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Abstract

One of the most obvious phenotypes of a cell is its metabolic activity, which is defined by the fluxes in the metabolic
network. Although experimental methods to determine intracellular fluxes are well established, only a limited number of
fluxes can be resolved. Especially in eukaryotes such as yeast, compartmentalization and the existence of many parallel
routes render exact flux analysis impossible using current methods. To gain more insight into the metabolic operation of S.
cerevisiae we developed a new computational approach where we characterize the flux solution space by determining
elementary flux modes (EFMs) that are subsequently classified as thermodynamically feasible or infeasible on the basis of
experimental metabolome data. This allows us to provably rule out the contribution of certain EFMs to the in vivo flux
distribution. From the 71 million EFMs in a medium size metabolic network of S. cerevisiae, we classified 54% as
thermodynamically feasible. By comparing the thermodynamically feasible and infeasible EFMs, we could identify reaction
combinations that span the cytosol and mitochondrion and, as a system, cannot operate under the investigated glucose
batch conditions. Besides conclusions on single reactions, we found that thermodynamic constraints prevent the import of
redox cofactor equivalents into the mitochondrion due to limits on compartmental cofactor concentrations. Our novel
approach of incorporating quantitative metabolite concentrations into the analysis of the space of all stoichiometrically
feasible flux distributions allows generating new insights into the system-level operation of the intracellular fluxes without
making assumptions on metabolic objectives of the cell.
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Introduction

Metabolic fluxes give immediate insights into the metabolism of a

cell [1,2]. Metabolic flux analysis has proven to be useful, for

example for the determination of enzyme functions [3], for the

identification of regulatory mechanisms in response to environ-

mental perturbations [4], or as a tool in metabolic engineering [5].

The most common method to quantify metabolic fluxes uses 13C
labeled substrates, and the measured label distribution in intracel-

lular metabolites is interpreted together with measured uptake and

production rates by means of a metabolic network model [6].

Despite successful quantification of fluxes with 13C flux analysis

in different conditions, the method has several limitations. For

example, it is limited to the main branches in central carbon

metabolism and fluxes cannot be resolved per compartment [7],

despite compartmentation being a highly relevant aspect of

eukaryotes [8]. Moreover, today’s 13C flux analysis rests on a

number of a priori assumptions, e.g. on reaction reversibilities or

on relevant parts of the network [7,9].

To improve flux quantification, we need additional constraints

on the possible flux distributions in a metabolic network. In

stoichiometric network analysis, the metabolic network is modeled

as a collection of biochemical reactions where all internal

metabolite concentrations are assumed constant [10]. Next to

the typical constraints, such as uptake and excretion rates, reaction

reversibilities and maximum flux capacities, the field recently

began to incorporate thermodynamic information, whereby

statements on feasibility of reaction fluxes or flux distributions

can be made based on calculation of changes in Gibbs energy

using metabolite concentrations [11–13]. For example, using flux

balance analysis (FBA) and related approaches, metabolite

concentrations were used as additional constraints to predict

fluxes in the non-compartmentalized organism E. coli [14,15] or in

a model of liver metabolism [16].

Here, we develop a novel approach to integrate metabolite data

into metabolic network flux analysis, to get additional insight into

the compartmentalized flux physiology of Saccharomyces cerevisiae.

The method combines network embedded thermodynamic (NET)

analysis [12], elementary flux mode (EFM) analysis [17–19], and

experimentally determined metabolome data. We employ EFM

analysis instead of flux balance analysis because the collection of

the generated flux modes can yield insight into all feasible flux

distributions, as compared to the single thermodynamically

feasible flux solution that is obtained with thermodynamically

constrained FBA. Additionally, assumptions on a metabolic

objective function of the cell are not required.
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Our new approach to analyze the compartmentalized central

metabolic network of S. cerevisiae using quantitative metabolite

data acquired under glucose batch growth conditions allowed us

to generate novel insight into the system-level causalities

underlying the intercompartmental redox metabolism. Specifi-

cally we show that the NADz and NADH concentrations in the

cytosol and the mitochondrion do not allow for the ethanol-

acetaldehyde redox shuttle to be active under the investigated

condition. Further, we identified a number of maximal reaction

activities that could be used as constraints for 13C flux analysis or

FBA. We envision that our method becomes a useful tool to

unravel system-level insights about a complex metabolic system

from metabolome data.

