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Abstract

Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we
provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We
show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more
generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a
basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior
observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of
building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are
considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy
data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights
we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic
collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in
pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be
applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of
herd movement. From these models, the behavior of the individual agents (animals) may be inferred.
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Introduction

The collective behavior exhibited by interacting individuals in a

population has recently attracted interest in scientific and engineering

communities. Many different definitions have been used to formally

describe this behavior, in order to establish new theories and further

advance the contributions to this new field. In simple words, collective

behavior can be described as local actions taken by individuals in a

socially interacting group, which are directly related to the conditions

of the group and somehow affect the overall behavior of the group as

a single global entity. Many kinds of systems from different areas of

application are known to exhibit such behavior, ranging from areas

like sociology, psychology, zoology, and all the way to more technical

disciplines like bioengineering, computer science, and robotics. The

objective of analyzing the collective behavior of a system can be either

to further understand the system in question, or to apply the observed

behavioral structures in other systems or circumstances in order to

provide innovative solutions to problems.

The movement of groups of animals is a common and well

studied example involving the emergence of collective behavior in

an interacting population. It is well known that animals tend to work

in groups to achieve goals; simple examples that can come to mind

are ant colonies, herds, fish schools, and bird flocks. In particular,

the collective movement of a group of animals in the same direction

is called swarming. Bird flocking in particular, has attracted much

recent attention. The ability to gain accurate positional data from

GPS devices on pigeons, has opened the door to more advanced

and meaningful analysis of flocking [1]. Photographic data has also

lead to deeper analysis of the interaction properties of flocking [2].

In general, with accurate 3D positional data, it is now possible to

perform statistical analysis which leads to the understanding of the

structural and behavioral properties of flocking.

Mathematical models, especially dynamical models, have been

used by biologists, physicists, and mathematicians, to illustrate

animal movement or interaction, though usually the dynamics

have been observed to be not amenable to linear models. The

classical Lotka-Volterra equations are a good example of early

attempts to model the growth and decay of populations of

predators and preys over time, using nonlinear ordinary

differential equations (ODEs). Later efforts to characterize social

animal movement involved models that use physical laws and

diffusion equations to describe the movement of groups of fish,

insects, and herds [3]. Discrete-time generic models of collective

systems, with no particular application, but which can be used to
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simulate swarming with complex behavior using very simple

mathematical rules, are an initial step towards the full under-

standing of nonlinear properties in real systems, or even graphic

visualization. The Boids model [4] is a well known example, and it

has been used in movies and video games to generate 3D animated

collective movement of animals. Another such case is the Vicsek

model [5], which is a simpler 2D model of particles, but capable of

describing behaviors ranging from the swarming of small groups

moving in random directions, to a global directed motion of the

whole population. Recent approaches using more complicated but

realistic dynamics for swarming with parameter tuning, include

metric distance models with informed leaders [6], zonal interac-

tion models [7], molecular physics models with geometric and

topological interactions [8], and predator-prey models using radial

force laws [9].

Most of the typical approaches to modeling collective behavior

using dynamical systems, have involved developing models using

physical laws or well known mathematical functions that are

known to resemble the phenomena in question. Later these are

tested or tuned with observations or data, in order to verify

whether they resemble the original behavior. The opposite

approach is to use time series data from experiments to build a

full model that fits the data as well as possible, using the power of

computers. This methodology, commonly referred as system

identification, is used in areas like control engineering and

econometrics, although most of the available literature is linked

to linear models. Some new generic techniques use data to identify

nonlinear ODE models [10], while others have focused on

inferring the natural laws of physical systems [11]. Efficient

computer algorithms for structural ODE building have been

proposed especially in biological systems literature [12,13], due to

the necessity of scaling the automated building of models to large

complex systems involving many variables. The usage of generic

and flexible modeling paradigms to capture a wider range of

complex behaviors from different fields, can also be considered

when designing approaches for automated model building. The

automated construction of discrete-time models using radial basis

functions, has shown the ability to adequately model chaotic

dynamics in systems such as infant respiration, vibrating strings,

and lasers [14–17].

Due to the complex dynamics observed in collective systems, we

suggest taking this data-driven approach. We use computational

methods to process time series data and automatically build

nonlinear dynamical models that are able to carry out simulations

for further analysis. Compared to previous approaches that use a

fixed mathematical structure and fit parameters to swarming data

[7,8], we provide the first modeling scheme capable of fully

building a model, using only limited prior information. In our

previous study of homing pigeon flight data [18], we found that in

addition to the discovered hierarchical structure by Nagy et al. [1],

there are very important local interaction rules that the pigeons

follow to maintain a cohesive and synchronized unit. Our

objective here is to infer these essential behavioral rules that

characterize collective behavior, i.e. the dynamics involved locally

between individuals which create emergent global behavior of the

whole flock. The question we wish to address is whether these local

interactions can be used to provide a mechanistic explanation of

flocking behavior, using a simpler egalitarian modeling structure in

concordance with the classical models of swarming [4,5,19].

Consequently, the prediction of individual trajectories, the

influence of ‘‘leaders’’, and the shapes of the flock are not the

focus of our study.

As a first step, we build models from simulated data of the well

studied Vicsek model [5], in order to confirm that our approach is

adequate for modeling collective behavior. The approach is

extended progressively to handle experimental 3D positional data

of pigeon flocks [1] and then used to construct realistic models

capable of performing simulations that emulate the collective

dynamics of the data. By evaluating simulations of the retrieved

models, new data is generated and used to perform analysis of the

system and quantify hypothesized collective behavioral properties

such as the separation, attraction, and speed of the flock. Our

main contributions in this paper include the modeling scheme

itself, which can be used with any adequate function fitting

method, for constructing the models based on positional data from

the whole flock; a simulation methodology based on the dynamics

of neighbor separations in order to visualize and compare the

collective behavior; and, the inference of an averaged rule from

our model simulations which summarizes basic attraction and

repulsion between neighbors in accordance to previous observa-

tions and models of collective animal movement [3,4,19].

Materials and Methods

Input data
Both simulated and real experimental data were used as input to

build flocking models. The former were generated using the well

known Vicsek model [5], capable of performing 2D simulations of

swarming using simple interaction rules. The latter data set was

obtained from pigeon flights using GPS devices attached to the

pigeons, and has been previously presented and analyzed [1].

