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Abstract

Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective.
We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori
and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a
more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a
simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous
experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each
task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results
indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only
genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in
order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By
adding self-feedback to the network we increase the network’s flexibility and worker specialization evolves under a wider
parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge
when combined with worker specialization.
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Introduction

Division of labor is ubiquitous in nature. The major evolutionary

transitions, such as the separation of germ and soma and the

transition from prokaryotes to eukaryotes, were accompanied by an

increase in division of labor [1]. The transition from solitary to

eusocial in insects encompasses the evolution of a reproductive caste

and a sterile worker caste. Furthermore, division of labor among

sterile workers also evolved, in which different groups of workers

specialize in different functions, such as foraging and brood care [2].

Colony growth and survival is strongly dependent on the

coordinated interaction of a large number of workers. This non-

reproductive division of labor is therefore often considered a major

determinant of the ecological success of eusocial insects and will be

the focus of the work presented here.

Empirical evidence suggests that eusociality has evolved in

associations of close kin [3,4]. Variation in behavioral tendencies

can be found in forced associations of non-social individuals,

leading to incipient forms of division of labor [5,6]. Undoubtedly,

a source of variation is key to generating consistent inter-individual

differences and task specialization [7]. The questions that arise are

how and why such variation arises among close kin. Here we

explore some of the mechanisms and conditions through which

task specialization can evolve in groups of related individuals.

Recent work on division of labor in insect societies has focused

on the self-organization properties of colony behavior. According

to a variety of models [8–12] colony properties emerge from the

behavior of individual workers whose reactions to the environment

is governed by simple rules. The behavioral rules leading to

emergent specialization are probably shaped by natural selection

[10,13], yet only few studies have focused on the evolution of these

rules [14,15]. Previous work focusing on the benefits of task

specialization in other systems (e.g. enzyme-substrate specializa-

tion, coordination in co-viruses) generally disregard the mecha-

nisms underlying it, viewing instead specialists and generalists as

fixed behavioral strategies [16,17]. It is thus important to develop

models that integrate the evolutionary and self-organization

perspective, in order to create a better understanding of division

of labor and its evolution [7].

In previous work, we took the response threshold model [1] as a

starting point for an evolutionary model for division of labor (A.

Duarte, I. Pen, L. Keller and F.J. Weissing, submitted). In the

response threshold model, individuals compare an environmental

stimulus for a task with their response thresholds; they perform the

task if the stimulus is above their threshold, otherwise they remain

idle. Using this predefined behavioral architecture, we allowed the

evolution of threshold values and showed that division of labor can

evolve from a homogeneous population via evolutionary branch-

ing, but only if there are clear fitness benefits of individual

specialization. Our work also revealed that the response threshold

model has the drawback that it imposes severe constraints on the

distribution of workers over tasks.
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Here we look at a more flexible behavioral architecture that is

represented by a simple artificial neural network (ANN). ANNs

simulate the processing of stimuli by individuals, from stimulus

perception by receptor nodes to effector nodes determining the

behavioral output [18,19]. ANNs have been used in evolutionary

robotics to understand the evolution of communication and

cooperation [20–22]. In a recent paper, Lichocki et al. showed

that ANN’s, in comparison to response threshold mechanisms,

allow for more efficient worker allocation through task switching

[23]. Here we examine the effect of the architecture of ANN’s in

worker specialization and worker allocation, in a context where

task switching is detrimental.

In the response threshold model, the response to task-

associated stimuli is determined by task-associated thresholds.

The stimuli, which reflect the colony’s need for work on the

various tasks, change dynamically due to two factors: there is an

inherent tendency for the stimuli to increase, and they are

decreased whenever the corresponding task is performed. We

keep most assumptions of the threshold model but allow the task-

associated stimuli to be processed by an ANN. In principle both

the architecture of the network and the way information is

processed could evolve [24,25], however, we for simplicity, we

focus on predefined architectures (with a fixed number of

receptor and effector nodes) and allow only for the evolution of

connections between the nodes. The stimuli are processed by an

ANN consisting of two receptor nodes and two effector nodes

(Figure 1). In a second part of our study, we keep the same

network structure but allow for the evolution of a feedback from

the effector nodes to the processing of the stimuli (Figure 1C). In

other words, an effect of previous experience on current decisions

can evolve. An effect of previous experience on task preference,

leading to division of labor, has been observed in natural colonies

[26], thus it would be interesting to observe under which

circumstances it could evolve.

We investigate if these slightly more sophisticated mechanisms

for processing input allow for the evolution of adaptive division of

labor. More precisely, we study whether task specialization among

workers can evolve and moreover, whether an appropriate

distribution of workers over tasks can be achieved. Throughout,

the main question is whether, and to what extent, the evolution of

self-organized division of labor is determined by the underlying

architecture of behavior.

Model

The general aspects of the model follow A. Duarte, I. Pen, L.

Keller and F.J. Weissing (subm.). We consider a population of M
colonies, each founded by a single-mated individual that produces

N workers (typically M~100, N~100). Each colony goes

through a work phase consisting of T time steps (T~100), where

all individuals perceive stimuli associated with two tasks and decide

whether to perform one of the tasks or remain idle. The amount of

Author Summary

In insect colonies, different individuals specialize in
different tasks related to colony maintenance and growth.
Unveiling why this division of labor evolved and how
individuals decide which task to take on is crucial for our
understanding of complex group behavior. Here we model
the evolution of general behavioral rules for processing
environmental signals of task need in social insect
colonies, using artificial neural networks. We examine the
patterns of individual specialization that arise in the course
of evolution. Division of labor is likely to evolve if switching
between tasks decreases worker productivity, but the
pattern of division of labor across colonies is highly
dependent on the architecture of the networks consid-
ered. In networks that allow for a feedback of previous
experience on future task choice, division of labor can
evolve across the whole population of colonies. In
networks where this feedback is not allowed, the presence
of division of labor is constrained by the specific genetic
composition of colonies. Network architecture also affects
how fine-tuned the worker allocation to different tasks can
be when the tasks have different requirements.