Results

Our approach uses elementary flux modes (EFMs) to describe

metabolic flux distributions. The concept of EFMs is well known

for stoichiometric network analysis, and it provides a way to

explore the flux solution space of a metabolic network that is

commonly addressed with flux balance analysis (FBA). With all the

EFMs of a metabolic network, any stoichiometrically possible flux

distribution can be obtained by a non-negative linear combination

of the EFMs [20]. Since we want to evaluate only thermodynam-

ically feasible flux distributions, we demonstrate, as a first step

towards the development of our approach, a new property of

EFMs, which is that every thermodynamically feasible flux

distribution is a non-negative linear combination of thermody-

namically feasible EFMs.

All thermodynamically feasible flux distributions can be
generated by the set of thermodynamically feasible EFMs

The mass balanced flux solution space of a stoichiometric

metabolic network can be described with a non-negative linear

combination of its EFMs:

v~
X

i

aiei where ai§0, ð1Þ

where any flux distribution v is a sum of EFMs ei with coefficients

ai.

As we show in the proof provided in Text S1, a thermody-

namically feasible flux distribution only consists of thermodynam-

ically feasible EFMs:

vfeas~
X

i[feas

aiei where ai§0, ð2Þ

where the thermodynamically feasible flux distribution vfeas is only

composed of EFMs from the feasible set, i [ feas.

The mathematical proof demonstrates that by eliminating

infeasible EFMs we do not loose feasible flux distributions, because

any feasible flux distribution can be composed of only feasible

EFMs. Specifically, in the hypothetical case that an infeasible EFM

is part of a feasible flux distribution it must involve a cancellation

or directionality change of a specific reversible reaction. In this

case, the flux distribution can be decomposed into one or more

feasible EFMs, and a feasible combination of an infeasible EFM

with another EFM. The combination of the infeasible EFM and

another EFM must then be either a feasible EFM by itself, or it

must be possible to achieve the feasible combination by other

feasible EFMs. Hence, Eq. (2) allows us to exclude thermody-

namically infeasible EFMs from the complete set of EFMs without

excluding thermodynamically feasible flux distributions. It is

important to note that the resulting flux solution space defined

by the feasible EFMs can still contain infeasible flux solutions

because it is possible that the combination of multiple feasible

EFMs leads to an infeasible flux distribution.

From network stoichiometry to EFMs and
thermodynamic classification

Exploiting that EFMs allow us to exclude thermodynamically

infeasible EFMs, we aimed at developing an approach to generate

novel insights into the complex flux physiology of the central

metabolism of the yeast S. cerevisiae. Therefore, we assembled a 230

reaction stoichiometric network of its central carbon metabolism

and amino acid synthesis pathways (cf. Materials and Methods)

encompassing the cytosolic and mitochondrial compartments and

many parallel pathways. With our approach we aim to obtain

additional insight into the metabolic network operation, therefore

we build upon current knowledge by defining the reversibilities in

our model as they are defined in the original model [21].

First, we needed to calculate all EFMs. As the EFM calculation

is computationally demanding, we initially applied steps to

constrain the mass-balanced solution space as much as possible

upfront, before we started enumerating EFMs (Fig. 1). Thus, in a

first step, we performed flux variability analysis (FVA) [22] on the

basis of the measured uptake and production rates of external

compounds and biomass, to determine the reversibility of each

reaction under the investigated physiological conditions, that is, for

growth on glucose. From FVA, we obtain a minimum and

maximum achievable flux for each reaction. A reaction is

reversible if both a negative and positive flux can be achieved,

else it is unidirectional. Reactions that have a minimum and

maximum flux that are either positive or negative, and cannot be

inactive, are reactions that are always active in the respective

direction. Using this approach, we could classify 67 initially

reversible reactions as unidirectional (Fig. 2, Dataset S1).

Next, we employed measured metabolite concentrations from

glucose batch cultures, and NET analysis to identify additional

reaction irreversibilities [12,23]. For the metabolite data, we

assembled published and unpublished data from glucose batch

experiments, and generated a consensus data set to define lower

and upper concentration limits for 55 metabolites (see Materials

and Methods and Dataset S2). For NET analysis, we used the

Author Summary

Fluxes in metabolic pathways are a highly informative
aspect of an organism’s phenotype. The experimental
determination of such fluxes is well established and has
proven very useful. To address some of the limitations of
experimental flux analysis, such as when the cell is divided
in multiple compartments, stoichiometric modeling pro-
vides a valuable addition. The approach that we take is
based on stoichiometric modeling where we consider the
thermodynamic feasibility of many different possible
routes through the metabolic network of Saccharomyces
cerevisiae using experimentally determined metabolite
concentrations. We show that next to conclusions on
single biochemical reactions in the metabolic network, we
obtain system-level insights on thermodynamically infea-
sible flux patterns. We found that the compartmental
concentrations of NADz and NADH are the causes for the
system-level infeasibilities. With the current advances in
quantitative metabolomics and biochemical thermody-
namics, we envision that the presented method will help
gaining more insight into complex metabolic systems.