The Vicsek model. The Vicsek model [5], is a simple

nonlinear model capable of simulating swarming behavior. The

model is essentially a discrete-time system of several particles in a

square domain, with their 2D positions updated according to:

xi(tz1)~xi(t)zvi(t) ð1Þ

The velocities have a constant speed v and an orientation defined

by an angle h:

vi(tz1)~v
cos(hi(tz1))

sin(hi(tz1))

� �
ð2Þ

Author Summary

The construction of mathematical models from experi-
mental time-series data has been considered with some
success in many areas of science and engineering, using
the power of computer algorithms to build model
structures and suitably tuning their parameters. When
considering complex systems with nonlinear or collective
behavior, computational models built from real data are
the alternative to emulating the system as best as possible,
since classic modeling approaches based on observation
could prove difficult for complex dynamics. In this study,
we provide a method to build models of collective
dynamics from homing pigeon flight data. We show that
our models follow the source dynamics well, and from
them we are able to infer that significant collective
behavior occurs in pigeon flights. Our results are
consistent with the basic principles of previous hypotheses
and models that have been proposed. Our approach
serves as an initial outline towards the usage of
experimental data to construct computational models to
understand many complex phenomena with hypothesized
collective behavior.

Dynamical Modeling of Collective Behavior
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In this paper we consider a slightly different update for the angles

of the particles:

hi(tz1)~arctan
Ssin(hi(t))TM,i

Scos(hi(t))TM,i

zDh ð3Þ

In equation (3), S:Tr denotes average over the M nearest neighbors

and itself and Dh is a uniformly distributed random number,

which is basically the noise of the system. The former differs from

the original Vicsek model [5] that considered the average of all

neighbors within a fixed radius r of the particle. Our modification

is inspired by a recent study on the topological distance in flocks

[2], and therefore the model considers a fixed number of nearest

neighbors regardless of the separation distance. Other important

parameters are N (number of particles), L (the linear size of the cell

with the particle), and g (the range of the noise). The periodic

boundary conditions of the original model in [5] were removed for

this study in order to have more realistic data, and thus the

boundaries of the square cell were extended to infinity to allow

continuous motion. From the Vicsek model, we are interested in

generating data for cases of high and low density initial conditions

(with low noise) since these correspond to a global directed motion

of the whole population and the formation of small groups moving

in random directions respectively. These two behaviors are good

examples of dynamics that can be observed in real collective

systems.

Pigeon flight data from GPS. Relevant research in flocking

has provided 3D positional data of pigeon flights, with a very fast

sampling rate [1]. These data were obtained from lightweight GPS

devices attached to ten homing pigeons. The datasets include

eleven free flights of pigeons near their roost and four homing

flights which basically involve the flock moving from one position

to another. In this study we shall consider the data from the four

homing flights, due to the simpler flight patterns that are followed.

In addition, our previous study [18] confirmed that the homing

flights have higher correlations between individuals, and thus are a

better source of information about how pigeons interact, in

accordance to our objective defined in the introduction.

The data from the four homing flights was further sampled to

provide smaller datasets that are easier to handle computationally,

but still with a rate that is fast enough to capture adequate flight

dynamics. With this in mind, sampling rates of one and two

seconds were considered depending on the particular properties of

each of the flights. In addition to this, the flights were cut to

remove idle moments with no significant movement of the birds.

Stranded pigeons were also removed from the input data in order

to have datasets that resemble a fully interacting population as far

as possible. All these edits were made based on thorough manual

visualization of the flight data. Some specific details of each of the

flights will be explained, since their particular properties will be

important to interpret some of the results later on:

1. Homing flight 1 (hf1): A flight of 5 pigeons with separations of

around 300–350 m from mean position of flock. Initial

conditions have some pigeons moving in opposite directions.

Sampling rate: 1 sec.

2. Homing flight 2 (hf2): A flight of 9 pigeons with separations of

around 650–700 m from mean position of flock. Two pigeons

separate from the flock and move together by the end of the

flight. Sampling rate: 2 sec.

3. Homing flight 3 (hf3): A flight of 6 pigeons with separations of

more than 1 km from mean position of flock. Sampling rate:

2 sec.

4. Homing flight 4 (hf4): A flight of 8 pigeons with separations of

around 45–55 m from mean position of flock. Sampling rate:

1 sec.

The sampling rates were selected according to the interaction

distance between pigeons. That is, for the flights with higher

separations (hf2 and hf3), a slower sampling rate of 2 seconds was

used, while the flights with closer interactions (hf1 and hf4) were

sampled every second. This was done to have a more precise

account of the movement when shorter separations are involved in

the flight patterns. The different sampling rates also imply that the

models built in each case will be specific to that single flight, and

this is actually expected, since each flight is different and might

contain different terrain, weather, and behavioral properties.

Modeling schemes
Recent investigations have led to conclusions about hierarchical

structures present in pigeon flights [1], which points to some

‘‘leader’’ birds having a stronger influence in the decisions of the

flock. If we take this into account in our modeling scheme, we

would need to build a separate model for each pigeon, and this is

certainly possible. Nevertheless, in order to reach our established

objective, our focus is on capturing the basic local interactions that

all the individuals follow, and thus we build a single general model

from the data of all the birds. This produces a model akin to

classical approaches [4,5,19], where the same mathematical

function is used to update the movement of every individual.

To capture a wide range of complex behaviors, black box

discrete-time nonlinear dynamical systems can be used to build

arbitrary mathematical functions. Their good function fitting

properties make such models very useful for performing

simulations and getting conclusions and statistics from newly

generated data. In our modeling scheme we present a method-

ology to build models of collective dynamics using an efficient

black box modeling method. We emphasize that the method we

chose for our paper is not central to our current contribution, and

that any other capable fitting algorithm could be used with our

approach. Also of importance is the selection of an adequate

embedding scheme for the data to model, i.e. selecting the past

values from the data that will be used by the model to predict new

positions. The values to consider should be inspired by known

physical properties of the phenomena in question (in this case

pigeon flights). In addition, we use a fixed number of nearest

neighbors (M) for interactions between individuals, as prior

information to build our models. We use this assumption as our

neighborhood strategy because previous analyses of bird flocking

from experimental data have lead to this conclusion [1,2]. First the

general framework and method used to build the functions of the

models will be introduced, and after that, the three different kinds

of models to be considered will be outlined.

