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Abstract

The complex three-dimensional shapes of tree-like structures in biology are constrained by optimization principles, but the
actual costs being minimized can be difficult to discern. We show that despite quite variable morphologies and functions,
bifurcations in the scleractinian coral Madracis and in many different mammalian neuron types tend to be planar. We prove
that in fact bifurcations embedded in a spatial tree that minimizes wiring cost should lie on planes. This biologically
motivated generalization of the classical mathematical theory of Euclidean Steiner trees is compatible with many different
assumptions about the type of cost function. Since the geometric proof does not require any correlation between
consecutive planes, we predict that, in an environment without directional biases, consecutive planes would be oriented
independently of each other. We confirm this is true for many branching corals and neuron types. We conclude that planar
bifurcations are characteristic of wiring cost optimization in any type of biological spatial tree structure.
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Introduction

Bifurcations are observed widely in nature [1], such as in

dendrites and axons of neurons [2], plants [3], rivers, capillaries

[4,5,6], bronchi and tracheal systems [7,8,9] and octo- and

scleractinian corals [10,11]. Most studies have focused on

characterizing tree geometry [7,12,13,14,15,16] with an emphasis

on the implications for function [17,18,19] or in relation to

optimization processes [4,8,20,21].

Overall, much less attention has been given to bifurcation

properties. While it has occasionally been reported that bifurca-

tions tend to be planar in different natural trees such as in neurons

[22], in arterial systems [6], in lungs [9] and in plants [3], this

property has not been systematically studied or properly explained

[3].

In this paper we first characterize planarity in two very different

types of spatial tree: the branches of corals and the dendrites of

neurons. The point of doing so is to demonstrate evolutionary

convergence, a feature one expects to be exhibited by any true

optimization principle in biology [17]. We next investigate

whether we can use the theory of Steiner trees to explain this

phenomenon. Steiner tree theory is an active research field [23]

that studies wiring cost minimization [24], mostly in two

dimensions. It has been used as a framework for understanding

wiring cost optimization in neurons [25,26] and other naturally

occurring trees [27]. Steiner trees minimize edge costs by allowing

the addition of extra nodes (Steiner points) whenever these reduce

the total wiring cost. When the costs are defined as the Euclidean

distances between nodes, these are Euclidean Steiner trees [28].

Minimal Euclidean Steiner tree bifurcations in space must be

planar [29], but they also require 120u angles between adjacent

edges [28,29].

We show that the bifurcations we studied are not compatible

with the Steiner tree paradigm and instead propose a new general

theoretical framework that has the advantage of not requiring any

specific assumptions about wiring cost beyond an increase with

branch length. This theory provides for the first time an

explanation for flat bifurcations that can be applied to all kinds

of natural trees.

Results

In the coral Madracis and neuronal dendrites,
bifurcations are mostly planar

We examined whether planarity is a common property of

natural structures by quantifying flatness using cone angles [22].

The cone angle of a bifurcation is the aperture or opening angle of

a right circular cone which contains the three bifurcation branches

within its surface and has its apex at the branching point. A flat

bifurcation has a cone angle of 180u. We examined the properties

of bifurcations in two very different biological data sets. The first

data are corals where planarity has not been demonstrated

previously: we measured cone angles in digital reconstructions of

four species of the branching coral Madracis (Figure 1A, Table S1).

Secondly, we extended the previous observation of flat bifurcations

in visual cortex pyramidal neurons [22] to eight different

mammalian neuron types (Figure 1B, Table S1). We found that

despite their rich and varied spatial morphologies, in all coral
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species (Figure 1A) and all neuron types (Figure 1B) most dendritic

bifurcations (57 to 88%) were close to planar (between 160u and

180u), confirming that planarity is a general property of coral and

of neuronal dendritic trees and axons (Figure S1A).

Neuronal dendritic and coral bifurcation geometries are
not of Steiner type

We next asked whether flat bifurcations could be explained by

considering these trees to be Steiner trees. We tested whether coral

or neuronal dendritic bifurcation angles between any of the 3

branches in a bifurcation tend to be close to 120u, as must be the

case for minimal Euclidean Steiner trees. Although the peaks of

branching angle distributions of corals were near 120u, only 19 to

22% of branches had branching angles close to 120u (between

110u and 130u) (Figure 1A). There were differences between coral

species: while most had a single peak in the distribution, Madracis

mirabilis had two separated peaks. Conversely, in neurons all

branching angle distributions were bimodal with peaks smaller and

larger than 120u (Figure 1B). Consequently only 3 to 15% of

angles were close to 120u, as was also shown in other studies

[25,26].