System-Level Insights from Thermodynamics and EFMs
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reaction activities inferred from FVA. With the consensus

metabolite data set, we obtained constraints on the reversibility

of three additional reactions (see Fig. 2). Another iteration of FVA

and NET analysis with the obtained constraints as input did not

yield any further constraints.

For the obtained condition-specific constrained metabolic

network, we computed the EFMs and obtained 71.266.960 EFMs.

Using NET analysis and the consensus metabolite data set, we

classified 38.420.207 (54%) EFMs as feasible and 32.846.753

(46%) EFMs as infeasible. Assuming that the flux solution space in

the metabolic network of an organism can be approximated by the

number of EFMs, our result shows that roughly at most half of the

solution space is thermodynamically feasible.

From EFMs to flux insight
With the finding that 54% of all the EFMs are thermodynam-

ically feasible we reduced the number of EFMs that can constitute

a thermodynamically feasible flux distribution considerably. In a

first analysis step towards generating insights into the flux

distribution, we searched the feasible EFM set for reactions that

only use a subset of the possible reaction directions compared to

the complete set of EFMs. For each reaction in each EFM we

determined whether a backward, inactive or forward reaction

activity was used. Then, the possible reaction activities for each

reaction were compared between the complete set of EFMs and

the feasible set of EFMs.

Here, we found that the oxaloacetate transport from the

mitochondrion to the cytosol is never used in an EFM of the

feasible set, meaning that it has to be inactive under the

investigated growth condition. Indeed, we find no contradicting

evidence for the prediction when comparing with the experimental

observation that a knock-out of the corresponding gene OAC1,

whose translated protein is responsible for the respective

oxaloacetate transport reaction, does not have an effect on growth

rate under glucose batch conditions [24,25]. Further, as we found

that all EFMs with acetaldehyde transport out of the mitochon-

drion are infeasible, we conclude that during growth on glucose,

acetaldehyde can only be transported into the mitochondrion. It is

important to note that the EFMs with active oxaloacetate

transport, or acetaldehyde transport out of the mitochondrion,

are not infeasible because of the metabolite concentration

constraints on the respective single reaction only, since single

reaction infeasibilities are removed in the first NET analysis step

before EFM generation (see Fig. 1). Instead, as we will show later,

the infeasibility is the result of a system of coupled reaction

activities, where all individual reactions need to be thermody-

namically feasible simultaneously.

Next, we wanted to test whether the feasible set of EFMs differs

from the infeasible set in terms of reaction rates. Such a

comparison is possible by normalizing the reaction rates in each

EFM to the glucose uptake rate of the EFM (all EFMs have

Figure 1. Overview of procedure to identify thermodynamical-
ly feasible EFMs. We use a metabolic network model of S. cerevisiae
together with physiological data (e.g., growth rate, glucose uptake,
ethanol production) in flux variability analysis (FVA) to determine
reaction reversibilities and reaction activities for the specific conditions.
Subsequently, we apply NET analysis to determine additional reaction
direction constraints based on the activities of reactions that are active
for all flux distributions. With the resulting condition specific reaction
directionalities, we calculate all the EFMs for the metabolic network.
Finally, we use quantitative metabolite data to test the reaction
activities of each EFM for thermodynamic feasibility.
doi:10.1371/journal.pcbi.1002415.g001

Figure 2. Overview of the main reactions in the metabolic
model of S. cerevisiae. The shaded area indicates the mitochondrion.
The colors of the directed arrows indicate from which information a
constraint was added. The blue cross indicates the oxaloacetate
transported that is predicted to be inactive after analyzing the
thermodynamically feasible EFMs. For a list of metabolite names see
Dataset S2.
doi:10.1371/journal.pcbi.1002415.g002

System-Level Insights from Thermodynamics and EFMs
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glucose uptake, EFMs without glucose uptake are internal cycles

and they were removed because they are physiologically

meaningless [26]). Principal component analysis (PCA) of the

normalized EFMs shows a clear difference between the feasible

and infeasible EFMs in principal component 2 (PC 2 in Fig. 3).