Radial basis functions. Any competent nonlinear modeling

algorithm could be used to fit a dynamical system to the data. We

selected the discrete-time radial basis approach originally

presented in [14,16,17] as the modeling framework and

algorithm to use, because of its proven capability of modeling

highly nonlinear systems. In summary, the method receives as an

input a scalar time series y(t), and attempts to build the best model

of the form:

y(tz1)~f (z(t))ze(t) ð4Þ

where z(t)~½y(t),y(t{1),:::,y(t{d)� is the embedding of the

system and e(t) is the model prediction error. The former

corresponds to the past values from the time series data y(t) that

Dynamical Modeling of Collective Behavior
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the model will consider for calculating the prediction for tz1. The

samples used for optimization of the model are built from time

series y(t) using the embedding z(t). The structure of the function

to build follows:

f (z(t))~l0z
Xn

i~1

liy(t{li)z
Xm

j~1

ljznwj

Ez(t){cjE
rj

� �
ð5Þ

where li represents a time lag of the time series, n is the number of

time lags in the model, m is the number of radial basis functions,

and rj , lj are scalar constants. The cj parameters denote randomly

chosen points, known as centers of the radial basis functions. The

first sum (and constant l0) in (5) is the linear part of the system,

equivalent to commonly used reduced autoregressive models. The

second sum is the nonlinear part of the function, and it is

characterized by radial basis functions wj , which can be of different

types, as shown in [16]. The algorithm that builds and optimizes

the model, described in detail in [4,16], basically consists of

generating a new set of random candidate radial basis functions at

each iteration, estimating parameters, and keeping the ones that

minimize residuals (all the others are discarded). This is continued

incrementally until the Minimum Description Length (MDL) [20]

of the model is obtained. The algorithm itself is not the focus of

this paper, but we can rely on its effectiveness because it has been

previously used to model highly nonlinear data from infant

respiration, lasers, and vibrating strings [15–17].

Relative position modeling for Vicsek data. The first and

simplest model to be built is the one based on the data of the

Vicsek model. These models will be referred to as type R1,

symbolizing the first variant of relative models. As mentioned in the

introduction to this section, the idea is to use the same general

model for each particle of the system. Since the Vicsek data is two-

dimensional, we require two different functions for a single model

(to predict each coordinate). Therefore the single model that all

individuals follow can be defined as:

f½z(t)�~
f1(z(t))

f2(z(t))

� �
: ð6Þ

Since the Vicsek model considers relative positioning (the

numerical positional value of a particle does not influence its

movement), instead of trying to predict the absolute position xi at

tz1, we can re-define equation (4) by predicting the relative

change in position Dxi(tz1)~xi(tz1){xi(t).

Dxi(tz1)~f½zi(t)�zei(t) ð7Þ

where e(t) is an array with the model prediction errors for each

coordinate. To capture the collective behavior of the source system

in our model, the embedding z(t) of a particle i should consider

enough information from the nearest neighbors that influence its

motion. An adequate embedding would be to consider the average

change in position Dxi(t) of i and its neighbors, since it gives

enough information about the magnitude and direction of velocity

vi(t), which actually is enough to model the Vicsek rules (excluding

the noise, see equations (1)–(3)). In contrast to the original

temporal embedding of the radial basis method, this new

embedding considers data from the nearest neighbors, but it does

not affect the modeling algorithm since the method fits a function

to emulate the output samples from given embedding instances

(inputs), regardless of the embedding form. Taking this into

consideration, the embedding would be different for each particle

due to the difference in nearest neighbors:

zi(t)~SDxi(t)TM,i ð8Þ

Of importance here is that the neighborhood of the average in (8)

considers the fixed-number interaction introduced previously for

the modified Vicsek model in (3), which is the averaging over

particle i and a fixed number of M nearest neighbors. Also of

relevance is that positions are two-dimensional, and thus the

embedding in (8) consists of two variables.

Absolute position modeling for pigeon homing flights. When

modeling the real 3D homing flights, we must take into account

that the pigeons are following a trajectory, which can be

summarized as a flight from point A to point B, with some

terrain information on the way that will influence their flight

patterns. This means that for adequate modeling of a homing

flight, we require absolute positioning in our model. In other

words, in contrast to the Vicsek model, the position xi(t) of

pigeon i is necessary for an adequate prediction of its value at

tz1, due to the terrain information being absolute. Equation (9)

shows the absolute model structure to be used.

xi(tz1)~f½zi(t)�zei(t) ð9Þ

This model type will be referred to as A, symbolizing the word

absolute. Even though we do not explicitly define an update for the

velocity of an individual (or change in position), our model

function f calculates it implicitly ‘‘within the black box’’ from the

embedding zi(t), and consequently affects the positional update in

equation (9). It is also worth mentioning that since positions are

now three-dimensional, the model consists of three functions

instead of the two that were required for the Vicsek data (6). The

usage of experimental data requires a more complete embedding

for adequate modeling. First of all, physical common sense should

be taken into consideration to define a model. That is, at least

second-order components must be considered, which translates

into the necessity of using velocity information (values at time

t{1 and t) to calculate a prediction for tz1. In addition to this,

we are interested in modeling the collective behavior, and thus

neighbor interactions must be included. Taking all of this into

consideration, the proposed embedding is displayed in (10).

zi(t)~

xi(t)

xi(t{1)

Sxi(t)TM

Sxi(t{1)TM

0
BBB@

1
CCCA ð10Þ

This embedding scheme for a pigeon i considers its absolute

position at the two previous time intervals (t and t{1) and the

average position of its M nearest neighbors in the same intervals.

Despite the fact that interactions between pigeons are likely not

isotropic [2] (i.e. a pigeon might only interact with the neighbors

within its sight), for simplicity we compute the M nearest

neighbors with no restrictions. Note that each of the four

components in (10) is three-dimensional, which translates into a

12 variable embedding, making it much more complex than the

two variable embedding used for the Vicsek data. Another

distinction from the Vicsek embedding, is that the nearest

neighbor averaging in (10) considers only the M nearest neighbors

and not itself. This is a reasonable thing to do, since the position

of pigeon i is already being directly considered in the embedding,

Dynamical Modeling of Collective Behavior
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taking into account the more realistic consideration of a significant

difference between its own position and that of its neighbors. From

this, we will denote ½xi(t),xi(t{1)� and ½Sxi(t)TM ,Sxi(t{1)TM � as

the individual and collective components of the model respectively.

Relative position modeling for general flocking model.

The modeling scheme presented in the previous subsection was

designed for navigational flights, where absolute positioning is

important due to the influence of the terrain in the flight. In

addition to these models, it is of our interest to build a general

flocking model using relative positioning similar to the Vicsek

model, but based on real experimental data. This final model type

shall be referred as R2, which refers to the second variant of relative

models. As a first step, we should mention that the desired relative

position model structure is the same as in (7), and introduce a new

nine-variable embedding:

zi(t)~

Dxi(t)

SDxi(t)TM

xi(t){Sxi(t)TM

0
B@

1
CA ð11Þ

Here the first component represents the positional change of bird i

at time t: Dxi(t)~xi(t){xi(t{1), the second component is the

average positional change of the nearest neighbors, and the third

component is the averaged positional difference between i and its

nearest neighbors. The first two components resemble the Vicsek

embedding introduced in (8), though now separating the change in

position of bird i from that of its neighbors. The third component

symbolizes a directional separation between i and its neighbors,

which should be useful to characterize collective behavior. For

example, we can expect that the separation distance to its

neighbors in some direction (front, back, left, right) will surely have

an effect on the movement of bird i. This component introduces a

dependence on the metric distance between neighbors, which

makes the model a hybrid inspired by both topological and metric

distance approaches (see [2]). Essentially the metric separation

distance to its M nearest neighbors will influence an individual’s

movement, and therefore we can expect the interaction strength of

a good model to be weak or near zero at very long distances, when

the pigeons no longer interact.

