abundant and diverse, and
occupy almost every habitat on earth. Most of these
habitats contain a complex mixture of many different
microorganisms, and the characterization of these meta-
genomic mixtures, in terms of both taxonomy and
function, is of great interest to science and medicine.
Current sequencing technologies produce large numbers
of short DNA reads copied from the genomes of a
metagenomic sample, which can be used to obtain a high
resolution characterization of such samples. However, the
analysis of such data is complicated by the fact that one
cannot tell which sequencing reads originated from the
same genome. We show that the joint analysis of multiple
metagenomic samples, which takes advantage of the fact
that the samples share common microbial types, achieves
better single-sample characterization compared to the
current analysis methods that operate on single samples
only. We demonstrate how this approach can be used to
infer microbial components without the use of external
sequence data, and to cluster sequencing reads according
to their species of origin. In both cases we show that the
joint analysis enhances the average single-sample perfor-
mance, thus providing better sample characterization.

Joint Analysis of Multiple Metagenomic Samples
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especially human microbiomic samples, and phenotypes. Different

studies report associations with different properties of the samples,

such as the abundance of certain taxonomic units, mostly phyla

and species, the overall taxonomic and functional diversity of the

samples, and the abundance of certain genes or groups of genes,

such as those participating in specific metabolic pathways (see

Turnbaugh et al. [17] for a comprehensive study of obesity which

tested most of these properties). In addition, dimensionality

reduction techniques such as PCA [18] are often used on top of

the raw data. While examining many properties of the samples

allows to capture a wide range of associations, it is not always

possible to accumulate results over different studies, in order to

perform meta-analysis. In addition, it is hard to perform a rigorous

statistical analysis, and especially to control for multiple hypoth-

eses, when many different types of tests are carried out.

As a more rigorous approach, we propose to test the abundance

of all possible DNA words of a fixed length for association with the

phenotype. This test examines a limited but well-defined group of

variants, and hence while it is not expected to capture the entire

spectrum of possible associations, its results are statistically robust

and easy to compare across studies and accumulate for future

meta-analysis studies. It does not require alignment or comparison

against any existing database, and therefore it can capture

associations with unannotated sequences; due to the latter, the

test is also fast and easy to implement.

Formally, for a given value of k, the number of occurrences of

all k-mers across each of the samples are normalized to obtain

sample-specific relative abundances. The counts of complementa-

ry k-mers are summed together as they are indistinguishable in the

sequencing data. We denote by xia the relative abundance of k-

mer a in sample i, and by yi the phenotype of sample i. We test the

association between the k-mer and the phenotype by fitting a

regression model of the form

yi~c:xiazd ð1Þ

For a given phenotype y we solve the model for each k-mer a by

generating the appropriate vector (x1a . . . xNa), where N is the

number of samples. We use simple regression and logistic regression

for continuous and dichotomous phenotypes respectively.

In the Results section we report that some phenotypes are

correlated with a large fraction of the k-mers. These correlations

reflect large-scale differences in the genetic composition of the

samples between the phenotype groups; specifically, a plausible

assumption is that there exists a group of common microbial

components, and that each sample is a mixture of these

components, in unique proportions. The components might be,

for example, different bacterial phyla, and a certain phenotype

might correlate with a higher proportion of a certain phylum;

since there are differences in sequence composition between the

phyla, this would cause phenotype-correlated differences in the

distributions of many k-mers. However, we are interested not in

the large-scale variation, but in the k-mers which remain

correlated with the phenotype after taking this variation into

account. Assuming there are B components and denoting by pib

the proportion of component b in sample i,
PB

b~1 pib~1, the

estimation of the matrix P~pib would allow us to construct a

corrected model:

yi~c0
:xiaz

XB{1

b~1

cb
:pibzd ð2Þ

This equation is similar to equation 1 but includes the additional

confounding components as covariates. For a given phenotype y,

we again solve the model for each k-mer while keeping the

covariate expressions fixed. Due to this addition, the association of

a k-mer whose association with the phenotype is explained by the

covariates will not be statistically significant, as desired. Note that

piB is not included in the equation because of the linear

dependency piB~1{
PB{1

b~1 pib.

Probabilistic model for stratification
In order to estimate P we use the following probabilistic model.

We assume that the sequencing reads for N metagenomic samples

are given, and that the DNA content of the samples is composed of

a common set of components; each read has originated from one

of the components, and each component is characterized by a

typical distribution over the group of all possible k-mers in the

sequence, for some fixed small value of k (e.g., k~4). The model is

parametrized by two row-stochastic matrices, PN|B and FB|jKj:
the ith row of P, denoted pi�, defines a sample-specific mul-

tinomial distribution over all components, and the bth row of F,

denoted fb�, defines a component-specific multinomial distribution

over K, the group of all k-mers. When we sample a short k-mer

from a random position on the reads of sample i, we first sample a

component b according to the distribution pi�, and then sample

the k-mer according to the distribution fb�. Being defined as

general multinomial distribution, some entries in P and F may

have a zero value; in particular, some components might not be

represented in some of the samples.