Figure 1. Architecture of the three types of networks. Stimulus values are perceived by input neurons. The stimuli are then processed by the
network, resulting in an activation energy n for each output neuron. An output neuron is excited whenever the activation energy is larger than the
neuron’s threshold h. (A) Feedforward neural network, equivalent to the architecture encapsulated in the response threshold model, where only
weights w11 and w22 exist. Hence, the activation energy is equal to the perceived stimulus. (B) Feedforward neural network, fully connected. (C)
Recurrent neural network, where self-feedback occurs between activation energies of previous time steps and current activation energies.
doi:10.1371/journal.pcbi.1002430.g001
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work performed and the distribution of workers over tasks

determines the fitness of a colony, which corresponds to the

number of reproductives produced. Selection occurs because the

colonies of a given generation are founded by pairs of

reproductives produced in the previous generation. Hence

colonies where the workers perform their tasks in the most

efficient and coordinated way spread the genes of their foundresses

most effectively.

In line with [8], we assume that there are two tasks and two task-

associated stimuli. Stimuli increase each time step by a fixed amount

d and decrease by an amount a whenever a worker performs the

task, following [8] (a~0:03 and d~1 in our simulations). In the

response threshold model, the association between stimuli and task

was also expressed in the fact that individuals were more likely to

perform a task for which the stimulus was high. However, in the

present model, this is not necessarily the case. An association

between task and stimulus is present because the performance of a

given task decreases a given stimulus. Workers are assessed in

random order and, once an individual works, the corresponding

stimulus value is immediately decreased, such that the next worker

to be assessed experiences a different stimulus value.

Artificial neural networks
The first network studied is a simple feedforward network [19]

that consists of two stimulus input nodes and two behavioral

output nodes, all four nodes being connected (Figure 1B). Each

input node perceives a task-associated stimulus with a certain error

e (drawn from a normal distribution with mean 0 and standard

deviation 1). The two signals are then processed and transmitted to

the output neurons, via connections with weights wij that are

evolvable properties of the network. Output nodes receive a

weighted sum of the stimuli, generally designated activation

energy. The activation energy ni of an output node i is thus:

ni~
X2

j~1

wij
:(Sjzej): ð1Þ

Each output neuron is characterized by a threshold hi, which is

another evolvable property. If the activation energy of an output

neuron exceeds the threshold, the neuron is activated, meaning that

an individual is willing to perform the respective task. If both output

neurons are activated, one task is chosen at random. Note that the

response threshold model implemented in previous work is in fact a

special case of the feedforward neural network, where w11~w22~1
and w12~w21~0 (Figure 1A). The main difference between our

feedforward ANN model and the response threshold model is thus

the evolution of the connection weights that determine how

incoming information is processed and interpreted. The initial

values of connection weights in our simulations are: w11~w22~1
and w12~w21~0. Changes in the connection weights and

thresholds take place when new individuals are produced, via

mutation (see below). During the lifetime of an individual, the

parameters of its network are fixed. Thus we do not consider the

changing of connection weights with learning, for example.

The second network architecture studied is a recurrent network

[19]. It includes all previous nodes and connections, and in

addition it has two self-feedback loops (Figure 1C). The activation

energy in a given time step will affect the activation energy in the

next time step: ni(tz1)~
Pm

j~1

wij
:Sj(tz1)zfi

:ni(t). The connec-

tion weight fi given to the previous activation energy (from here on

called the self-feedback connection) is also an evolvable property

that changes through mutation and natural selection during

production of new individuals. During the lifetime of individuals,

however, there is no change occurring in the parameters of the

networks. Self-feedback connection weights were initialized at

zero, which is equivalent to the feedforward network, without any

influence of past experience in current decisions.

Fitness
After the work phase, the fitness of each colony is computed

based on how much work the workers performed for each task.

Fitness is assumed to be proportional to the weighted geometric

mean of work done for both tasks:

W~A1
b:A2

1{b ð2Þ

where Ai is the total number of acts performed for task i (A.

Duarte, I. Pen, L. Keller, F.J. Weissing, subm.). We take the

geometric rather than the arithmetic mean in order to ensure that

fitness can only be achieved if both tasks are being performed. The

weighing factor b allows us to consider the (realistic) situation that

not all tasks need to be performed equally often. For the fitness

function (2), fitness is maximized if idleness is eliminated (i.e., if

A1zA2 is maximal) and if the workers distribute over tasks

according to the ratio A1 : A2~b : (1{b). In other words, to

maximize fitness the proportion p1 of work allocated to task 1 by

the colony should be equal to b:

p1~
A1

A1zA2

~b: ð3Þ

Each generation, 2M reproductive offspring are produced in

total in the population. Colonies contribute to the population’s

pool of sexual individuals in proportion to their fitness. Population

size is thus fixed. The reproductive individuals then form M pairs

randomly. From each pair one individual will found a new colony

with N workers, while the old colonies are eliminated.

Genetic details
We allowed for the evolution of all connection weights and

thresholds of output nodes, giving us in a total 6 (resp. 8) evolving

traits. These traits are encoded by 6 (resp. 8) gene loci. The alleles

at these loci correspond to real numbers, with threshold alleles

being larger or equal to zero, while connection weight alleles may

also attain negative values. To keep the genetic assumptions as

simple as possible, we assume that all individuals are haploid and

that the network of each individual is fully determined by its

genotype.

Genotypes of workers and sexuals are similarly inherited: Both

types of individuals are offspring of the mated colony foundress,

and possess alleles for thresholds and connection weights. Our

model allows genetic linkage of the threshold loci or linkage of the

connection weight loci, but both types of loci are considered to be

sufficiently far apart in the genome to make them segregate

independently. The degree of linkage is determined by a

parameter r (0ƒrƒ
1

2
) that corresponds to a recombination rate.

With probability 1{r, the threshold alleles (resp. the connection

weight alleles) are inherited as a block from one of the two parents;

with probability r, the parent whose allele is transmitted is chosen

independently of what happens at the other loci.

Mutation occurs with probability m at each locus; when a

mutation occurs, the genetic value at that locus is changed by

adding a real number to it that is drawn from a normal

Behavioral Architectures for Division of Labor
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distribution with mean 0 and standard deviation sm. In our

simulations, we typically used m~0:1 and sm~0:1.