We must emphasize that the plain homing flight data is not

appropriate for building this general flocking model, due to the

navigational bias that it has. To exemplify this, the four homing

flights previously introduced consist of pigeon flocks moving from

a point A to B in a loosely southwest direction. This means that if

data of one or all the flights is used to build the model, it will

undoubtedly be biased with southwest movement. In order to

attenuate the bias, we performed uniform 2D rotation transfor-

mations to produce new embedded data zi(t) and prediction

values Dxi(tz1). For simplicity, these rotations were only done for

the latitude and longitude coordinates, leaving the altitude

component intact. Figure 1 shows a graphical example of a 290

degree rotation of a single embedding and prediction instance.

Each rotation angle for an instance of (11) is calculated so that the

orientations of the prediction, Dxi(tz1), span a full circle (2p) in

the whole dataset. These transformations are done with respect to

Dxi(tz1) because this vector is the actual navigational force of the

model, which has the previously mentioned bias in the original

data. In summary, by spanning a full circle in the navigational

direction of the samples, we are attempting to remove the bias.

Measuring flock dynamics
As a valuable tool for the analysis of flocking data, a measure

that can characterize and illustrate the dynamics of the collective

behavior should be used. Velocity correlation functions have been

considered in previous studies [3] to calculate the positional

variation of individuals in swarming populations. Since our models

and analyses are based on the local interactions between

neighbors, the velocities or positions of individuals are not the

most straightforward way to see how they are interacting on both a

local and global scale. Therefore we propose using dynamic

separation measures between individuals to properly characterize

how they flock over time. The average separation of individuals

from the mean position of the whole population (N) at a time

interval t is defined as:

dg(t)~
1

N

XN

i~1

Exi(t){Sx(t)TNE ð12Þ

This measure should be relevant when analyzing the global

dynamical properties of a whole flock, but it could also be

important to measure the separations in local neighborhoods

Figure 1. A graphical example of a {
p

2
rotation of embedding and prediction. In (a) we have the hypothetical original data, and (b) the

new data.
doi:10.1371/journal.pcbi.1002449.g001
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instead of the whole population, especially when swarming in

small groups is significant. A slight modification to (12) gives us the

average separation of individuals from the centroid of their local

neighborhood of neighbors:

dl(t)~
1

N

XN

i~1

Exi(t){Sxi(t)TM,iE ð13Þ

Besides the analysis of each data set, the main idea of

introducing these measures is to perform qualitative comparisons

between the d0s of the input data and data obtained from model

simulations, in order to verify the dynamics of a retrieved

model. Another important feature of using these time-dependent

measures is that transient and steady state properties of the system

can be easily visualized, in a way that is very similar to analyses

commonly done in control theory. Essentially a stable steady state

in the d(t) signal represents ordered synchronized movement of

the whole flock (or a small group if considering the local measure).

For some cases, it might be more convenient and compact to

express the separation of a system as a single numeric quantity,

and therefore the average separation over all time intervals T will

be defined as dg~Sdg(t)TT .

Methodology
The automated modeling process shall now be outlined. As

described previously, radial basis functions are used to build three

different model types (R1, A, R2), according to the introduced

modeling schemes. Essentially the same procedure is followed to

build the three types of models, with the notable differences being

the input data, number of functions per model, and embedding.

The general process to build a single model will be described, with

additional special comments for each model type:

Input: Time series matrix containing positional data: x(t)

N Vicsek model simulations for R1 models

N Homing pigeon data from a single flight for A models

N Homing pigeon data from multiple flights for R2 models

For each positional coordinate j:

1. Build samples for the function fj using as output Dx
(j)
i (tz1) (for

R1 and R2 types) or x
(j)
i (tz1) for (A types) with their

respective embedding zi(t), using data from all individuals/

pigeons.

2. Run the radial basis modeling algorithm.

3. Set the retrieved function as fj .

The randomness in the radial basis modeling algorithm used to

construct the models (see [14,16]), makes it necessary to run the

algorithm several times to retrieve several models and find the

most appropriate one, or average their statistics. Specific details on

the number of retrieved models, and model selection criteria will

be presented in the results section.

Results

Using the methodology we presented, several models were

retrieved for each dataset. To analyze the models, the main

philosophy followed in this study was to perform simulations with

different sets of initial conditions and verify their behavior using

separation measures dg(t) and dl(t), by either comparing with the

source input data or simply by analyzing the simulated data itself.

Since we are discriminating models based on the separation

measures, differing from the MDL that the modeling algorithm

uses, we argue that our chosen models do not overfit the dataset,

but give a good emulation of the separation dynamics. More

specific details for each model type shall be discussed in each

subsection.

R1 models (Vicsek model data)
From samples of five different instances of low density

simulations of the modified Vicsek model (L~25,g~0:1 see [5],

M~4), five different R1 models were obtained. From there, we

decided to select a single ‘‘best’’ model by comparing the global

behaviors of the models under high density conditions

(L~5,g~0:1 [5], M~30), which was done by averaging

dg~Sdg(t)TK ,T over ten simulations (K) of high density initial

conditions, each with 500 time intervals (T). The model with least

absolute error: Dd
(data)

g {d
(model)

g D was selected with this criterion.

We chose to discriminate the models by comparing their

extrapolative capabilities to simulate initial conditions with

different density than their input data, i.e. the phase transition

in the classic Vicsek model. The number of nearest neighbors (M)

in the model structures and for calculating dl(t) were chosen to be

M~4 for low density initial conditions and M~30 for the high

density case, which from simulations resemble the steady state

number of neighbors from the original radius interaction in the

Vicsek paper [5].