The fact that neurites and coral skeletons are not of Euclidean

Steiner tree type leaves unanswered the question of why their

bifurcations are mostly planar. Can this be explained by another

optimality-based principle?

Random bifurcations
We first checked the null hypothesis that random bifurcations

are not planar. To investigate this, we calculated the probability

distribution of cone angles for bifurcations with a random

orientation of the 3 branches (Figure 2). For this calculation, the

bifurcation point was located at the center of a unit sphere and all

other points were located on the sphere surface, but the results

apply also to 4 random points in space defining a bifurcation (Text

S1). For a bifurcation to be on a cone with cone angle a, all non-

bifurcation points need to lie on the circular intersection, of the

cone with the unit sphere, whose circumference is 2p sin(a=2)
(Figure 2B). Even taking singular cases into account, the

probability distribution for cone angle a is in fact (Text S1) given

by

P að Þ~ 3

4
sin3 a

2
: ð1Þ

Since the circumference of the base circle increases with increasing

cone angle, the probability distribution of a also increases, with a

maximum at 180u (Figure 2D). Though the finding that even

random bifurcations have a tendency to be flat may be surprising,

we found that in corals and neurons the proportion of close to

planar bifurcations was always much more pronounced (Figure 2C,

p = 1025).

For the neural data we also excluded histological artifacts as a

cause of planarity (Text S1 and Table S2).

A property of wiring cost optimal trees
Having excluded trivial explanations for the planarity of

bifurcations, we returned to the issue of wiring cost minimization

and discovered that indeed it is possible to prove that an optimal

wiring cost tree, even with varying wiring cost, should have planar

bifurcations. We assumed that a number of regions (which may be

simply points) containing terminal or target points are given,

which are connected by a wiring cost minimizing tree. No causal

or teleological relationship between these regions and the growth

of the tree is implied. Our proof is essentially a test of optimality of

any given spatial tree. Given a tree, which must necessarily have

terminal points, we asked whether it could be optimal with respect

to those points. Whether or not the terminal regions or points were

specified before or during growth, or were simply the terminal

points of the tree at the moment we observed it, does not enter in

to our mathematical proof. The wiring cost we considered is a sum

of individual edge costs, each of which should be continuous and

strictly increasing with edge length. This type of wiring cost is

general enough to describe not only a total wiring cost in the usual

sense, but also the total cost of paths from each terminal point or

intermediary target point to a root, or any linear combination of

these costs [30,31,32]. Moreover, this type of wiring cost can also

take into account conflicting cost functions previously proposed in

neuroscience such as volume, surface and neural conduction time

[26,33], since all of them increase with wiring length, as well as

cost functions that might vary during development or are specific

to each branch [34]. See Text S1 for details.

Rather than constructing an optimal solution, which is known to

be an NP-hard problem [35], we investigated properties any

optimal tree must possess. As in the Steiner tree problem, we

allowed additional points to be added. We began by considering

an arbitrary bifurcation point (ub) and the three points it connects

to (ud1
, ud2

,up) (Figure 3A). These three points define a bifurcation

plane. If the bifurcation point is not in the bifurcation plane (i.e. if

the bifurcation is not planar) we asked whether it can be part of an

optimal tree. We showed that one can always move this

bifurcation point, unless explicitly forbidden by an imposed

biological necessity or obstruction, onto the bifurcation plane in

such a way (normal projection) that the three edges of the

bifurcation are all shortened. The fact that three edges of the tree

can be shortened, without making any change to the other edges of

the tree, means that the entire tree containing the non-planar

bifurcation cannot have been optimal. Thus, we could conclude

that all bifurcations in any optimal tree must be planar.

What does the shape of optimal bifurcations tell us about the

shape of the whole tree? The shape of a tree is determined by its

target points, and when these points do not provide directional

biases our result suggests that there is no need for any correlation

between the orientations of the bifurcation planes. To further test

this idea, we measured the angles between consecutive bifurcation

planes in the neuronal and coral data (Figure 3B). These

experimental distributions clearly approximate a uniform distri-

bution of angles from 0 to 90u for all, except for Purkinje neurons

and the skeletons of Madracis mirabilis colonies. Madracis mirabilis is

Author Summary

Morphology is constrained by function and vice-versa.
Often, intricate morphology can be explained by optimi-
zation of a cost. However, in biology, the exact form of the
cost function is seldom clear. Previously, for many different
natural trees authors have reported that most bifurcations
are planar and we confirm this here for branching corals
and mammalian neurons. In a three-dimensional space,
where bifurcations can have many shapes, it is not clear
why they are mostly planar. We show, using a geometric
proof, that bifurcations that are part of an optimal wiring
cost tree should be planar. We demonstrate this by
proving that a bifurcation that is not planar cannot be part
of an optimal wiring cost tree, using a very general form of
wiring cost which applies even when the exact form of the
cost function is not known. We conclude that nature
selects for developmental mechanisms which produce
planar bifurcations.