We note that while the previous subsection discussed long k-

mers (e.g., k§8), which are each tested for association with the

phenotypes, in this section we use short k-mers as characteristics of

the components we attempt to learn. Specifically, we chose to use

k = 4 since it has been shown that 4-mer distributions are

characteristic of phylogenetic units [6,7], and since the 4-mer

distribution captures both the codon distribution and possible

codon biases.

We now turn to calculate the likelihood of the metagenomic

data. Since the model explains the k-mer distribution in the reads,

we extract the first k-mer from each read, and denote by nia the

number of times k-mer a was extracted from sample i. The

likelihood of the counts data R is

L(F~f ,P~p; R)~P
N

i~1
P
a[K

(
XB

b~1

pibfba)nia ð3Þ

where N is the number of samples, B is the number of

components, and K is the group of all possible k-mers,

jKj~ 4kz4
qk
2
r

2
as the counts for complementary k-mers are

joined. Our goal is to estimate the distributions in the matrix P,

which are the distributions over the components for each sample.

We note that there is a simple relation between xia and the

above notation, given by xia~
niaP

a’[K nia’
. Furthermore, under the

model assumptions, we have that E½xia�~
PB

b~1 pibfba. One can

verify that if there is a solution such that
PB

b~1 pibfba~xia, then

this solution maximizes the likelihood in Equation 3. Thus, we can

view the maximization of the likelihood function as an

approximation of the factorization of the X~xia matrix, which

is row-stochastic, into two other row-stochastic matrices:

XN|jKj~PN|B � FB|jKj

Joint Analysis of Multiple Metagenomic Samples
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This factorization corresponds to a set of N|jKjzNzB linear

equations, to which each additional sample adds B variables but

also a much larger number of equations - jKjz1; this could serve

as an intuition for the advantage conveyed by sample multiplicity.

In addition, this factorization is a variant of the non-negative

matrix factorization (NMF) technique, with the added stochasticity

constraints (so that the sum of each row in P and F is 1). NMF is

used to unveil hidden structures within data, and its major

advantage over methods such as the widely-used PCA is the high

interpretability of the inferred components [19]. A recent paper

[20] used NMF in a metagenomic context, however the factorized

data matrix was generated using alignment to sequenced genomes,

in contrast to our method which does not rely on prior know-

ledge. The stochasticity constraints turn our model to an exact

instantiation of PLSA [8,21], a generative model from the

statistical literature. PLSA was originally applied to the field of

text analysis for the discovery of topics in a corpus of documents

[22]. Due to its great flexibility, it was successfully applied to

multiple problems in the field of text learning [23–25] as well as to

image content analysis tasks [26].While strong similarities exist

between PLSA and NMF, the fact that PLSA is based on a

probabilistic model allows us to refine the model to better match

the properties of the sequencing data, as we do below.

In the above procedure we extract only the first k-mer from

each read because the model assumes that the k-mers are

sampled independently according to F, conditioned on the read’s

component. Extracting multiple k-mers would result in a deviation

from the model due to the dependencies between neighboring k-

mers on the same read, as well as dependencies between k-mers

extracted from multiple reads covering the same genomic region.

Interestingly, the simulations presented in the Results section

demonstrate that extracting multiple k-mers from the same read

improves performance, despite the dependencies. The reason is

that under reasonable coverage and when k is not too large, the

relative abundances xia approach a constant value, and the exact

sampling strategy has no effect on the final counts data. It is

therefore of benefit to extract multiple k-mers from each read

when processing the sequencing reads, however it turns out that

the best strategy is to choose not all k-mers present on the read but

only a subset, while using a slightly different model, as we explain

next.

A refined model. Once multiple k-mers from the same read

are used, the model can be refined to reflect the fact that all k-mers

extracted from the same read were sampled from the same

component. The likelihood function below entails this

information:

L(P~p,F~f ; R)~P
N

i~1
P
r[Ri

XB

b~1

pib P
a[Kr

fba ð4Þ

where Ri is the set of all reads sampled from sample i, and Kr is

the multiset of the k-mers extracted from read r.

The refined model, like the previous model, assumes that the k-

mers on a read are sampled independently given the component,

but unlike the previous model, the refined model is sensitive to

deviations from this assumption. The reason is that the refined

model assigns each read to a component, as opposed to each k-

mer, and is therefore more prone to local distortions in the k-mer

distribution which result from the dependencies. As we show in the

Results section, an effective way to alleviate this problem is to

sample a smaller number of k-mers which are more sparsely

dispersed along the read. As a result, sampling a relatively small

number of k-mers from each read and using the refined model

turns out to be an effective strategy for using the sequencing reads

in order to estimate P.