In Figure 2 we can see a comparison between the global

separation dynamics of the modified Vicsek model and the R1

model. The retrieved model closely emulates the behavior of the

source model. The low density cases show an expected higher

separation rate than the high density simulations, which is related

to swarming occurring in small groups and moving away. Even for

the extrapolating case of high density initial conditions, the model

exhibits close following of the dynamics. Figure 3 shows a

comparison of the local neighborhood dynamics of the same two

models. In (a), the Vicsek data reaches a pseudo-steady state for

low density initial conditions, with the R1 model closely following

it but reaching a more stable state. The high density case in

Figure 3(b) considers closer interactions, and thus both models

reach a stable state, with a small transient in the source model, and

a small steady state error. The deviations between the Vicsek and

R1 models, especially for the local separations in the high density

simulations, are likely due to the fact that the former has a noise

term (see Dh in equation (3)), which is not being modeled in the

latter, i.e. the R1 model emulates the deterministic component of

the Vicsek model, and thus the small errors are reasonable.

As inferred with the dg(t) curves, the low density initial

conditions of the Vicsek model feature swarming in separate

groups moving in different directions. Figure 4 shows snapshots of

simulations of both models for the same low density initial

conditions (see Video S1). Qualitatively the retrieved model

follows the behavior of the source model quite well, and this was

verified through several simulations. The only noticeable issue

observed through the simulations is a slightly biased default

direction followed by some individuals, but this should be expected

when constructing a model with imperfect data. Using more data

to build the model, this bias is removed, but the trade-off is longer

computation time. Nevertheless, the observed bias was small, and

many different directions were still seen in the simulations. The

same conclusions were observed for the high density simulation

comparisons, which involves ordered movement of the swarm in

only one or two big groups (see Video S2). Figure 5 shows how a

split in the population was emulated well qualitatively by the R1

model, but with an alignment difference.

Dynamical Modeling of Collective Behavior
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In order to verify how well the R1 model is capturing the basic

local neighbor alignment rule of the Vicsek model, in Figure 6 we

show how the orientation of the neighborhood of an individual:

Shi(t)TM,i, affects the orientation of the individual at the next time

interval: hi(tz1). The statistics for this relationship were averaged

over 50 simulations of 250 time intervals in the R1 model under

low density initial conditions (L~25,M~4). In the ideal case of a

noiseless Vicsek model (Dh~0), we can infer from equation (3)

that these two quantities are equal, and actually represent the rule

which produces swarming behavior. Figure 6 shows how the

model is mostly capturing this essential relationship, with only

some discrepancy in a region between p and
3p

2
. As pointed out

previously, the variation likely occurs because of the noise in the

source data, and can be reduced by using more input data to build

the model. The modeling scenario of the Vicsek data and its

corresponding results, are a good introduction to the task of

building models from real experimental data, which is noisy and

even more imperfect, as shall be considered in the next

subsections.

A models (Homing pigeon flight data)
The main purpose of the A models is to emulate their respective

flight (input data) through simulations, and to confirm that there is

collective behavior influencing the models and not simply an

individual navigational force. In order to see the effect of the

collective components and the interaction structures, models with

different number of nearest neighbors (M) were obtained for

comparison. In addition to those, models with no collective

components (M~0) and thus a six variable embedding (see

Figure 2. Comparison of dg(t) between the modified Vicsek model data and the ‘‘best’’ R1 model. Statistics were averaged over 10
simulations, with both models using the same initial conditions. In (a) low density initial conditions (L~25,M~4) and in (b) high density initial
conditions (L~5,M~30). The range of the simulations is delimited by the dashed lines.
doi:10.1371/journal.pcbi.1002449.g002

Figure 3. Comparison of dl(t) between the modified Vicsek model data and the ‘‘best’’ R1 model. Statistics were averaged over 10
simulations, with both models using the same initial conditions. In (a) low density initial conditions (L~25,M~4) and in (b) high density initial
conditions (L~5,M~30). The range of the simulations is delimited by the dashed lines.
doi:10.1371/journal.pcbi.1002449.g003
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equation 10), were also retrieved for the same purpose. To obtain

better conclusions of the collective effects, five different 3D models

were obtained for each value of M considered, and all statistics

averaged over the five. For the model analysis, two different

simulation scenarios were considered for each homing flight: same

initial conditions as the input data and random initial conditions.

The latter were calculated from a normal distribution with the

same mean and variance as the absolute initial positions of the

input data (for each of the three coordinates), in order to preserve

similar flight conditions, but with no initial velocity, (xi(1)~xi(0)).
The global separation measure dg(t) calculated in the simulations,

was used as the comparison statistic between model structures and

input data.

For simulations of the homing flight 1 (hf1) models (from M~0
to M~4) with five pigeons, Figure 7(a) shows that models with low

M (0, 1 and 2) on average do not follow the input data for the same

initial conditions. This deviation in dg(t) was observed to happen

early in the simulations at tv100s and the opposite velocities in

the initial conditions of some of the individuals is what likely causes

this difficulty. Nevertheless, the models with higher M (3 and 4)

follow the input data neatly (Figure 7(a) shows M~3, see Video

S3). When considering random initial conditions with no initial

velocity, in Figure 7(b) we can see how the individual models

(M~0) do not keep cohesion of the flock as good as the collective

models. This confirms that a collective force is modeled, and that

an interaction structure with M~3 offers both accurate path

simulation and more cohesion (The M = 4 curves are not displayed

in Figure 7 for better visualization; they follow M~3 closely).

The models of homing flight 2 present probably the most

difficult case to analyze. As can be seen in Figure 8(a), the input

data considers the separation increasing at around tw500, and

this happens because the data has two pigeons moving together

away from the main flock at that time. This causes an interesting

modeling case, since these particular data contradict the cohesive

tendencies found at tv500. All this has repercussions with the

retrieved models. Figure 8(a) shows how with the input data initial

Figure 4. Low density simulations of the modified Vicsek model and the ‘‘best’’ R1 model. The same initial conditions were used for both
models. Qualitatively, the R1 model dynamics resemble the modified Visek model: individuals move away in groups. Plot (a) shows a snapshot at
t~10 and (b) one at t~500.
doi:10.1371/journal.pcbi.1002449.g004

Figure 5. High density simulations of the modified Vicsek model and the ‘‘best’’ R1 model. The same initial conditions were used for
both. Qualitatively, the R1 model dynamics resemble the modified Visek model: the population is split into two. Plot (a) shows a snapshot at t~25
and (b) one at t~150.
doi:10.1371/journal.pcbi.1002449.g005
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conditions, the individual models (M~0) follow this separation

better than the others. This can be reasoned with the fact that it is

purely using positional information to estimate the trajectory, and

the small variations between positions at t&500 are what cause

the divergence that mimics the input data. Nevertheless, the

collective models are again expressing a significant collective force,

since they give preference to the group tendencies and thus do not

follow the separation increase (see Video S4). To better visualize

how the interaction structure affects the collective component for

this flight, dg(t) was averaged over all time intervals for each model

structure. Figure 8(b) shows that the simulations with random

initial conditions found the most cohesive interaction structure to

be at M~4, and a surprising separation for Mw4. This likely

stems from the fact that the two-bird deviation in the input data

causes models with larger interaction neighborhoods to be more

sensitive to the deviations of some individuals. Overall, this

particular flight illustrates how the input data can also affect what

the models will try to capture, as well as the trade-offs between

modeling the navigational trajectory or the collective behavior

more closely.