Measuring worker specialization
We evaluate colony-level characteristics such as the proportion

of work devoted to each task and the level of individual

specialization. For each individual we calculate at the end of a

simulation the fraction q of time steps that it stayed in the same

task from that time step to the next. We average q over all workers

and normalize this measure by dividing �qq by the probability that

individuals stay in the same task merely due to chance. The latter

is given by p2
1zp2

2, where pi is the proportion of work devoted to

task i. By subtracting 1 from the value thus obtained, we obtain a

measure of worker specialization that ranges between 21 and 1

(A. Duarte, I. Pen, L. Keller and F. J. Weissing, subm.):

D~
�qq

p2
1zp2

2

{1 ð4Þ

When D is close to 1, there is a high degree of division of labor,

and individuals stay in the same task much more often than

expected by chance. If D is close to zero, workers switch between

tasks at random. If D is lower than zero, individuals switch task

more often than expected by chance.

Switching costs
Worker specialization can be adaptive if there is a cost to

switching tasks (such as a time cost if tasks are confined to different

locations, or a cognitive cost), or if specialized workers perform

their task with higher efficiency [27]. Here we implemented a time

cost scenario, by imposing c time steps of inactivity whenever an

individual chooses to switch from one task to the other.

Results

Simulations of the neural network model, with different network

architectures were ran for b~
1

2
, b~

3

4
and switching costs c

ranging from 0 to 5 time steps. We also tested the influence of

recombination between the loci coding the neural network in the

evolution of specialization. There were 10 replicates per parameter

combination. The evolutionary patterns of the components of the

neural networks were examined (thresholds of output neuron and

connection weights) at the population level. Overall, connection

weights were far more important than the thresholds in

determining the behavior of networks. Hence we do not address

here the evolutionary trajectories of threshold loci for the

feedforward network. These can be found in the Supplementary

Material (Text S1 and Figure S1).

Feedforward network
Optimal worker distribution 1:1. When b~

1

2
, both tasks

are equally needed, and a 1:1 distribution of workers over tasks

would be optimal (see (3)). It is therefore somewhat surprising that,

in the absence of switching costs, all replicate populations evolved

a work distribution where one of the tasks was performed three

times more often than the other (Figure 2A, top panel). From here

on we refer to the task performed most often as the ‘‘preferred

task’’. Which task was preferred varied among replicate

populations, but within a population all colonies preferred the

same task. Variation among colonies in fitness values was small; all

colonies reached approximately 94% of the maximum fitness (see

Figure S3). Higher fitness values could not be achieved due to the

deviation from a 1:1 task distribution.

Typically in our simulations, both ‘incoming’ connection

weights of one of the two output neurons (the neuron

corresponding to the preferred task) became positive over

evolutionary time (Figure 2A, bottom panel). As for the incoming

connections of the other output neuron (corresponding to the non-

preferred task), the direct connection (w11 in the example

simulation of Figure 2A) became positive, while the cross-

connection (w21, in Figure 2A) typically became weak, oscillating

between positive and negative values. In all simulations, the

strongest positive connection was between the stimulus input

neuron of the non-preferred task to the output neuron of the

preferred task (w12, in Figure 2A). Hence, individuals use the

stimulus for one task (their non-preferred task) to motivate them

for performing the other task (their preferred one). As a

consequence, they continue performing their preferred task, even

if the stimulus level of this task has become very low (Figure S2).

For this parameter combination (b~K, c~0), the degree of

recombination had no effect on the outcome of the simulations

(Figure S4A).

In the presence of switching costs, the results are considerably

different. When switching costs were low (c~1), worker

specialization only evolved in the absence of recombination

(r~0), with 61.467.2% of the colonies (mean 6 SD) evolving

values of Dw0.5. When c = 2, worker specialization also evolved

in the presence of recombination (Figure 2B). Here 35.668.2% of

the colonies showed Dw0.5. In all simulations with c§2 there was

a clear (but weak) positive relationship between colony fitness and

the degree of worker specialization within the colony; colonies with

high mean specialization have a fitness advantage of approxi-

mately 20% over non-specialized colonies (Figure S3).

The bias in favor of one of the tasks that was observed in the

absence of switching costs was much less pronounced or even

absent in the presence of such costs. For c~2, initially most

colonies show a work distribution close to 1:1 (Figure 2B, top

panel). After about 3500 generations, a new pattern arises, with

part of the colonies having a pronounced bias toward task 1, while

the other colonies have a bias toward task 2. The simulation shown

is representative for higher switching costs (c§2), but to a certain

extent the outcome depends on the detailed assumptions. If, for

example, recombination was not allowed in the simulation of

Figure 2B (i.e., r~0), three different types of colonies evolved (with

p1~0:4, p1~0:5 and p1~0:6, respectively; see Text S1 and

Figure S4B).

The neuronal connection weights linking input neurons to the

corresponding output neurons (i.e., w11 and w22) tended to evolve

positive values, between 0 and 4 (Figure 2B, bottom panel). One of

the cross-connections (i.e., w12 or w21) showed evolutionary

branching [28], that is, polymorphism evolved from an initially

monomorphic state. Figure 2B is representative in that w21

branches into a bimodal distribution, with one branch becoming

negative and the other positive. When such branching occurs, two

distinctly different types of networks coexist in the population

(Figure 3, top panel). This is crucial for worker specialization: a

high degree of specialization only occurred in colonies where the

two parents differed in the sign of one of their cross-connection

weights. From Figure 3 we can deduce how specialization occurs

in a colony with dissimilar parents. The key difference between the

parents’ networks is the genotypic value of w21, which determines

that one parent (arbitrarily labelled ‘male’) is a specialist for task 2,

while the ‘female’ shows a large area of the stimulus space where

both tasks are activated and where accordingly one of the two tasks

is chosen at random (Figure 3, bottom panel). The workers

produced by these parents will be divided among those two

phenotypes. Stimulus increase initially occurs for both tasks, until

Behavioral Architectures for Division of Labor
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the stimuli levels reach a region where individuals with a positive

w21 will perform task 1. As a consequence, only stimulus 2 will

keep increasing, until an area is reached where individuals with a

negative w21 will start performing task 2. The decreasing stimulus

of task 2 means that fewer workers will do task 1, because the main

motivating force to do task 1 is the positive w21. Hence, stimulus

for task 1 will also increase. Individuals are then in an area of the

stimulus space where half of them will work randomly on either

task, while the other half will only perform task 2.