The reactions with the highest loadings in this component are

alcohol dehydrogenase in both the cytosol and the mitochondrion

(ALCD2x, ALCD2m) and acetaldehyde and ethanol transport to

the mitochondrion (ACALDtm, ETOHtm), and these reactions

are likely involved in causing thermodynamic infeasibilities. Note,

that although there is a separation between feasible and infeasible

EFMs because there are no feasible EFMs in the center of the

graph, by combination of feasible EFMs it could still be possible to

obtain a feasible flux distribution that would be projected in this

area of the PCA. Therefore, the loadings of PC1 are not

considered.

Next, we searched for the highest and lowest rate of each

reaction in the complete set of EFMs and in the feasible set of

EFMs to define the flux ranges that can be achieved in terms of

flux per unit of glucose uptake. Any flux value in this range can in

principle be achieved through a combination of EFMs. When

comparing the flux ranges that can be realized by the feasible

EFMs with the flux ranges of the complete set of EFMs, we find

that eight reactions cannot assume the full range for thermody-

namic reasons (see Fig. 4), with four of these reactions already

having shown high loadings in the second principal component

(see Fig. 3). These quantitative flux constraints result from

metabolite concentrations and thermodynamics, and can be

applied as constraints in flux balance analysis.

Causes for infeasibility. Next, we aimed to identify the

causes for the infeasibility of EFMs. In general, the infeasibility of

an EFM is caused by a combination of multiple reaction activities

that conflict with the metabolite concentrations due to

thermodynamics. We refer to these infeasible combinations of

reaction activities as patterns. It is interesting to determine such

patterns as they subsequently allow biological interpretation.

All identified six patterns involve one of the two earlier

mentioned transport reactions (mitochondrial oxaloacetate and

acetaldehyde transport) (see Fig. 5). The inactivity of oxaloacetate

transport is due to the infeasibility of patterns 1 and 4. In pattern 2

and 3, we find that a part of the pattern is the ethanol-

acetaldehyde redox shuttle, which ‘‘transports’’ NADH from the

cytoplasm into the mitochondrion. This means that under the

investigated glucose batch conditions, a flux distribution with an

active ethanol-acetaldehyde redox shuttle is thermodynamically

infeasible when operating together with either triosephosphate

isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase

(GAPD) or phosphoglycerate dehydrogenase (PGCD) in the

directions as we expect them to occur during growth on glucose

as the sole carbon source (Fig. 5). The ethanol-acetaldehyde redox

shuttle itself (i.e., only the combination of the activities of the

mitochondrial and cytosolic alcohol dehydrogenases and the

transporters) is feasible. However, it always occurs in EFMs in

combination with the activities of either the TPI and GAPD or

PGCD reactions, which makes the EFM as a system infeasible.

The biological meaning of the system-level constraints of patterns

2 and 3 corresponds well with what is known about yeast

metabolism in glucose batch growth where glucose is mainly

converted to ethanol. Thus, the NADH produced in the

conversion of glyceraldehyde-3-phosphate to 1,3-biphosphoglyce-

rate, is re-oxidized again to NADz in the conversion of

acetaldehyde to ethanol [27].

The identified patterns can also be used as possible constraints

in FBA approaches. To confirm whether using such a constraint

would be of value, we checked for the presence of the patterns in

FBA predictions. Interestingly, it turns out that the identified

infeasible flux patterns do not occur in FBA-predicted flux

distributions using the objective function ‘‘maximization of the

ratio of ATP production over the sum of squared fluxes’’ that was

identified to be suitable for glucose batch conditions [28]. In

contrast, FBA solutions obtained with the objective functions

maximization of ATP production [29], which was found to be

Figure 3. Principal component analysis on normalized EFMs
represented in a matrix with each EFM as a sample and each
reaction as a variable. All reaction rates are normalized to the
glucose uptake rate of the respective EFM. The projection of the data
(dots) for principal components one and two (PC 1 and PC 2), and the
coefficients of the highest loadings in component 2 (labeled vectors)
are shown. The reactions with highest loadings in PC 2 are likely to be
involved in the causes for infeasibility of EFMs. One million EFMs were
sampled to perform the PCA, multiple repeats with random sampling
gave similar results.
doi:10.1371/journal.pcbi.1002415.g003