Differing from the previous two homing flights, the third one

has separations of up to 1 km between pigeons, and thus it

considers the longest interaction range of all the flights. The

number of pigeons in this data set is 6, and models with M~0 to

M~4 were retrieved. It was found that every single model

structure follows the input data closely when using the same initial

conditions. Figure 9(a) shows it for M~0,1,3. When using random

initial conditions as shown in Figure 9(b), no significant decrease

was found for the average global separation dg as a function of

adding nearest neighbors, with all values very close to 1.1 km. This

implies that the large separations in this flight could be causing no

interaction (or a very weak one) between birds, and therefore the

models mostly consider the navigational component as the driving

force of the individuals. From this, we infer that there is no

significant collective behavior for this flight, likely due to the large

separations, and an individual model with M~0 should be as

good as any to simulate the dynamics (see Video S5).

Finally we arrive with homing flight 4, which considers eight

pigeons with the shortest average separations of them all, at

around 50 m. This causes dg(t) to appear quite noisy due to the

expected sensitivity of separation distances in a higher density

flock. With M ranging from 0 to 6, we found that the models

with highest value at M~6 produced both the best following of

dg(t) for the input data initial conditions and the highest

cohesion when simulating random initial conditions (see Video

S6). Figure 10 shows a comparison of models with M~0,3,6. As

a difference with the previous three flights, for the random

initial conditions we considered a normal distribution with two

times the standard deviation of the input initial conditions,

instead of one. This was done in order to start with larger

separations and verify the dynamic attraction properties of the

models. From the results, all the collective models clearly had

more attraction, and in Figure 10(b) we can observe how two of

them show sharp convergence tendencies that the individual

models do not have.

Figure 6. Retrieved alignment rule by the ‘‘best’’ R1 model.
Extracted rule representing alingment of an individual i at time tz1:
hi(tz1), as a function of the neighborhood alignments at time t:
Shi(t)TM,i . In an ideal noiseless modified Vicsek model, these
alignments are equal. This synchronization principle is the basis for
the swarming behavior of the Vicsek model.
doi:10.1371/journal.pcbi.1002449.g006

Figure 7. Homing flight 1: flock separation for models with different interaction structure. In (a), simulations consider initial conditions
from the input data, while (b) averages over ten simulations of random initial conditions. From the plots, M~3 shows the best resemblance to the
input data (see (a)) and the strongest collective component (see (b)).
doi:10.1371/journal.pcbi.1002449.g007
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In general, from analyzing the results of the four homing flight

models, we can confirm that our approach is adequate for

simulating pigeon flock trajectories that are qualitatively close to

the experimental data. For flights with short interaction ranges

(less than 700 m from mean position per bird), the collective

models can better capture the flight properties and offer the best

flock cohesion when changing initial conditions. For long

interaction ranges (around 1 km), simple individual models that

consider only own positional information, were enough for a

simulation of the flight.

As a final step with our A models, we estimate the ‘‘optimal’’

value of M for each homing flight with collective behavior (all

except hf3), by calculating the mean absolute error of each

individual model and its source data MAE~
1

T

XT

t~1
Ddg(t)(model){dg(t)(data)D, from a simulation with the same

initial conditions. After that, we averaged the MAE for each type of

model (each value of M) in order to verify which interaction

structure follows the separation dynamics of the source data better

on average. For hf2 we only considered up to t~400 to exclude the

section of the data where the flock splits. Table 1 shows our results,

and interestingly for all flights M~4 gave the least average MAE

values. This does not mean that M~4 models were always the best

for each flight, but that on average they performed better than the

others. This tells us that considering an interaction neighborhood of

the four nearest neighbors is a reasonable assumption for the

modeling of these particular homing pigeon flights.

R2 models (homing pigeon flight data)
The data from hf1, hf2, and hf4 was used to build five models

for each structure with M~1 to M~4, and using two second

sampling on the data. The third homing flight was excluded since

Figure 8. Homing flight 2: flock separation for models with different interaction structure. In (a), simulations consider initial conditions
from the input data, while (b) averages over ten simulations of random initial conditions, and all time intervals. From the plots, a split occurs in the
flock after t~400 (see (a)), while M~4 has the strongest collective component (see (b)).
doi:10.1371/journal.pcbi.1002449.g008

Figure 9. Homing flight 3: Flock separation for models with different interaction structure. In (a), simulations consider initial conditions
from the input data, while (b) averages over ten simulations of random initial conditions, and all time intervals. No significant collective behavior is
found due to the long separations.
doi:10.1371/journal.pcbi.1002449.g009
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our results in the previous subsection confirm that there is no

strong collective behavior in that dataset, and M was limited to a

maximum value of 4 because of the hf1 data that only considers five

pigeons. In contrast to the A models, the R2 models were set to be

2D for simplification, with the height component removed from

predictions and simulations. To select the ‘‘best’’ model, ten

different sets of initial conditions that resemble the properties of hf1

(mid-range interaction around 300 m) were used to simulate flights

of N~9 individuals, and dg measures calculated. Since the data that

we use for our R2 model comes from different flights with different

separation, navigational, and environmental properties, it is not

adequate to select a ‘‘best’’ model based on a direct comparison of

separations with the data, and thus we decided to select based on

best flock cohesion, due to better flocking capabilities. Not

surprisingly, the selected model had a structure of M~4, which is

consistent with our calculation of the ‘‘optimal’’ M value in the

previous subsection. The selected model was used for all the analysis

and it shall now be referred to as the R2 model in general terms.

Also important to note is the fact that the R2 model has a slightly

biased overall direction, which was reduced as much as possible

using the rotations in the data that we described in the modeling

section. MATLAB files for our five R2 models with M~4 have

been made available on the internet for usage [21].