For 0vcƒ3, branching occurred at only one of the cross-

connections, while for cw3 both cross-connections branched in

some of the simulations.

In the absence of recombination, evolution leads to a higher

degree of worker specialization (Figure S4B). Evolutionary

branching occurs now for all the connection weights and for the

thresholds as well. The area in stimulus space where networks

choose both tasks is much smaller in the absence of recombination

(Figure S5), leading to more pronounced differences between

workers and, hence, more specialization. Branching of more loci

means that networks will be more differentiated than seen

previously for cases with recombination. .

Optimal worker distribution 3:1. In view of eq. (3), when

b~
3

4
, the optimal worker distribution over tasks is 3:1, with task 1

Figure 2. Feedforward neural networks: Evolutionary dynamics of two representative simulations, for b~KK and r~0:5. Grey scales
indicate log counts of colonies with the corresponding value of p1 , D (scales on top of the respective graphs) and connection weights (scale on the
bottom right-hand side). (A) No switching costs (c = 0). Top graphs: p1 decreases to approximately 0.3. Worker specialization remains at zero. Bottom
graphs: incoming connection weights at output node 2 evolve to strong positive values, whereas incoming connections weights at output node 1
evolve to weak positive values (w11) or oscillate around zero (w21). (B) With switching costs (c~2). Top graphs: the distribution of workers over tasks
and the degree of worker specialisation are both highly variable across colonies. At the end of the simulation, p1 and D are both bimodally
distributed. Bottom graphs: one of the connection weights (w21) branches, one branch having positive values and the other, negative values. All other
connections show weak positive values or remain very close to zero, all being relatively homogeneous in the population.
doi:10.1371/journal.pcbi.1002430.g002
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being performed 3 times more often than task 2 (i.e. p1~0:75).

Populations indeed evolved a worker distribution approaching this

value (Figure 4A, top panel). In absence of switching costs, task 1

was performed 76.760.42% of the time (mean 6 SD across all

replicate populations, for r~0:5). All colonies attained more than

99% of maximum fitness, with a few colonies achieving the

maximum (Figure S3).

A general pattern in the evolution of connection weights was the

strengthening of the cross-connection w21 and the disappearance of

connection w22 (as in Figure 4A, bottom panel). This explains the

observed increase in performance of task 1. The cross-connections

once more play an important role; since the strongest incentive to do

task 1 comes from the stimulus of task 2, this allows workers to keep

doing task 1 even if the stimulus for that particular task is depleted.

Worker specialization did evolve, but only in the absence of

recombination (r~0). Even then, specialization levels of D§0:5
were only obtained for a larger number of colonies when switching

costs were high (c§3). When worker specialization did not evolve

(as in Figure 4B, top panel), colonies evolved work distributions

even more biased than p1~0:75. When the work distribution is

that strongly biased, the probability to stick to the previous task

(p2
1zp2

2) is high even if tasks are taken on at random. Hence, by

evolving a work distribution with more than 80% of the work

devoted to task 1the number of switches decreases, thus allowing

colonies to avoid switching costs even in the absence of worker

specialization. In this case, connection w22 reached lower values

than for the simulations without switching costs (Figure 4B, bottom

panel).

Figure 3. Evolved feedforward neural networks of a highly specialized colony. In specialized colonies, the networks of the two parents
(arbitrarily labelled ‘male’ and ‘female’) differ from each other in a systematic way. Top panels: for each parent, the evolved values of the connection
weights and thresholds of the network are shown. Bottom panels: the stimulus-response characteristics of each network type are shown. For each
combination of stimuli, the bottom graphs show whether the network is motivated to perform only task 1 (blue), only task 2 (red), both tasks (green;
in this case, one task is chosen at random), or none (white). The trajectory of stimulus values from the start to the end of the work phase, in the last
generation of the evolutionary simulation, is indicated in black. Starting values were S1~S2~0. Other parameter values as in Figure 2B.
doi:10.1371/journal.pcbi.1002430.g003
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Recurrent network: self-feedback
We tested the behavior of a more complex network, where the

activation energy of an output neuron could have a feedback on

the activation energy at the next time step (Figure 1C). The self-

feedback connections were allowed to co-evolve with the rest of the

network. We ran ten replicate simulations for all the parameter

combinations tested above.

Optimal worker distribution 1:1. In contrast to the results

of the feedforward network, the optimal worker distribution p1~0:5
was now realized in a high proportion of colonies (e.g., figs. 5AB).

However, this proportion decreased with increasing switching costs.

For c~0, the proportion of colonies with p1~0:5 was 99.960.3%

when r~0:5 and 100% when r~0. For c~2, this proportion was at

76.564.1% when r~0:5 and 46.767.6% when r~0 (mean 6 SD

number of colonies across replicates).

When c~0, all colonies in all replicate simulations achieved the

maximum possible fitness, indicating that all workers are active all

the time (Figure S6). Workers switched randomly between tasks

(D = 0 for all colonies, Figure 5A). This was achieved by evolving

positive self-feedback connections allowing workers to continue

working even in the absence of an external stimulus for a task.

Connection weights from stimuli input neurons to output neurons

were also positive (Figure S7).

Worker specialization evolved already for low switching costs

(c~1), but the behavior shown by colonies, for all cw0, differs

considerably in the simulations in the presence or absence of

recombination. In the presence of recombination, all colonies

within a population reached a high value of D (Figure 5B). In the

absence of recombination, populations typically consisted of

colonies with low D and colonies with high D (Figure 5D). For

Figure 4. Feedforward neural networks: Evolutionary dynamics for two representative simulations, where b~0:75 and r~0:5. The
same graphic conventions as in Figure 2 are followed. (A) c~0. Top graphs: p1 increases to the optimal value 0.75; specialization remains low. Bottom
graphs: connection weights incoming at output node 1 become positive (strongest connection weight being w21); connection weights incoming at
output node 2 become negative (w12) or positive, but very close to zero (w22). (B) c~2. Top graphs:p1 increases to values above 0.75; D remains low.
Bottom graphs: similar to when c~0, but w22 is closer to zero.
doi:10.1371/journal.pcbi.1002430.g004
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c = 1, for example, 2567% of the colonies (mean 6 SD across

replicates) had Dv0:2, while 6667% of colonies showed Dw0:5.