Parameter estimation using EM
We use Expectation-Maximization algorithms in order to

approximate the maximum likelihood solutions of both the

original model (defined in Equation 3) and the refined model

(Equation 4), beginning with the refined. The observed variables

are groups of extracted k-mers, one group for each read, and the

latent variables are the assignments of a component to each of the

reads. Let M be the unknown assignments, and let nra be the

number of occurrences of k-mer a[K in the multiset of k-mers

extracted from read r[R, denoted Kr. The algorithm can now be

written as

E-step:

Q(p,f jp(t),f (t))~E
MjR,p(t),q(t) logL(P~p,F~f ; R)½ �

~E
MjR,p(t),f (t)

XN

i~1

X
r[Ri

log piM(r) P
a[Kr

fM(r)a

� �2
4

3
5

~E
MjR,p(t),f (t)

XN

i~1

X
r[Ri

log piM(r)z
X
a[Kr

log fM(r)a

 !2
4

3
5

~
XN

i~1

XB

b~1

Cib log (pib)z
XB

b~1

X
a[K

Dba log (fba)

where

Cib~
X
r[Ri

p
(t)
ib Pa[Kr f

(t)
baPB

b’~1 p
(t)
ib’Pa[Kr f

(t)
b’a

Dba~
XN

i~1

X
r[Ri

nra

p
(t)
ib Pa’[Kr f

(t)
ba’PB

b’~1 p
(t)
ib’Pa’[Kr f

(t)
b’a’

M-step:

p
(tz1)
ib ~

CibPB
b’~1 Cib’

f
(tz1)

ba ~
DbaP

a’[KDba’

The running time of each iteration of the above algorithm is

O(BjRjL), L being the number of k-mers extracted from each

read. For realistic values of jRj this is time consuming. In addition,

for large datasets the entire data cannot fit in memory. Consider,

for example, the case where the number of individuals is N~100,

the number of reads per individual is 3:107, and all non-

overlapping 4-mers from reads of length 80 bp are used. In this

case, the amount of memory required is at least 60 GB, even if

every nucleotide letter is stored in two bits. We note that by

changing the order of the summation, one can use a considerably

Joint Analysis of Multiple Metagenomic Samples
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smaller amount of memory, however in each iteration of the EM

the entire dataset will have to be read again to memory.

Therefore, when analyzing large datasets we recommend to use

the simpler model, described by Equation 3, which ignores the

relation between k-mers on the same read. The input counts nia

are extracted in a single pass through the data. The latent variables

M are the assignments of each pair (sample, k-mer) to a

component, and the EM algorithm is as follows:

E-step:

Q(p,f jp(t),f (t))~E
MjR,p(t),f (t) logL(P~p,F~f ; R)½ �

~
XN

i~1

XB

b~1

Cib log (pib)z
XB

b~1

X
a[K

Dba log (fba)

where

Cib~
X
a[K

niap
(t)
ib f

(t)
baPB

b’~1 p
(t)
ib’f

(t)
b’a

Dba~
XN

i~1

niap
(t)
ib f

(t)
baPB

b’~1 p
(t)
ib’f

(t)
b’a

The M-step is similar to the one described for the refined model.

Note that the running time of each iteration of the EM algorithm

is now O(NB4k), and it is therefore very efficient as long as k is

fixed.

Binning algorithm
The model we presented infers common components in the

samples but does not assign the reads to these components; it

provides for each read a probability distribution over the

components that could be used for an assignment, but in general

is not optimized for this goal. Such assignment, or binning, is an

important preliminary step in the analysis of metagenomic

samples, especially binning according to species of origin. We

therefore devised an unsupervised algorithm which performs

binning over multiple samples simultaneously, again leveraging on

sample similarity, this time assuming a common species core. Most

previous unsupervised binning methods are based on sequence

composition [10–15]. For example, CompostBin [11] computes

for each read its 6-mer distribution, similarly to the process

performed by our component inference algorithm, and clusters

these distributions using spectral methods. The main limitation of

composition-based approaches is that they require relatively long

reads (1000 bp in the case of CompostBin) due to the variance in

sequence properties along the genome. Recently, a coverage-based

method, AbundanceBin, was developed [16] with the advantage of

being able to bin even very short reads (as small as 75 bp). Since it

relies on abundance differences for binning, AbundanceBin is only

able to discern between species whose abundance levels are

considerably different (they report that a ratio of 2:1 is required).

Our algorithm is also coverage-based, but because it operates on

multiple samples it can use abundance difference in any of the

samples to tell between such species.

Assume we are given N metagenomic sequencing samples,

consisting of a total of b bacterial species. We wish to divide the

reads in all samples into b bins that correspond to the species from

which they were sequenced. The binning algorithm, which we

term MultiBin, proceeds as follows:

1. Pool the reads from all the samples together, and perform

pairwise alignment between all pairs. For each pair, check

whether the alignment shows a long overlap between the two

sequence reads, suggesting that the two reads originated from

the same genome. Put differently, we generate a graph

G~(V ,E), where the set V corresponds to the reads, and

the set of edges E corresponds to pairs of reads with a

substantial overlap. In our experiments we demanded an

overlap of at least 50 bases per sequence.