Figure 4. Ranges of possible flux values for eight reactions for
which a reduction in the feasible flux range was found, during
growth on glucose. The dark shaded bars show the possible flux
range obtained from all EFMs, while the light shaded bars show the
ranges that are obtained from the feasible EFMs. In the reaction
formulas the [c] and [m] indicate that the metabolite or overall reaction
occur in the cytosol or mitochondrion, respectively. Abbreviations:
acald (acetaldehyde), etoh (ethanol), mal-L (malic acid), pi (phosphate),
h (proton), nad (NADz), nadh (NADH), oaa (oxaloacetic acid).
doi:10.1371/journal.pcbi.1002415.g004
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suitable for glucose growth in a chemostat, and maximization of

biomass production do contradict the patterns (see Text S2).

Thermodynamic constraints in redox metabo-

lism. Strikingly, all the patterns in Fig. 5 involve NAD(H)

consuming/producing reactions in both the cytosol and the

mitochondrion, which may point to infeasibilities in redox

reactions. Therefore, we can ask, what makes the patterns in

Fig. 5, and specifically the ethanol-acetaldehyde redox shuttle,

infeasible, and what effect does this have on redox metabolism?

To address this question, we analyzed the individual metabolite

concentration constraints by releasing one concentration con-

straint at a time. We found that the concentrations of NADz and

NADH in both the cytosol and the mitochondrion cannot have

values that agree with both the metabolite data and the

directionality constraints. For example, for pattern 3 to satisfy

the reaction direction constraints the required NADH concentra-

tion in the cytosol needs to be low (between 0.1 mM and

0.13 mM), while according to the concentration data constraints

the concentration needs to be between 0.23 mM and 1.6 mM. It is

important to note that the constraints on compartmental

concentrations are obtained by only constraining the sum of

metabolites that occur in multiple compartments, thereby leaving

the compartmental distribution of such metabolites free.

To find out how the applied thermodynamic constraints affect

redox metabolism we analyzed all reactions involved in NADH

redox metabolism in more detail. Yeast has multiple ways to

oxidize NADH and to pass the electrons to the electron transport

chain, both in the cytosol and the mitochondrion [30]. In the

cytosol, the mitochondrial membrane bound external NADH

dehydrogenase 1 and 2 complex (Nde1p/Nde2p), and the system

involving glycerol-3-phosphate dehydrogenases (Gut2p, Gpd1p/

Gpd2p), are mainly responsible for oxidation of NADH [31]. In

the mitochondrion, NADH is oxidized by the internal NADH

dehydrogenase (Ndi1p) [32]. Although yeast has a transporter that

allows transport of de novo synthesized NADz into the

mitochondrion, transport of NADH between the cytosol and the

mitochondrion does not occur [33]. Therefore, NADH is either

oxidized in the compartment where it was produced, or it is

transported through a shuttle mechanism, such as the ethanol-

acetaldehyde redox shuttle [27,34]. It is generally unclear what the

relative contributions of these systems are to the overall oxidation

of NADH, particularly of the NADH produced in the cytosol,

despite thorough investigation [31]. Also, it is difficult to determine

their relative contribution, because upon deletion of either one

system, the other system can (partially) support the oxidation

requirements.

Thus, we determined the rates of the various cytosolic NADH

oxidation mechanisms in every EFM and asked whether there is a

difference between feasible and infeasible EFMs. Fig. 6 shows the

total cytosolic NADH oxidation rate in each EFM against the

respective NADH oxidation rate of a particular reaction, in the

feasible and infeasible EFMs. It can be seen that the highest

capacity to oxidize NADH comes from the external dehydroge-

nase complex (NADH2-u6m in Fig. 6), because only the external

Figure 5. Overview of the six reaction patterns that cause thermodynamic infeasibility of EFMs. The number above each pattern
indicates in how many EFMs the respective pattern occurs, and the number in bracket shows the percentage of the infeasible EFMs that contains the
pattern.
doi:10.1371/journal.pcbi.1002415.g005
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dehydrogenases could facilitate the complete oxidation, and

indeed it was earlier found that the external dehydrogenase

complex is mainly responsible for NADH oxidation in the cytosol

[31]. The maximum total cytosolic NADH oxidation rate of

5.5 mol NADH/mol glucose cannot be reached by any of the

other reactions. Particularly, malate dehydrogenase (MDH) and

alcohol dehydrogenase (ALCD2x) are limited in their oxidation

rate, with a maximum rate of 0.5 mol NADH/mol glucose for

MDH, and a maximum rate of 4 mol/mol for ALCD2x, where

only few EFMs have a rate higher than 2.2 mol/mol. The limits

we find show that, on a quantitative level, redox metabolism is

indeed affected by thermodynamic constraints. Specifically, we

can see that from the known processes involved in the oxidation of

NADH, the system providing the largest capacity for NADH

oxidation is through the external dehydrogenase complex.