In the simulations where all colonies exhibited a high level of

worker specialization, self-feedback connections evolved very high

positive values (as in Figure 6, top panel). The connection weights

from task stimulus to corresponding output neuron (w11 and w22)

evolved to positive values, while cross-connection weights (w12 and

w21) evolved to negative values (as in Figure 6, bottom panel). In

these simulations, the evolved strategy leading to division of labor

uses the strong self-feedback connections, accompanied by

negative cross-connection weights, to create differentiation be-

tween individuals. Since individuals from the beginning perceive

different levels of stimuli, differences in activation energy will

occur and will be amplified in subsequent time steps, creating

consistent differences among individuals. Hence division of labor is

achieved by experience-based specialization.

Figure 5. Recurrent neural networks: Evolutionary dynamics of the proportion of time spent on task 1, p1, and the degree of worker
specialisation, D. Two representative simulations are shown for b~K. (AB) r~0:5. In (A), switching costs are absent: p1 quickly reaches the optimal
value 0.5; worker specialization does not evolve. In (B), c~1: p1 becomes more variable, but still approximates the optimal value 0.5; D rapidly
increases to its maximal value 1, for all colonies in the population. (CD) r~0. In (C), switching costs are absent: the evolutionary dynamics is as in (A).
In (D), c~2: not all colonies can evolve worker specialization, and p1 is also more variable across colonies.
doi:10.1371/journal.pcbi.1002430.g005
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In the simulations where colonies differ in their degree of

worker specialization, neuronal connections (including self-feed-

back connections) show evolutionary branching, with one branch

showing positive values and the other branch negative values or

values close to zero (Figure 7). In this case, evolutionary branching

allows for the co-existence of different genetically determined

specialists, as seen previously for the simpler feedforward

architecture.

Optimal worker distribution 3:1. In the absence of

switching costs, the mean p1 calculated across replicates was

Figure 6. Recurrent neural networks: Evolutionary trajectories of network parameters leading to experience-based specialization. A
simulation is shown in which all colonies in the population evolve high degree of division of labor. Parameter values are: b~K, c~3, r~0. The self-
feedback connection weights, f1 and f2 (third and fourth graph on the top panel), increase over generations, a pattern which is found across
simulations showing the same worker specialization patterns. Also representative is the pattern encountered in the other connection weights
(bottom panel) is the evolution of negative values in cross-connection weights (w12 and w21) and positive values in the connection weights between
the task stimulus and respective output node (w11 and w22).
doi:10.1371/journal.pcbi.1002430.g006
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0.75 and, hence, corresponding to the optimal value for fitness

(Figure 8A). Interestingly, worker specialization was negative

(Dv0) in all colonies in 19 out of 20 simulations (encompassing

both simulations where recombination is present as well as where

it is absent). In other words, individuals switched more often

between tasks than expected by chance.

Worker specialization never evolved for c~1. For 2ƒcƒ3,

specialization only evolved in the absence of recombination. These

results are shown in the Supplementary Material (Text S2, Figures

S8, S9, S10). For c~3, in two of the replicates, all colonies show

high levels of specialization, accompanied by the optimal worker

distribution (Figure S8A). In these particular replicates the self-

Figure 7. Recurrent neural networks: Evolutionary trajectories of network parameters leading to genetically-determined
specialization. A simulation is shown in which only half of the colonies in the population evolve a high degree of specialization. Parameter
values as in figure 6. All connection weights undergo evolutionary branching. The self-feedback (f1 and f2) and crossed connection weights (w12 and
w21) show one branch with negative values and the other with positive values. The other connection weights show one branch close to zero and the
other larger, positive values.
doi:10.1371/journal.pcbi.1002430.g007
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feedback connections became strongly positive (Figure S9). In all

other replicates only about half the colonies showed Dw0:5, while

the other half had no specialization (Figure S8B). The distribution

of workers over tasks was highly variable, with very few colonies

actually achieving p1~0:75. The networks in these populations

showed evolutionary branching of self-feedback connections

(Figure S10).

For higher switching costs (c§4), worker specialization could

evolve in the presence of recombination, but only in three

replicates out of 20, in the evolutionary time considered (results

not shown). In these replicates, all colonies combined high levels of

specialization and a work distribution very close to the optimal

value of 0.75. Worker specialization was again achieved through

two different types of networks; one where evolutionary branching

occurs in key neuronal connections (particularly self-feedback

connections), and the other through evolution of strong positive

self-feedback connections (not shown). The first network type leads

to a population where only half the colonies have specialized

workers, and the correct work proportion is hardly achieved; the

second network type leads to a population where all colonies have

a high level of specialization and the optimal work proportion.

Discussion

Here we studied whether and how two different neural network

architectures enable the evolution of self-organized division of

labor and adaptive task ratios. Our results are summarized in

table 1.