2. Greedily find a maximal independent set in G. We call the

reads in this set tags and denote it by T . Following this process

each read r is either a tag, or is affiliated with a single tag which

substantially overlaps it, TAG½r�. For each tag read t, we

denote by cti the number of reads from sample i which

substantially overlap it (but are not necessarily tagged by it),

and by vt the vector (ct1 . . . ctN ).

3. Perform k-medoids clustering on the set of vectors fvtjt[Tg,
starting from a random choice of b centers. Wait for

convergence and divide the tags into bins according to the

clustering result. Assign every non-tag read r to the same bin to

which TAG½r� was assigned.

In the last stage, the distance between every two vectors ct, ct’

was computed as
Pn

i~1

(cti{ct’i)
2

ctizct’i
. K-medoids clustering was

performed using a local search procedure, in which we start from a

random choice of centers and attempt to improve the solution by

swapping at least one of the centers with another vertex, until no

further improvement can be made.

The initial stage of distance computation takes O(jT j2N), and

each iteration of the clustering algorithm takes O(jT j2b); in our

experiments convergence was reached within three iterations or

less. The running time of the alignment stage, as well as the size of

T , depends on the composition of the mixtures. We note that

clustering is performed only on the tag reads, whose number is

approximately bounded by the sum of the genome sizes in the

samples divided by the read length.

The above procedure assumes that the number of species in the

samples b in known. In the Results section we describe a

procedure for determining the number of species based on

examining the clustering results for different numbers of bins.

Results

We evaluated our methods using both real data and simulated

data. We used the MetaHIT dataset (downloaded from EBI,

accession ERA000116), which includes over 0.5 terabases of

sequence generated from the gut microbiomes of 124 European

individuals using the Illumina Genome Analyzer technology. The

average amount of sequence per individual is 4.5 gigabases, and

the paired-end read length is 44 or 74, depending on the sample.

We used the publicly available raw reads, which were obtained

after filtering human and Illumina adapter contaminant reads and

low quality reads. The sampled individuals vary on the following

variables: country of origin (Denmark/Spain), age, BMI (Body

Mass Index), gender, and status for infectious bowl diseases

(Ulcerative Colitis/Crohn’s disease/disease free). In the context of

this paper all the variables will be referred to as phenotypes of the

human host, although country and age are in fact determinants of

the metagenomic content, instead of being affected by it.

Large differences in k-mer distributions between phenotype
groups

In the initial stage we simply compared, for each k-mer, its

relative abundance in different phenotype groups using a

Joint Analysis of Multiple Metagenomic Samples
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two-sample t-test. Surprisingly, the relative frequencies of many of

the k-mers are significantly correlated with many of the

phenotypes. This is true even for k as small as 3: for example,

the frequency of 69% of the 3-mers and of 61% of the 4-mers

differs between the Spanish and the Danish samples at the 0.05

level. To the best of our knowledge, such dramatic differences in

sequence composition between samples from different countries

have not been observed previously. This effect might be partially

due to differences in sample preparation and DNA extraction

procedures, which are known to exist between the MetaHIT

samples from the two countries; however, we also observed

significant differences across phenotypes within each country: The

frequency of 40% of the 4-mers differs between the Crohn and the

healthy Spanish samples, and the frequency of 18% of the 4-mers

differs between the 10 highest- and lowest-BMI Danish groups.

Permuting the phenotype labels 105 times yielded p-values of

0.0027, 0.0521 respectively for these fractions of rejected nulls.

A possible concern regarding the counts statistics are possible

biases in the GC content distribution of the reads. We note that

unlike different single-genome samples, different metagenomic

samples are not expected to contain the same sequence composition

characteristics, and therefore normalizing for such biases is a

challenging task. We note that in the context of an association study

between a phenotype and the metagenome, it is possible to avoid

this problem using a permutation test, at the expense of power

reduction.

Multi-sample modeling of bacterial stratification
The majority of the correlations between k-mers and pheno-

types are false positives resulting from a hidden stratification

which confounds the k-mer distributions. In order to reveal the

components and to quantify them, we solved the probabilistic

model described in the Methods section. Because the MetaHIT

dataset is large, we used the more efficient version of the algorithm

(which solves Equation 3). The input to the algorithm is a counts

matrix of size [1246136], detailing for each of the 124 samples

how many occurrences of each possible 4-mer it includes (there are

only 136 possible 4-mers, instead of 44~256, because comple-

mentary strings are indistinguishable in the sequencing data).

Since extracting multiple 4-mers from each read did not seem to

considerably change the results in this particular case (this does not

hold in general, as illustrated later), we used only the first, highest-

quality k-mer. The model was solved for three components (B = 3)

by running EM multiple times from random starting points and

choosing P̂P from the maximum-likelihood run. The solution P̂P

provides, for each sample i, the components proportions pi1, pi2

and pi3, such that Vi
P3

b~1 pib~1.