Discussion

In this work, we demonstrated that an in vivo thermodynam-

ically feasible metabolic flux distribution is only composed of

thermodynamically feasible elementary flux modes. This EFM

property allowed us to integrate EFMs and NET analysis into a

novel approach to study the system-level properties of complex

metabolic networks on the basis of quantitative metabolome data.

As exemplified with a compartmentalized model of central

metabolism in S. cerevisiae and cell-averaged metabolome data

generated under glucose batch conditions, 46% of the 71.3 million

EFMs were found thermodynamically infeasible, leading to direct

insights into reaction directionalities, to constraints in several

metabolic rates, and to the identification of reaction patterns that

must be inactive due to a thermodynamic infeasibility.

This work builds on earlier work that integrated FBA,

thermodynamics and quantitative metabolite data [14,15], and

extends it by using EFMs, allowing us to identify the reasons

underlying the infeasibilities without making a priori assumptions

on the metabolic objectives of the cell, such as maximization of

biomass production, as is the case with FBA. Additionally, in our

study we considered a compartmented metabolic network of S.

cerevisiae to analyze cell-averaged metabolite data. Notably, the

results we obtain are directly related to compartmentation, as can

be seen from the identified infeasibility patterns that involve both

compartments. The identified infeasibility of the ethanol-acetal-

dehyde redox shuttle has been previously identified using NET

analysis [12] and manual consideration of the system. In this work

we demonstrate that by using the flux patterns that are obtained

from the EFMs we systematically identify such infeasibility

patterns. Although the system-level constraints and their under-

lying causes can be rationalized without using EFMs, we need the

generated EFMs to determine the infeasible patterns that are part

of a stoichiometrically balanced flux distribution. In addition,

because the number of EFMs can be considered approximately

proportional to the flux solution space, we find that roughly half of

the flux solution space is thermodynamically infeasible due to

systems of reaction activities.

With the recently developed new group contribution method to

estimate thermodynamic properties on a genome-scale [35], the

recently increased availability in thermodynamic properties

through experimental methods [36], the advances in quantitative

metabolomics [37] and the now available methods to calculate

EFMs also for large stoichiometric network [38,39], we envision

that the here presented approach will be helpful to shed light on

metabolic flux physiology in more complex metabolic system such

as higher cells simultaneously growing on multiple carbon

substrates, where the applicability of classical flux analysis methods

are still rather limited.

Materials and Methods

Experimental data
We used experimental data on metabolite concentrations for

Saccharomyces cerevisiae obtained from four independent experiments

with at least two replicates [40–42] with equal growth medium but

under different cultivation conditions (bioreactor, shake flask, 96-

well). Based on the data from the independent experiments, we

constructed a consensus data set, where for each metabolite a

minimum and maximum concentration was defined. The

minimum and maximum concentrations were determined from

all the replicates of measurements for each metabolite. To reduce

the effect of outliers on the ranges, when more than 3 replicates

were available, we removed the values higher than the third

quartile +1.5 IQR (inter quartile range), and values lower than the

first quartile 21.5 IQR. Physiological data was obtained for S.

cerevisiae on glucose as carbon source from one of the four

experiments. In Dataset S2 we describe the details of the

experimental conditions of the data sets, the obtained concentra-

tion ranges and physiological data.