With a feedforward network (table 1), worker specialization

evolved more easily (i.e. at lower switching costs) in the absence

of recombination. In the absence of recombination the

connection weights can co-evolve as a tightly linked block of

genes, making it easier to evolve specific combinations of

connection weights favoring specialization. Recombination

Figure 8. Recurrent neural networks: Evolutionary dynamics of work distribution p1 and worker specialisation D for b~0:75 and
r~0:5. (A) c~0. p1 quickly reaches the optimal value 0.75. D evolves to negative values, indicating that individuals switch tasks more often than by
chance. (B) c~2. p1 increases to values above 0.75; worker specialization does not evolve.
doi:10.1371/journal.pcbi.1002430.g008

Table 1. Work proportion and degree of division of labor
obtained under different behavioral architectures.

r = 0 r = 0.5

Work ratio Result c = 0 c = 1 c$2 c = 0 c = 1 c$2 Model

b = 0.5 p1 = b Y Y Y Y Y Y RT

N P P N N P FFN

Y P P Y Y P RN

D.0.5 N P P N N P RT

N P P N N P FFN

N P P1 N Y Y RN

b = 0.75 p1 = b N N N N N N RT

Y P N Y P N2 FFN

Y P P3 Y P N3 RN

D.0.5 N N P N N P RT

N N P1 N N N FFN

N4 N P3 N4 N N3 RN

1for c$3.
2except small percentage (,3%) when c = 2.
3with exception of few simulations, where all colonies obtain the result.
4D,0.
Overview of results obtained for three different behavioral architectures: RT –
response threshold model (A. Duarte, I. Pen, L. Keller and F.J. Weissing, subm.);
FFN – feedforward neural network; RNN – recurrent neural network. Parameter
combinations are indicated in the first column and first two rows. The second
column indicates the result we look for: ‘‘b~p1 ’’ corresponds to the
achievement of the optimal work ratio; ‘‘D§0:5’’ corresponds to the evolution
of worker specialization. In the central columns, for different levels of switching
costs, c, we indicate if such results were obtained. ‘‘Y’’ indicates it was satisfied
in all replicate simulations; ‘‘N’’ indicates that the result was not obtained, in the
majority of simulations; ‘‘P’’ indicates that, in the majority of simulations, a
fraction of the colonies within the population obtained the result.
doi:10.1371/journal.pcbi.1002430.t001
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pushes populations into a solution where only one connection

weight locus branches, the rest of the network being relatively

homogeneous in the population. This allows worker specializa-

tion to occur, but to a lesser extent than in the absence of

recombination, because at least one of the parent networks in a

specialized colony behaves as a generalist for a large range of

stimulus combinations. A large percentage of colonies showed no

worker specialization, hence, no division of labor. This is because

random mating allows for couples with similar genotypes to

produce colonies where workers are too similar and therefore

division of labor cannot emerge.

Previous work on the response threshold model (A. Duarte, I.

Pen, L. Keller and F. J. Weissing, subm.) showed that the work

ratio could not easily deviate from 1:1, even if a biased work ratio

was optimal. In contrast, in the case of the feedforward network,

the work ratio was always biased for one of the tasks, even when a

symmetric work ratio was optimal (table 1). Owing to selection

for minimizing idleness, the evolved networks maximized the

amount of work done by using the stimulus from one of the tasks

to stimulate workers to perform the other task. In this way, one of

the tasks was performed in excess (the ‘preferred’ task), even when

its associated stimulus had been depleted. Although this may

seem counter-intuitive, it represents an advantage over networks

that attempt to maximize both tasks, because these networks

would be limited to the work strictly necessary to reduce stimuli

to zero. When b~
3

4
, the optimal work ratio was achieved, but

only in the absence of switching costs. When switching costs were

present, the most common evolved strategy was to increase the

proportion of work for task 1 in order to minimize switching

among tasks.

Some of the limitations of the simple feedforward network

were eliminated in the slightly more complex architecture of the

recurrent network, where previous activation energies feed back

on current activation energies. Worker specialization evolved at

low switching costs, now both in the presence and absence of

recombination (table 1), at least for b~
1

2
. Interestingly, the

presence of recombination favored an outcome where all

colonies showed a high degree of specialization. In these

populations, specialization does not depend on the presence of

two complementary networks in the parents of a colony (as in

figure 3), but on a strengthening of the self-feedback connections.

This allows for initial differences between individuals in stimulus

perception to be amplified in subsequent time steps and leads to

behavioral differentiation through reinforcement of previous

experiences. In the presence of recombination, this strategy

prevails. However, when no recombination occurs, evolutionary

branching of connection weights is still the prevalent strategy

through which worker specialization evolves. Why is the

experience-based strategy not observed in all simulations? A

likely reason is that to reach this strategy, the values of neural

connections must first pass through values where, in the absence

of recombination, evolutionary branching is more advantageous.

Hence, the evolutionary outcome is dependent on initial

conditions. We confirmed this by running simulations where

the self-feedback connections were initialized at higher values

(e.g., f1~f2~2); in this case all populations evolved the

experience-based strategy rather than evolutionary branching

(results not shown). The evolution of an experience-based

strategy is affected by stochastic effects at the moment that the

population passes the ‘‘branching point’’, namely on the

direction and magnitude of genetic variation, that may lead to

local fitness optima. The two strategies may thus represent

alternative stable states. The mean population fitness of the

genetic specialization (evolutionary branching) is noticeably

lower than the mean population fitness of the experience-based

strategy (Figure S7).

The recurrent network also allowed for the optimal work ratio

to be reached in most cases, at least by part of the population

(Table 1), even in the presence of switching costs. When b~
1

2
, the

self-feedback connections allow the continuous activation of both

tasks, stimulating individuals that had previously done a task to do

it again, even in the absence of the corresponding task stimulus.

With this architecture it is also harder to attain the optimal work

ratio when b~
3

4
and switching costs are considered, and only few

replicate populations show both p1~0:75 and high degree of

worker specialization.

The recurrent network has similarities with the reinforced

threshold model, in which individual thresholds are lowered after

the performance of the respective tasks and increased when the

tasks are not performed [9,29]. In both models, initial differences

in experience lead to consistent behavioral differentiation, thus

bypassing the need of specific genetic combinations for the

emergence of task specialization. However, in terms of the

distribution of workers over tasks, the reinforced threshold model

suffers from the same limitations as the fixed threshold model, with

worker distribution being mainly dependent on the parameters of

stimulus dynamics (A. Duarte, T. Janzen, F.J. Weissing and I. Pen,

in prep.).

Our results highlight the importance of considering asymmetries

in models of division of labor. In the evolutionary response

threshold model by A. Duarte, I. Pen, L. Keller and F. J. Weissing

(subm.), we show that a biased p1-value cannot be obtained

through the evolution of thresholds. To achieve a biased p1-value

in this model, asymmetry must be present in the environment (e.g.

in the values of task-associated stimuli [8]) to which the response-

threshold mechanism then responds. However, in reality,

asymmetries in the work distribution might also arise from the

ability of individuals to perceive and prioritize tasks differently.