We first tested each of the components b~1,2,3 for correlation

with each of the phenotypes in the following regression model:

yi~c:pibzd ð5Þ

We solved this model for each phenotype y and for each cluster

b, attempting to discover biologically meaningful components.

Simple regression and logistic regression are used for continuous

and dichotomous phenotypes, respectively. As can be seen in

Table 1, highly significant p-values were obtained for predicting

country among healthy individuals and for predicting BMI among

the Danish. These results remain consistent also after correcting

for the other measured phenotypes by entering them as covariates

into the regression models. Results significant at the 0:05 level

were obtained also for predicting colitis and Crohn status among

the Spanish. In the case of Crohn’s disease, the power of the

regression model was limited due to the small number of cases

(only 4), but 104 permutations yielded a p-value of 7:3:10{4.

Figure 1 visually demonstrates the separation of Crohn cases and

controls on the plane defined by the components proportions.

We note that we also solved the model for B~4,5,6,7. In these

cases we found that the smallest per-component p-values, as well

as the proportions of explained phenotypic variance captured by

all components together, were similar to those obtained for B~3.

We therefore report the estimates for three components through-

out the paper.

The components estimates correct for stratification
The results from the last section, showing that the components

proportions are correlated with some of the phenotypes, suggest

they indeed may be used to correct the association between these

phenotypes and long k-mers; we therefore attempted to perform

this correction on 8-mers.

Figure 2 demonstrates such a successful correction. Two

quantile-quantile curves compare the uniform distribution to the

distribution of the p-values obtained by testing association between

all possible 8-mers and BMI within the Danish samples. The black

curve shows the uncorrected p-values, and its shape reflects the

fact that they are highly deflated. The red curve shows the p-values

obtained by adding the components proportions to the regression

equation; this curve approaches the identity, indicating that these

statistics capture the variance in the phenotype explained by most

of the 8-mers.

A comparison between the likelihood models
We compared the precision of the two models, the original and

the refined, utilizing different strategies for k-mer extraction.

Performance was tested on simulated data, each simulation

consisting of 100 mixtures of the following 4 bacterial species:

Listeria monocytogenes (phylum Firmicutes), Bacteroides vulgatus (phy-

lum Bacteroidetes), Bifidobacterium longum (phylum Actinobacteria),

Table 1. Significant correlations between components proportions and phenotypes.

predicted variable component 1 component 2 component 3

country within healthy 9:2:10{5 (1:0:10{7) 5:5:10{3 (2:8:10{3) 2:6:10{1 (2:5:10{1)

BMI within Denmark 9:4:10{3 (8:8:10{3) 6:3:10{1 (6:2:10{1) 7:6:10{3 (7:0:10{3)

Colitis within Spain 3:6:10{2 (2:3:10{2) 1:6:10{1 (1:5:10{1) 2:0:10{1 (4:0:10{1)

Crohn within Spain 1:5:10{2 (7:3:10{4) 2:9:10{1 (2:9:10{1) 3:3:10{2 (8:7:10{3)

The predicted variables were regressed on the proportions of each component separately. The table gives the regression p-values, and in parentheses the empirical
p-values obtained by permuting the components proportions 107 times while keeping the phenotypes constant.
doi:10.1371/journal.pcbi.1002373.t001

Joint Analysis of Multiple Metagenomic Samples

PLoS Computational Biology | www.ploscompbiol.org 6 February 2012 | Volume 8 | Issue 2 | e1002373



Pseudomonas stutzeri (phylum Proteobacteria). The components

distributions matrix P was randomly drawn from the uniform

distribution and normalized to row-stochastic, and the k-mer

distributions matrix F was computed from the actual genomes.

For each sample 1,000 sequencing reads of length 100 bp were

simulated by sampling a bacterium according to P, and then a

random position in the genome of that bacterium as the starting

point of the read. We chose a read length of 100 bp since it is

currently a length that is obtained by most high-throughput

sequencing technologies.

Figure 3 compares the effect of extracting different subgroups of

k-mers along each read and using them either in the original or in

the refined model. Under the original model, extracting multiple

k-mers improves estimation precision of P compared with

extracting only the first k-mer; this is the case even when these

k-mers overlap, and are therefore highly correlated. Shifting to the

refined model greatly improves the estimation precision when

choosing all non-overlapping k-mers along the read; however,

even better results are obtained when using only nine sparsely

dispersed k-mers along the read, as using a small number of

distant k-mers decreases the dependencies of k-mer sequence

between and within reads.

A comparison between PLSA and PCA
PLSA is a dimensionality reduction method, and we therefore

compared its performance to the widely used principal component

analysis (PCA). PCA has been extensively used in metagenomic

studies [2,5] for sample visualization and classification. We used

the simplified setting in which the counts matrix n is generated

from mixtures of multinomials: Setting N~100,B~3,jKj~256
we generated P and F by drawing their entries from the uniform

distribution followed by normalizing to row-stochastic, and then

generated the counts matrix n by sampling each row ni� according

to the multinomial distribution specified in (P � F)i�, with varying

numbers of counts per sample.