Stoichiometric network
The stoichiometric metabolic network model describes the core

central carbon metabolism of S. cerevisiae in the cytosol and

mitochondrion with 230 reactions and 218 metabolites (see

Dataset S3), and was developed on the basis of the genome-scale

metabolic model iND750 that contains 1149 reactions and 646

metabolites [21]. For our model, we selected the cytosolic and

mitochondrial reactions belonging to glycolysis/gluconeogenesis,

pentose-phosphate pathway (PPP), TCA cycle, anaplerosis,

pyruvate metabolism, and oxidative phosphorylation. The revers-

ibility of each reaction was taken from Duarte et al. [21]. A

cytosolic malate synthase was added to complement the glyoxylate

Figure 6. Cytosolic NADH oxidation rates of specific reactions
versus the total cytosolic NADH oxidation rate for EFMs. The
reaction name is shown on each plot, with the reaction name in the
metabolic model in brackets. Every dot represents one or more EFMs at
the respective combination of oxidation rates. A grey shade represents
a combination where both feasible and infeasible EFMs are present. The
rates are normalized to the glucose uptake rate of each EFM.
doi:10.1371/journal.pcbi.1002415.g006

System-Level Insights from Thermodynamics and EFMs
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shunt in the cytosol [43]. A citrate synthase was added to the

cytosol since this is supported by localization studies [44].

To allow the model to synthesize all amino acids that are

required for biomass, we added the following pathways: For L-

alanine, two biosynthetic routes from pyruvate were included:

cytosolic and mitochondrial alanine transaminase reactions, which

were assumed to solely produce but not degrade L-alanine [45,46].

Furthermore, L-glutamate could be produced via three alternative

pathways: cytosolic or mitochondrial NADP-dependent glutamate

dehydrogenase from alpha-ketoglutarate or mitochondrial NAD-

dependent glutamate synthase from alpha-ketoglutarate and

glutamine [47]. For glycine synthesis, we implemented three

pathways such that it could be synthesized in the mitochondria via

(i) alanine-glyoxylate transaminase [48], or in the cytosol by (ii)

glycine hydroxymethyltransferase from serine [49], or (iii) from L-

threonine via threonine aldolase [50]. As the latter reaction was

assumed to be reversible, it could also be used to produce L-

threonine, and such it constitutes a second possibility to produce

L-threonine next to the linear pathway from L-aspartate. For all

other amino acids, the model contains only one linear cytosolic

pathway consisting of consecutive enzymatic reaction steps. Here,

no alternative paths exist or they are excluded based on

biochemical literature as it was done also to construct models for
13C-based flux analysis [45,46].

The model further includes transport reactions across the

mitochondrial membrane for metabolites that participate in reactions

in both the cytosol and the mitochondria. Additional transport

reactions that were not contained in iND750 (i.e. for L-glutamate,

alpha-ketoglutarate, homocitrate, glyoxylate, and 2-oxobutanoate)

were added to properly connect additionally included alternative

pathways for amino acid synthesis to the metabolic network.

The biomass composition was adopted from iND750 besides

that trehalose and glycogen were discarded since carbohydrate

storage was not considered in our model. Lumped reactions for

synthesis of the remaining biomass constituents, i.e. lipids,

nucleotides, and cell wall components from the corresponding

precursors were determined based on the biomass composition as

provided in iND750. In the model, carbon molecules that can be

exchanged with the environment are glucose, glycerol, pyruvate,

acetate, ethanol, succinate, and CO2.

The model is not proton balanced. The reason for this is that it is

close to impossible to do the proton balancing correctly (e.g., for

transport reactions). Thus, we did not want to add any potentially

wrong constraints on the model and therefore did not account for

proton balancing, with one exception. We only balanced the protons

around the respiratory chain by replacing the cytosolic protons

produced and consumed in the reactions CYOR_u6m, CYOOm

and ATPS3m by a unique species ‘‘hcyt’’. As a result, ATP

generated in ATPS3m can only occur through the respiratory chain.

Thermodynamic calculations
With NET analysis we can determine the feasibility of a flux

distribution based on ranges for the concentrations of the involved

metabolites. A flux distribution is thermodynamically infeasible

when one or more reaction activities conflict with the calculated

Gibbs energy of reaction range(s). Conversely, a flux distribution is

feasible when no conflicts are found. It is important to note that a

metabolite concentration is constrained in NET analysis by any

reaction that has the metabolite as a reactant. Therefore, a flux

distribution can be infeasible due to propagated constraints in a

pathway. The NET analysis implementation constrains metabolite

concentrations of metabolites that occur in multiple compartments

as a sum of the compartment specific concentrations, corrected for

their volume. Therefore, the compartmental distribution of such

metabolites is left free. The compartmental volume fractions of the

cytosol and mitochondrion are set to 0.35 and 0.1, respectively.