Here we show that, for both types of networks studied, it is not

easy to evolve strict worker specialization together with an

asymmetric distribution of workers over tasks. A major difficulty

is that in case of genetically determined specialization the work

proportion is dependent, to a large extent, on the proportions of

different specialists in each colony. Since we only consider single-

mated foundresses, colonies in our model show either equal

proportions of the two specialist strategies or only one of the

specialist strategies. Evolving experience-based specialization

enables an asymmetric work distribution and division of labor

(although at a lower degree of worker specialization than under

symmetric conditions, and only in the absence of recombination),

yet the trajectory towards this strategy is subject to stochastic

effects that may diverge evolution towards genetically determined

specialization or towards an increase of performance of the most

needed task beyond its optimal level.

The observed difficulty in favoring a specific work ratio under

switching costs indicates that the simple behavioral architectures

investigated are limited in the ability to evolve efficient solutions to

complex optimization problems. In the presence of switching costs,

it is important for colonies to maximize worker specialization,

while at the same time minimizing the number of idle workers and

optimizing the work ratio. The behavioral architectures consid-

ered thus far were only able to evolve sub-optimal solutions to this

multi-faceted problem.

Modelling the evolution of behavioral mechanisms by means of

artificial neural networks presents several advantages when

compared to a priori chosen behavioral architectures such as a
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response threshold mechanism. First, mechanisms potentially

leading to self-organized division of labor are not built into the

model, but must emerge from the model. Second, evolving neural

networks transcend some limitation of the human mind. When

asked to design plausible mechanisms, the imagination of most

modellers is limited to simple and intuitive mechanisms (like a

response-threshold mechanism) that our mind can easily envisage.

For example, it is unlikely that one would envisage a mechanism

where a task-associated stimulus does not stimulate the perfor-

mance of its corresponding task, but of a different one, as it occurs

in the feedforward network. By using an independent modelling

setup, we can get an idea whether, and to what extent, the results

based on the more standard implementations are robust. In our

case, the simple feedforward network is too constrained to achieve

worker specialization and an appropriate distribution of workers

over tasks. By adding a simple elemental feedback the resulting

recurrent network had a much higher evolutionary potential. In

future models we could consider the evolution of the network’s

topology, e.g. by allowing the addition and elimination of neurons

and connections to an existing network through mutation [24].

The simple feed-forward neural network was constrained by a

problem already present with the response threshold mechanism:

to get specialization at the colony level, the coexistence of two

specialist genotypes is necessary. Random mating and recombi-

nation played an important role in the evolutionary outcome. In

general we observed that recombination made it more difficult

for genetic specialization to evolve. With recombination,

evolutionary branching at multiple loci occurred only rarely, at

very high switching costs. This is in accordance with the

argument that, in constant environments, recombination may

destroy favorable allelic combinations [30,31]. Our model

suggests that in systems where strong genetic task determination

and high recombination rates exist, multiple mating would be

favored, in order to increase the chance that workers have

favorable allelic combinations. This is in accordance to what we

observe in honeybees [32,33]. Under the recurrent network

architecture, recombination may also play a beneficial role by

creating more genetic variation in the self-feedback connections,

which could favor division of labor emerging through the

experience-based strategy.

The purpose of our approach was not to represent the

behavioral architecture of real organisms, but to present a

conceptual model that could shed some light on the role of

architectural constraints in the evolution of self-organized division

of labor. A limitation of this approach is that the larger the

network, the more difficult it is to draw conclusions that are

biologically relevant. We have implemented two very simple

networks, and yet already have six to eight evolvable parameters.

We were able to understand the interaction of the networks with

the environment and pinpoint the key connections that allowed for

specific behaviors, but this may not be possible for more complex

architectures.

The fitness function used (eq. 2) favored the minimization of

idleness. Although it is not unrealistic to assume that more work

will translate to higher colony productivity, in reality social insect

colonies contain a large proportion of idle workers [34–36].

Examples of circumstances that would allow the presence of idle

workers include environmental perturbations that require quick

recruitment of ‘‘stand-by’’ workers, advantage of energy-saving

strategies under poor resource conditions, and selective neutrality

of ‘‘incompetent’’ workers due to highly redundant organization of

work [36] (and references therein). As stressed before, here we

present a conceptual model for the effect of behavioral

architectures in division of labor, and necessarily simplify certain

assumptions. A more realistic version of our model would treat

fitness as the number of offspring produced by a colony, and

explicitly consider the nature of the different tasks (e.g. foraging

and brood care).

Division of labor is a broad topic, with many aspects that were

outside the scope of this study. Previous theoretical work has

focused on the evolution of differentiated multicellularity, the

evolution of germ and soma in multicellular organisms, and the

effect of developmental plasticity in gene expression as a cause of

individual differentiation [37–40]. Here we focused on the

evolution of behavioral task specialization in groups where

reproductive altruism (analogous to germ-soma differentiation)

has already evolved, an assumption which is in line with a recent

comparative analysis of the evolutionary history of division of

labor [41]. We did not consider the role of developmental

plasticity, although this plays an important role in the differenti-

ation of morphological castes [42]. Underlying the different

questions concerning division of labor, however, is a problem of

functional optimization: Organisms can increase their reproduc-

tive success if they perform different tasks efficiently. Dividing tasks

among lower-level units within the organism or colony (often

referred to as a superorganism) is a solution to the problem. What

our model suggests is that the particular behavioral rules through

which task specialization arises may impact the evolutionary

outcome.

Supporting Information

Figure S1 Evolutionary trajectories of thresholds for four

example simulations differing in the switching costs and the

optimal work proportion, b. Graphic conventions follow figure 2

in main text. In all simulations, r = 0.5. (A) b~
1

2
, c = 0. (B) b~

1

2
,

c = 2. (C) b~
3

4
, c = 0. (D) b~

3

4
, c = 2.