Both PLSA and PCA were tested in the task of estimating the

matrix P. Since PCA operates with no stochasticity constraints, we

estimates precision as the average squared correlation coefficient (r2)

between the true vectors p�1,p�2,p�3 and either the three strongest

principal components (for PCA) or the vectors p̂p�1,p̂p�2,p̂p�3 (for

PLSA). For both methods we chose the ordering of the components

that yielded the highest score.

Figure 4 shows that PLSA’s estimates of P are considerably

more accurate than those obtained by PCA. This result confirms

that PLSA is indeed a more appropriate method for characterizing

mixture components in our context.

Joint binning over multiple samples
Nine datasets, each consisting of five metagenomic samples,

were generated using MetaSim [27]. All samples in a given dataset

contained the same set of bacterial species in different, randomly

drawn proportions. The datasets differed in the number of species

they contain, ranging from 2 species to 10 species in each sample

of the most complex dataset. The species distribution of a sample

containing 2vk species was generated incrementally by adding a

random number sampled uniformly from [0,1] to the species

proportions of an existing k{1 sample and normalizing to 1. In

the first experiment we generated 100,000 reads of length 400 bp

from each sample, and in the second experiment 400,000 reads of

length 75 bp each. Overlaps between reads were determined by

running BLAT [28] and requiring an exact match at the edges of

the reads; the BLAT parameters we used restricted the results to

matches of length *50 bp and above. Precision was computed as

the fraction of reads assigned to the correct species, averaged over

all species.

We compared the precision obtained by MultiBin to the

performance of AbundanceBin, a program implementing the

equivalent coverage-based approach which was shown to perform

precise binning of species exhibiting different abundance levels

using reads of lengths 400 and 75 bp. AbundanceBin operates on

single samples only, and therefore was run separately on each

sample, while MultiBin was run on all five samples in each dataset

simultaneously. We note that the separate execution of Abundan-

ceBin conveys no information about the correspondence between

the bins across samples, and so we chose the best matching

between the bins and the species in each sample so as to maximize

the total precision.

As can be seen in Figure 5, MultiBin performs better than

AbundanceBin over both read lengths and over all dataset

complexities. For the 400 bp reads MultiBin maintains a precision

of over 0.8 even for mixtures of five species. MultiBin is also able

to bin the 75 bp reads, although with lesser success; we note

that the ability to bin short reads is unique to coverage-based

approaches, and that in principle there is no advantage in having

longer reads, assuming the coverage is high enough. As for

AbundanceBin, its performance on the simple mixtures exhibits

high variation between samples because of its reliance on large

abundance differences within each sample. AbundanceBin’s

performance also deteriorates more rapidly as the number of

species per sample increases compared with MultiBin.

We went on to evaluate MultiBin under the realistic scenario in

which the reads have sequencing errors. To do so, we adjusted the

alignment stage of MultiBin, currently performed by BLAT, to be

more permissive. We tested this modification by again generating

for the above datasets 100,000 reads of length 400 bp, this time

introducing base substitutions into the reads. When the substitu-

tion rate was increased to 2% and then to 5%, the precision for

mixtures of two species decreased from 1.0000 to 0.9975 and then

to 0.9966. Overall we conclude that the effect of these errors is not

Figure 1. Crohn’s disease status separates with components
proportions. Each marker corresponds to an individual, red for Crohn-
free and filled black for Crohn cases. The markers are positioned on the
two-dimensional plane defined by the components proportions (there
are three components but only two dimensions because the
proportions sum to 1). The Crohn-free individual at the bottom part
of the figure is a colitis case.
doi:10.1371/journal.pcbi.1002373.g001
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dramatic, and that for realistic error rates they could be largely

moderated by adjusting the alignment procedure.

We note that integrating information across samples enables

MultiBin to perform precise binning even when the variance in

species distribution across the samples is relatively small. For

example, when simulating 400 bp reads from five nearly-balanced

mixtures of two species - the relative abundance of the more

abundant species were 0.57, 0.55, 0.70, 0.53 and 0.56 -

AbundanceBin still obtained a precision of 0.93. These results

also demonstrate that MultiBin achieves precise binning on nearly-

balanced samples; in contrast, a coverage-based method which did

not integrate information across samples would produce extremely

poor results on each of these samples alone.

Determining the number of clusters is an issue widely explored

in the literature, and particularly, several approaches exist and

have been tested for similar problems [29]. We found that running

the algorithm multiple times for different values of b, measuring

the Hartigan index [29,30] for each value and choosing the value

at which the index decreases sharply and reaches a plateau gave

accurate results, as long as the binning itself was accurate enough

(precision of *0:8 and above).