The NET analysis approach is similar to other thermodynamic

analysis approaches [14,15]. A main difference from other

approaches is that with NET analysis we aim at checking flux

distributions for thermodynamic feasibility, and at estimating

ranges of Gibbs reaction energies and metabolite concentrations.

For NET analysis we used the concentration ranges defined from

the experimental data. For all other metabolites in the network we

assumed a default range with a minimum concentration of

0.0001 mM and a maximum of 120 mM, except for carbon

dioxide (‘‘co2tot’’), phosphate (‘‘pi’’) and diphosphate (‘‘ppi’’) that

were constrained to a range of 1 mM to 100 mM [51,52], and

oxygen (‘‘o2’’) that was constrained to 0.001 mM to 0.1 mM [53].

By using such large metabolite concentration ranges we account for

the noise in the metabolite concentration data and uncertainties in

Gibbs energies of formation. Typical uncertainties in formation

energies are in the order of 0.02–2 kJ/mol [35], which are

overshadowed by variations in metabolite concentration data.

The compartmental pH values were set to 5, 6.5 and 7 for the

external, cytosolic and mitochondrial environment, respectively

[54,55]. The ionic strength was set to 0.15 M for all compartments.

For the correct consideration of transport thermodynamics in NET

analysis, we defined the specific transported species for each

transport reaction where possible, and calculated transport reaction

DG values according to Jol et al. [56].

EFM generation, feasibility analysis and resolving
infeasibility patterns

Computations for FVA, NET analysis and EFM generation

were done using MATLAB (The Mathworks). For optimization of

FVA problems we used the LINDO API library (LINDO Systems

Inc.) and for NET analysis we used anNET [23] in combination

with the LINDO global solver. To generate EFMs we used the

Java implementation from Terzer and Stelling [19] on a quad-core

system (3 GHz) with 128 GB memory. To test the thermodynamic

feasibility of each EFM we used anNET, which was modified to

run in an automated way on a cluster of computers encompassing

on average 60 CPUs (3 GHz). Testing EFMs for thermodynamic

feasibility was computationally intensive and took approximately

14 days.

To find the reaction activity patterns that cause infeasibility, we

considered each infeasible EFM separately and performed an

iterative analysis. In NET analysis of the EFM, we removed

consecutively each reaction’s activity constraint from the NET

analysis optimization and determined the feasibility. If the activity

pattern became thermodynamically feasible, the reaction activity

that was removed was identified as part of the pattern. Then we

continued with removing the next reaction activity, while keeping

the activities that were identified as part of the pattern. We

continued this process for all the reaction activities. This process

led to a set of reaction activities, which is a subset of the activities

in the analyzed EFM, of which the removal of one activity leads

to a feasible system. The set of reaction activities is only infeasible

as a whole system, and no single reaction can be marked

infeasible by itself. All possible infeasible reaction patterns may

not be found when multiple patterns are present in an EFM,

because the order of reaction activity removal determines which

pattern is found. The obtained infeasible patterns cover all the

infeasible EFMs.

Flux balance analysis
Flux balance analysis with maximization of biomass production,

maximization of ATP production and maximization of the ratio of

System-Level Insights from Thermodynamics and EFMs
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ATP production over the sum of squared fluxes was performed

according to Schütz et al. [28] with the physiological data used for

FVA as constraints. The computations were done using MATLAB

(The Mathworks) using the LINDO API library (LINDO Systems

Inc.) for optimization.
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6. Zamboni N, Fendt SM, Rühl M, Sauer U (2009) (13)C-based metabolic flux
analysis. Nat Protoc 4: 878–92.

7. Zamboni N (2010) (13)C metabolic flux analysis in complex systems. Curr Opin
Biotechnol 22: 103–108.

8. Sonnewald U, Schousboe A, Qu H, Waagepetersen HS (2004) Intracellular
metabolic compartmentation assessed by 13C magnetic resonance spectroscopy.

Neurochem Int 45: 305–10.

9. Niklas J, Schneider K, Heinzle E (2010) Metabolic ux analysis in eukaryotes.

Curr Opin Biotechnol 21: 63–9.

10. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis.

Curr Opin Biotechnol 14: 491–496.

11. Pissarra PDN, Nielsen J (1997) Thermodynamics of Metabolic Pathways for

Penicillin Production: Analysis of Thermodynamic Feasibility and Free
Energy Changes During Fed-Batch Cultivation. Biotechnol Prog 13:

156–165.
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