Many different variations of initial conditions or even values of

M and N could be considered on the R2 model simulations for

analysis. For this study we decided to fix N and M at 300 and 4

respectively. We varied the initial positional density of the

individuals according to the formula r~250rc, where r is the

radius (in meters) of the circle in which the initial positions of the

individuals are distributed (following a uniform random distribu-

tion), and rc is the actual coefficient that we change. Additionally.

we alter the initial speed of the individuals (the magnitudes of

Dxi(1)) using vi~30vc, and spanning vc from 0 to 1. All the

individuals are initialized with the same speed but with different

orientations, the latter obtained from a random uniform

distribution U(0,2p). Considering that the R2 model has two-

second updates (input data with two second samples), this limits

the initial speed to a maximum of 15 m/s, which is roughly the

average of the speeds in the pigeon homing flights. Even though

speed and density could be seen as rescalings of each other, the

model is built from real data and therefore the actual numerical

values for each quantity affect the model considerably and in

different ways. From the R2 embedding in equation (11), we can

see that separations and velocities will influence the model, and

thus both quantities are important for a complete analysis of the

dynamics. Seven different rc values and eleven vc values were

considered for a total of 77 combinations of initial condition

parameters. Each parameter setting was considered for ten

different simulations, in order to get better averaged statistics.

In Figure 11, we can see a comparison of dg(t) for four extreme

cases of high and low densities and velocities. Figure 11(a) shows

that cases of low velocity settle approximately into steady states,

while the high velocity cases have increases in global separation;

more drastically in the high density case. This tells us that global

flocking is highly dependent on the velocities of the individuals,

and not so much on the population density. In Figure 11(b), the

local separation properties can be observed. Basically for all cases,

the individuals tend to converge into local groups with less than

20 m separation, with the low density cases having drastic drops in

dl(t) that symbolize strong attraction. This means that larger

separations provoke individuals to move strongly toward their

neighbors. The high density and high speed case shows an

interesting initial increase in dl(t) and then decrease to settle down

into its steady state. This is likely due to velocity synchronization:

individuals are initially close together with random directions but

Figure 10. Homing flight 4: Flock separation for models with different interaction structure. In (a), simulations consider initial conditions
from the input data, while (b) averages over ten simulations of random initial conditions. From the plots, M~3 shows the best resemblance to the
input data (see (a)) and M~6 the strongest collective component (see (b)).
doi:10.1371/journal.pcbi.1002449.g010

Table 1. The ‘‘optimal’’ M value.

M 0 1 2 3 4 5 6

hf1 343.2 563.2 424.4 50.2 47.8 N/A N/A

hf2 17.2 21.0 14.2 13.9 12.4 14.3 17.6

hf4 2.8 4.5 5.2 4.5 2.1 3.2 4.5

Averaged mean absolute error (MAE) values between models and their source
data for each homing flight. The MAEs from all the models of the same type
(same M) were averaged in order to find which interaction followed best the
separation dynamics. The models with M~4 show the least averaged MAE in
all flights.)
doi:10.1371/journal.pcbi.1002449.t001
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later on they separate and align with neighbors with similar

orientations and synchronize their velocities.

Figure 12 shows how in the low density and low speed

simulation, the individuals attract into small groups and globally

move together in the main direction (the biased direction: roughly

southwest, see Video S7). For the high speed case, the flock has less

cohesion, including some stranded individuals moving in other

directions, and therefore their alignment is not fully synchronized

(see Video S8). From here we can see that when individuals are

separated by a longer distance, if they are moving at slower speeds

then they have a better chance of finding each other and aligning.

The higher speeds make it more difficult, and thus provoke less

cohesion and stranded groups of individuals moving on their own.

These tendencies are consistent with Figure 11. For the two cases

of high density initial conditions we have a drastic difference.

Figure 13 shows how for low speeds, the flock stays together,

spaces out, and then slightly moves in the main direction (see

Video S9). For high speeds, small groups are formed and they

move away from the center independently (see Video S10). This

shows that the velocities are usually roughly maintained within

nearest neighbors, and thus cause the significant difference in

system behavior.

To generalize how the initial densities and speeds affect the

system behavior, Figure 14 shows a plot of the averaged separation

d in shades of gray, for the different initial parameters. In

Figure 14(a), we can see how by increasing the speed, the

separation increases for every density value, though in a lower rate

for the low density cases. For a fixed speed value, when decreasing

the density (increasing the radius coefficient rc), the separation

tends to decrease and then increase again, which implies that there

is a critical density value with highest cohesion for each different

speed value (marked on the figure). As the speed increases, a lower

density (higher rc) value will be required to achieve highest

cohesion. Figure 14(b) shows how the local separation follows the

Figure 11. Comparison of separation measures between extreme cases of initial conditions for the R2 model. Statistics were averaged
over 10 simulations for each case. Plot (a) shows that the initial speed vi plays an important part in the global separation of the system dg(t). In plot
(b), the local separations dl(t) tend to similar steady states regardless of the initial conditions.
doi:10.1371/journal.pcbi.1002449.g011

Figure 12. Simulations of low density instances (r~2km) of the R2 model. Low and high initial speeds are considered. The simulation with
low initial speed shows a more aligned and cohesive flock. Plot (a) shows a snapshot after 100 s and (b) one after 500 s.
doi:10.1371/journal.pcbi.1002449.g012

Dynamical Modeling of Collective Behavior

PLoS Computational Biology | www.ploscompbiol.org 12 March 2012 | Volume 8 | Issue 3 | e1002449



expected pattern of higher cohesion at higher densities and lower

cohesion at lower densities, with no strong dependency on the

speed. It is relevant to notice that the cohesive force does not

decrease so drastically until it passes a distance threshold of no

interaction between individuals. From these observations, we can

conclude that speed has a higher influence on the global dynamics

of the system, while density influences the local interactions. In other

words, the density seems to have a greater influence on the

directional alignment of individuals: lower separations causing

almost immediate neighbor alignment, while larger separations

require a transient to first converge and then align (see Figure 11(b)).