Sample multiplicity in the design phase
Our results so far demonstrate that joint modeling of multiple

metagenomic samples can be helpful in the analysis stage. A

further question has to do with the design stage: Given a fixed

coverage depth and a potential pool of related metagenomic

samples, how many of the samples should be sequenced in order to

achieve optimal characterization of the underlying microbial

composition? There seems to be a tradeoff between sequencing

with high coverage a small number of samples and the superficial

sequencing of many samples. We tested this tradeoff in both the

components estimation problem and the binning task.

For components estimation, our task is to best characterize the

components, or in other words to estimate the F matrix; the P
matrix varies with the number of samples and therefore cannot be

compared here. We simulated instances of the proposed

probabilistic model by uniformly drawing the P and F matrices

followed by normalization to row-stochastic, and then drawing

observations from the corresponding multinomial distributions.

We used B~4 components, each defined by a multinomial

distribution over 44~256 possible results. Initially, P was defined

for 1,000 samples, and for each sample 1,000 counts were drawn.

The model was then solved for a decreasing number of samples by

joining samples together to obtain 1000, 500, 200, 100, 50, 20, 10,

5, 2 and 1 samples. As can be seen in Figure 6(a), the optimal

estimation of F was achieved for 50 samples, each including

20,000 counts: Increasing the number of samples further past this

point does not allow enough data to be gathered from each

sample, resulting in a decrease in performance.

For the binning task, we ran our algorithm on mixtures of 15

species and reads of length 400 bp. Due to efficiency considerations

Figure 2. Association between 8-mers relative abundances and BMI can be corrected using the components proportions. Quantile-
quantile curves comparing the uniform distribution to the distribution of the p-values for association between all 8-mers and BMI within the Danish
samples. The uncorrected p-values are highly deflated (black), indicating that the abundance of many 8-mers is correlated with BMI. However, when
the components proportions are added the the regression equation (red), the correlation disappears for most 8-mers.
doi:10.1371/journal.pcbi.1002373.g002
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we did not produce actual reads using MetaSim, but instead drew

read start positions randomly along the genomes, and determined

an overlap for reads which physically overlapped by more than

100 bp at the edges. Figure 6(b) shows the resulting precision when

binning is performed over a fixed number of 8,192,000 reads

allocated to an increasing number of samples, in which the species

Figure 3. Strategies for k-mer choice under the different models. Error is measured as the sum of squared differences between true and
estimated P matrices. The plot presents, for different error thresholds, the number of runs out of 100 which yielded a precision at least as small as the
threshold. Using the original model, we extracted from each 100 bp read either the first k-mer, 9 sparely dispersed k-mer along it, 24 non-
overlapping k-mers or 96 overlapping k-mers. Extracting multiple k-mers can be seen to increase precision considerably. Shifting to the refined
model yields an even better precision; since this model is more sensitive to dependencies between k-mers, extracting only the fewer dispersed k-
mers is preferable over extracting all non-overlapping k-mers.
doi:10.1371/journal.pcbi.1002373.g003

Figure 4. PLSA approximates mixture coefficient better than PCA. PCA and PLSA were performed on a simulated counts matrix n with
N~100,B~3,jKj~256 and different number of per-sample counts. The plot shows the average squared correlation coefficient between the true
vectors p�1,p�2,p�3 and the three strongest principal components (in the case of PCA) or PLSA estimates p̂p�1,p̂p�2,p̂p�3 . For each per-sample counts value
20 experiments were performed, and the plot gives the mean result and the standard error of the mean. The estimates obtained by PLSA show higher
correlation with the true mixture proportions.
doi:10.1371/journal.pcbi.1002373.g004
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proportions are again uniformly drawn. The highest precision is

obtained for 32 samples.

Both plots demonstrate that sample multiplicity is an advantage

given a fixed coverage: as long as the per-sample coverage is

reasonable, allocating the sequencing reads to as many samples as

possible improves components characterization and binning precision.

Discussion

We demonstrated the advantage in joint modeling of multiple

metagenomic samples, by showing that it allows the unsupervised

inference of hidden genetic component, and increases the precision

of coverage-based binning. This advantage holds for both the

analysis and the design stage; as for the latter, the results suggest that

when wishing to characterize a given metagenomic sample, it is

useful to divide the coverage between additional samples from

similar environments. It might also be possible to apply a biological

or chemical treatment to some of the samples, which would further

accentuate the differences between them; when the samples are

analyzed jointly, these differences are expected to further enhance

performance. Similarly, sequencing data available from previous

experiments can be used to improve the analysis of new samples. A

similar tradeoff between the number of samples and per-sample

coverage has been observed for testing the power of rare variant

Figure 5. Simultaneous binning over multiple samples achieves higher precision compared with the equivalent single-sample
approach. MultiBin and AbundanceBin were both run on datasets of increasing complexity. Each dataset is composed of 5 mixtures of the specified
number of species. The specified precision is the proportion of reads correctly assigned to a bin, averaged over all species. For MultiBin (red) the
curves show average precision over 10 random starts of the clustering algorithm, and the error bars give the standard error of the mean. For
AbundanceBin (blue) the curves show the average precision over the 5 samples in the dataset, and the dashed lines give the highest and lowest
result of the 5. MultiBin achieves consistently better precision over both read lengths and over all sample complexities. AbundanceBin’s performance
exhibits high between-sample variability, and also deteriorate more rapidly as the number of species increase.
doi:10.1371/journal.pcbi.1002373.g005