(TIFF)

Figure S2 Typical colony of the last generation of an

evolutionary simulation (c = 0 and b~0:5). (A) Number of workers

engaged in task 1 (black solid line) and task 2 (grey line) are

indicated on the left-hand vertical axis, during time steps of the

work phase. Degree of worker specialization, D (black dashed line),

is indicated on the right-hand vertical axis. From the start, more

workers engage in task 2 than task 1. Division Worker

specialization close to zero throughout the simulation. (B) Stimulus

for task 1 (black line) and task 2 (grey line) during the time steps of

the work phase. Stimulus 1 remains at higher values, due to the

fewer number of workers performing task 1.

(EPS)

Figure S3 Relationship between colony fitness and worker

specialization at the end of evolutionary simulations of the

feedforward network in the absence (AC) and presence (BD) of

switching costs. For all colonies, fitness is represented as the

fraction of the maximum possible fitness. In (AB), b~0:5. (A)

c~0, corresponding to fig. 2A in main text. All colonies achieve a

high fitness; despite the fact that the evolved distribution of

workers over tasks deviates substantially from the optimum value

p1~0:5 (see fig. 2 in the main text). As expected in absence of

switching costs, there is no relationship between colony fitness and

D. (B) c~2, corresponding to fig. 2B in main text. Colony fitness

increases with worker specialization, but even for large values of D

colony fitness is substantially lower than in the absence of

switching costs. In (CD), b~
3

4
. (C) c~0, corresponding to fig. 4A

in main text. All colonies achieve the highest possible fitness,

because they are now able to achieve the optimal ratio among
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tasks (3:1). As expected in absence of switching costs, there is no

relation between fitness and D. (D) c~2, corresponding to fig. 4B

in main text. Colonies do not reach high D, yet fitness changes

with D in a non-monotonic way.

(EPS)

Figure S4 Evolutionary dynamics of two representative simula-

tions of the evolution of a feedforward neural network, for b~K
and r~0. Figure follows graphic conventions of fig. 2 in the main

text. (A) c~0. Top graphs: p1 evolves to approximately 0.3. Worker

specialization remains at zero. Bottom graphs: connection weights

linked to output neuron 2 increase to positive values, the strongest

being the cross-connection w12. Direct connection weight w11

becomes positive, while the cross-connection w21 evolves to negative

values. (B) c~2. Top graphs: p1 becomes more variable, with some

colonies achieving the optimal value, 0.5, but most falling in one of

two regions, one close to 0.4, the other close to 0.6. D rapidly evolves

to a bimodal distribution with approximately 70% of the colonies

having Dw0:75 and approximately 30% having Dv0:2. Bottom

graphs: all connection weights suffer evolutionary branching. The

cross-connections diverge the most, with one branch showing

positive values and the other negative values.

(TIFF)

Figure S5 Evolved feedforward neural networks of the parents

of a highly specialized colony in the simulation corresponding to

fig. S4B (last generation). Top panels: evolved values of

connection weights and thresholds are shown for each parent.

Bottom graphs: the stimulus-response characteristics of each

network are shown. For each combination of stimuli, the bottom

graphs show whether the network is motivated to perform only

task 1 (blue), only task 2 (red), both tasks (green; in this case, a

task is chosen at random) or none (white). The black line indicates

the trajectory of stimuli values during the work phase of the last

generation of the evolutionary simulation. Starting values were

S1~S2~0.

(TIF)

Figure S6 Relationship between relative fitness and worker

specialization, D, at the last generation of four representative

simulations of the evolution of recurrent neural networks, for

b~0:5. (A) c~0, r~0:5: corresponding to fig. 5A in the main

text. All colonies reach the highest possible fitness. (B) c~1,

r~0:5: corresponding to fig. 5B in the main text. All colonies have

high degree of worker specialization (Dw0:8). Colonies with the

highest level of worker specialization are able to reach also the

highest possible fitness. (C) c~3, r~0: corresponding to fig. 6 in

main text, one of the few cases in the absence of recombination

where all colonies evolve worker specialization, and achieve

maximum fitness. (D) Same parameter combination as (C), but

depicting the more general pattern found in the absence of

recombination and presence of switching costs (corresponding to

fig. 7 in the main text). Only a portion of the colonies reach high

worker specialization, which results in high variation in fitness

among colonies.

(EPS)

Figure S7 Evolutionary trajectories of thresholds and connec-

tion weights of recurrent networks, in a simulation with c~0,

r~0:5 and b~0:5, corresponding to Figure 5A in main text.

(TIF)

Figure S8 Evolutionary dynamics of two simulations of the

evolution of a recurrent neural network, with self-feedback, for

b~0:75, r~0 and c~3. The simulations are examples of the two

strategies that evolved in response to switching costs. (A) The less

frequent outcome (2 out of 10 simulations), where all colonies

show values of p1 close to 0.75, the optimal value, and most

colonies show D§0:5, at the end of the considered evolutionary

time. (B) The more frequent outcome, where approximately half

the colonies showed p1 around 0.5 and Dw0:8, and the other half

showed p1w0:75 and Dv0:2.

(TIFF)

Figure S9 Evolutionary trajectories of thresholds and connec-

tion weights of recurrent networks, in a simulation with c~3, r~0
and b~0:75, corresponding to fig. S7A. Top graphs: self-feedback

connection weights evolve positive values, as in other simulations

where all colonies showed high degree of worker specialization.

Evolution of thresholds did not show a specific pattern across

simulations, hence it plays a less important role in the outcome.

Weights showed positive values for direct connections (with

w11ww22) and w22) and negative values for cross-connections

(with w12vw21), a pattern also representative for other simulations

where all colonies evolved worker specialization.

(TIFF)

Figure S10 Evolutionary trajectories of thresholds and connec-

tion weights of recurrent networks, in a simulation with c~3, r~0
and b~0:75, corresponding to fig. S7B. Top graphs: Self-feedback

connection weights go through evolutionary branching, as in other

simulations where only a portion of the colonies shows high degree

of worker specialization. One branch has positive values, and the

other negative values. Bottom graphs: weights are maintained at

quite low values, oscillating around zero.

(TIFF)

Text S1 Feedforward neural network.

(DOC)

Text S2 Recurrent neural networks, with self-feedback.

(DOC)
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