As final illustrations of the behavior of the R2 model, averaged

distributions of how the separation of a particle i from its nearest

neighbors affects its attraction and speed at the next time interval,

were calculated from all the simulations considered in this

subsection (all 77 combinations of parameter values and their

ten simulations). The average nearest neighbor separation of a

particle i at a time interval is defined as ji(t)~
1

M

XM

j~1
Exi(t){xnnj

(t)E. Figure 15(a) shows that there is a small

repulsion force spanning up to slightly less than 20 m of separation

and then the strong attraction force with a maximum strength at

around 120 m and ending near 500 m, which tells us that the

maximum interaction range is approximately 500 m. This limit in

the interaction range is consistent with our conclusion of no

collective behavior in hf3, which had separations of more than

1 km. The distribution is much smoother for short range

interactions, likely because cohesive scenarios dominated the

simulations. Figure 15(b) shows how the speed of a particle is

highest within 20 and 120 meters of separation, with a maximum

near 35 m. This region is strongly correlated with the strong

attraction region also roughly covering that span until the

minimum (maximum attraction) is reached in Figure 15(a). For

higher separations, the speed decreases steadily, which follows that

Figure 13. Simulations of high density instances (r~125m) of the R2 model. Low and high initial speeds are considered. The simulation with
high initial speed shows small groups dispersing in many directions. Plot (a) shows a snapshot after 100 s and (b) one after 500 s.
doi:10.1371/journal.pcbi.1002449.g013

Figure 14. Comparison of averaged separation measure d for simulations of R2 model. Initial speeds and population radius (densities) for
the R2 model were varied. Critical density values (highest cohesion) for each speed are marked for global separation dg in (a). Loosely invariant
behavior for local separation dl is shown in (b). Statistics were averaged over 10 simulations for each parameter case.
doi:10.1371/journal.pcbi.1002449.g014
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individuals are attracted less to their neighbors as their interaction

decreases. The maximum speed at 35 m presents an interesting

interpretation, because it only amounts to a weak attraction force,

implying an interaction range where individuals are aligned and

moving fast together.

Discussion

The contribution of our work encompasses both the modeling

scheme and methodology to build flocking models which can

emulate the collective behavior (represented by separation

dynamics) of input experimental data, and the inference of

essential dynamical properties of the models using simulations. As

a first step to verify our approach, we inferred the basic

neighborhood alignment principle of the Vicsek model, since our

R1 model mostly captured this synchronizing relationship. From

the simulations of our more complete R2 model, built from data of

three flights of pigeon flocks, we averaged attraction and speed

distributions based on the separation of an individual to its nearest

neighbors. Our results shown in Figure 15 are consistent with

classical swarming models that consider a short range repulsion

force followed by attraction at longer ranges within the sphere of

interaction of an individual [4,19]. This interaction range between

the fixed number of nearest neighbors was found to have a

maximum attraction force near 120 m of separation and its limit

at around 500 m. We emphasize that our model and results are

not a replacement to approaches that consider ‘‘leaders’’ as the

driving force of the flock [6], but an essential complement to the

hierarchical structure [1]. This augmentation is composed of the

essential interaction mechanisms that are the foundations of

flocking [4]. Our results are consistent with our previous study,

where we analyzed the reciprocal relationships of the flock from

the same datasets, and found that these basic local dynamics are

fundamental for the collective behavior in pigeon flights [18].

The methodology presented in this paper is capable of obtaining

models of collective systems exhibiting swarming properties, from

which simulations and statistics can be obtained. A related method

using Gaussian processes to model pigeon trajectories and identify

terrain landmarks has been recently proposed [22], with the main

difference being that we build a multi-agent model that emphasizes

the collective dynamics of a flock instead of a model for the

trajectory followed by a single pigeon. The Vicsek model served as

an introductory example of a simulated system with noisy data, to

verify the efficiency of our approach on modeling dynamics with

collective behavior. The results showed adequate qualitative

emulation of the dynamics for two extreme density scenarios, even

when the sampled data used to build the model was only based on a

single density case, thus showing the capability for extrapolation.

When modeling the four homing pigeon flock trajectories with the A

models, different interaction structures were retrieved in order to

test and verify both the trajectory and the collective dynamics. The

best retrieved models showed the capability of qualitatively

simulating the collective dynamics of the input data, and we found

that on average, models that consider each individual interacting

with its four nearest neighbors (M~4) gave the best emulation of

the global separation dynamics of the flock. We do not claim that

pigeons strictly interact with only their four nearest neighbors, but

our results do show that this is a good premise for our models to

follow the collective dynamics of the data.

The R2 model showed the ability to represent significant

swarming behaviors. In general, it illustrated that global swarming

of a population is largely dependent on the speeds of the

individuals, with low speeds favoring unified organized movement,

and high speeds causing local swarming and separation in different

directions. The population density also had an effect on the

simulations, by essentially having a critical value of highest

cohesion for a fixed value of initial velocities. This implies that for

given velocities, a certain density distribution will offer the best

global cohesion and synchronization between individuals. From

the same observations we concluded that lower speeds facilitate

pigeon flocking, and this is consistent with common sense, since

the pigeons can easily converge and synchronize with no major

effort. Higher speeds will cause only pigeons with similar

alignments to synchronize their directions and move together,

which is synonymous to flocking in small groups. Nevertheless,

certain densities can still cause global flocking with high speeds, as

long as there is enough space for these small pigeon groups to

converge and synchronize their velocities.

Our approach has the potential of being used to model other kinds

of complex systems where similar spatiotemporal measurements are

Figure 15. Change in separation symbolizing attraction(2)/repulsion(+), and speed distributions estimated from the simulations. In
(a) and (b) we have the changes in neighbor separation Dji and speed v respectively at the next time interval tz1, as a function of ji at time t. The R2
model was built upon two-second sampling, and thus each time interval update tz1 is after two seconds. Plot (a) is consistent with short range
repulsion and long range attraction as the main mechanisms of neighbor interactions.
doi:10.1371/journal.pcbi.1002449.g015
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available. Depending on the properties of the systems in question, we

consider that continuous improvements to the embedding schemes,

are a worthy direction to continue our work and infer other essential

relationships between interacting entities of collective systems. In

addition, another possible future direction is to construct simplified

mathematical models manually which use these extracted rules as a

basis for the dynamics, and thus be able to have a wider range of

simulations that could help understand new behaviors that can

emerge from local interactions of individuals.

Supporting Information

Video S1 Low density simulations of the modified
Vicsek model and the ‘‘best’’ R1 model. Individuals move

away in small groups.

(MP4)

Video S2 High density simulations of the modified
Vicsek model and the ‘‘best’’ R1 model. Individuals move

away in two large groups.

(MP4)

Video S3 Dynamics of homing flight 1: experimental
data vs. A model simulation.
(MP4)

Video S4 Dynamics of homing flight 2: experimental
data vs. A model simulation. The model has more cohesion

in final time intervals (M~4).

(MP4)

Video S5 Dynamics of homing flight 3: experimental
data vs. A model simulation. No significant collective

behavior. Model with M~0.

(MP4)

Video S6 Dynamics of homing flight 4: experimental
data vs. A model simulation. Low separations. Model with

M~6.

(MP4)

Video S7 Low density and low speed simulation of the
R2 model. Individuals find each other.

(MP4)

Video S8 Low density and high speed simulation of the
R2 model. Some dispersion in the population.

(MP4)

Video S9 High density and low speed simulation of the
R2 model. Global movement.

(MP4)

Video S10 High density and high speed simulation of
the R2 model. Neighbors align easily and move away.

(MP4)
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