Figure 6. Increasing the number of samples for a fixed depth of coverage improves both components characterization and binning
precision. Left: A fixed number of 106 counts were generated from a model defined by uniformly drawn P and F matrices using B~4,jKj~256.
The value of N , the number of samples, varied from 1 to 1000, and 100 trials were performed for each value. The highest average precision of F
estimation is obtained for N~50. Right: A fixed number of 8,192,000 reads of length 400 bp were sampled from different numbers of samples, each
consisting of 15 species in uniformly drawn proportions. The smallest average error over all samples was obtained when 32 samples are sequenced.
In both plots the error bars give the standard error of the mean.
doi:10.1371/journal.pcbi.1002373.g006
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discovery in sequencing data [31], and sample multiplicity is likely

to become a key issue in the future design of both standard and

metagenomic sequencing studies.

We note that the components estimates obtained by solving the

probabilistic model are interesting by themselves, outside of the

context of association correction; particularly, they can allow for

the characterization of variability patterns in metagenomic

samples and for sample classification. Different estimates will be

obtained by setting the parameters k and B to different values; our

choice of k~4 and B~3 was meant to capture a high-level

division, possibly taxonomic, of the microbial population, as it is

known that bacterial phyla have characteristic sequence compo-

sition. A recent paper [5] identified metagenomic variability

components using a supervised approach and divided the Danish

samples accordingly to discrete classes termed enterotypes; interest-

ingly, there are some correlations between these enterotypes and

the components we obtain. For example, samples belonging to the

first enterotype have a low proportion of the fourth component (p-

value = 1:53:10{6) when solving the model for k~4 and B~4,

and those belonging to the second enterotype have a low

proportion of the first component (6:95:10{4) when solving the

model for k~4 and B~3. However, as explained in the Methods,

our algorithm is fundamentally different from the PCA used to

identify the enterotypes, and is expected to yield components of

different nature, on top of it being unsupervised.

As for the proposed binning algorithm, unlike most other

algorithms it can be used on datasets containing short reads, since

the reads need only be long enough so as to determine unique

sequence overlaps between them. In addition, the algorithm can

be further improved to use not only coverage information but also

other features, such as sequence composition, by adding them to

the vectors on which clustering is performed.

Lastly, the implementation of the proposed association test for the

MetaHIT dataset was limited by the sequencing quality, which

forced us to extract only the first k-mer from each read and therefore

to examine only relatively short k-mers (k~8), otherwise the counts

data would become too sparse. We believe that this problem could

be addressed by the integration of sequencing uncertainties into the

counts data. With the expected improvements in high-throughput

sequencing technology in terms of read length and read accuracy,

these issues may be of lesser importance in the future.

Acknowledgments

We wish to thank Dr. Junjie Qin from BGI-Shenzhen bioinformatics

center for assisting us in accessing the BGI dataset, and for providing us

with detailed explanations regarding the data generation process.

Author Contributions

Conceived and designed the experiments: YB EH. Performed the

experiments: YB. Analyzed the data: YB. Wrote the paper: YB EH.

References

1. Rusch D, Halpern A, Sutton G, Heidelberg K, Williamson S, et al. (2007) The
sorcerer II global ocean sampling expedition: northwest atlantic through eastern

tropical pacific. PLoS Bio 5: e77.
2. Qin J, Li R, Raes J, Arumugam M, Burgdorf K, et al. (2010) A human gut

microbial gene catalogue established by metagenomic sequencing. Nature 464:

59–65.
3. Huson D, Auch A, Qi J, Schuster S (2007) MEGAN analysis of metagenomic

data. Genome Res 17: 377.
4. Hamady M, Walker J, Harris J, Gold N, Knight R (2008) Error-correcting

barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat
Methods 5: 235–237.

5. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011)

Enterotypes of the human gut microbiome. Nature 473: 174–180.
6. Karlin S, Mrazek J, Campbell A (1997) Compositional biases of bacterial

genomes and evolutionary implications. J Bacteriol 179: 3899.
7. Takahashi M, Kryukov K, Saitou N (2009) Estimation of bacterial species

phylogeny through oligonucleotide frequency distances. Genomics 93: 525–533.

8. Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the
22nd annual international ACM SIGIR conference on Research and develop-

ment in information retrieval;15–19 August 1999; Berkeley, California, United
States. SIGIR 99. Available: http://dl.acm.org/citation.cfm?id = 312649.

ACM. pp 50–57.
9. Meinicke P, Aßhauer K, Lingner T (2011) Mixture models for analysis of the

taxonomic composition of metagenomes. Bioinformatics 27: 1618.

10. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner F (2004) TETRA: a
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