Bifurcations in Minimal Wiring Cost Trees Are Flat
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known to be geometrically exceptional within the genus Madracis

as a result of its unusually regular branching patterns [16] which

are strongly suggestive of developmental constraints overriding

purely geometrical optimality considerations. In the case of

Purkinje cells, the symmetry breaking induced by the parallel

fibers allows only a globally planar solution to be optimal, meaning

that the dendritic tree is flat and all the bifurcations lie on the same

plane [32], just as the symmetry breaking induced by water

currents can result in globally planar fan coral morphologies [36]

in octocorals. Similarly developmental controls during lung growth

Figure 1. Geometric measurements of the scleractinian coral Madracis and neuronal dendritic bifurcations show that bifurcations
are mostly planar, but bifurcation angles are not always Steiner tree optimal. Measurements were done on bifurcations composed of a
parent (P) and two daughter branches (D1, D2). For each case an example of the very different coral and dendritic tree morphologies is shown (left),
the distribution of cone angles [22] as a quantification of the shape of a bifurcation (center) and the distribution of the angles between the branches
(right). A. Samples of coral bifurcations from 4 coral species. B. Samples of dendritic bifurcations of 8 neuron types. The cone angle values are marked
in color in the range of 0 to 180u on the samples themselves (see scale at the bottom right). The histogram of cone angle distributions peaks at 180u,
showing a marked tendency towards planarity. The bifurcation angle (2DB) distribution for both corals and neurons shows that only a small
proportion of angles are close to 120u.
doi:10.1371/journal.pcbi.1002474.g001

Bifurcations in Minimal Wiring Cost Trees Are Flat
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cause the bifurcations which are planar to occur in either the same

plane or in an orthogonal plane to the preceding one [9]. These

apparent exceptions are important because they strengthen our

case for evolutionary convergence between neuronal and octo-

and scleractinian coral skeleton morphologies.

Discussion

We have confirmed that diverse natural trees have a large

proportion of flat bifurcations and proposed a general theory that

shows that this must be expected for optimal wiring cost trees.

Unlike Euclidean Steiner tree theory, in which the cost of an edge

is nothing other than its length, our general theory allows each

individual edge to have its own cost defined in terms of any

continuous, strictly increasing function of length. The fact that we

do not need to specify the actual functions any further is a strength

of our approach. It is not whether edges make 120u angles which is

characteristic of optimal wiring cost [26], but rather the fact that

bifurcations are always planar. Our theory extends to bifurcations

of the axons of neurons (Figure S1), where planarity has previously

been overlooked [26], and planar bifurcations observed in arteries

[4,5,6], mammalian lungs and invertebrate trachea [9,37], plants

[3], or even nanotubes [38].

Our theory does not suggest specific mechanisms for achieving

planar bifurcations and different organisms will choose different

strategies. In the case of neurons, dendritic planarity has been

attributed to tension forces flattening the dendrite during

development [39]. However tension may not suffice to explain

dendritic planarity in complex extracellular space. Instead,

neuronal dendritic planar bifurcations could arise during growth

via mechanisms such as pruning [40,41,42] where branches with

high wiring cost are eliminated, or with simple growth rules [43]

like, repulsion between branches [44,45], or via genetic control

[9,37,46].

The rich literature on the optimization of neuronal trees has

mostly focused on larger scale tree morphology. Because our

theory defines wiring cost optimization in a very general way, it is

independent of any particular biophysical model of neuronal tree

growth, restructuring or maintenance [39,40,47,48]. Our results

are also consistent with different explanations for the appropriate

definition of cost, be it minimal energy expenditure of processes

[22], flow across a bifurcation [8,39] involving functional

considerations such as connectivity [49], or other models which

have been proposed [26,43,50].

Conversely, much less attention has been given to the

optimization principles underlying tree-structures in coral biology.

By some authors it has been hypothesized that the coral is

optimizing branch spacing and compactness to maximize the

internal flow velocity between the branches of a colony that

sustains the mass transfer rate into and out of the colony [51].

There is a strong morphological plasticity in corals due to

environmental influences [52]. The wiring cost optimization we

observed suggests that the branching structure is formed with a

minimum amount of material, whether this structure is also

optimizing mass transfer in the colony is still unknown. The

Figure 2. Random bifurcations have a tendency to be planar. A.
Diagram showing how random bifurcations can be mapped onto a unit
sphere. The bifurcation point is fixed at the center of the sphere and
non-bifurcation points are projected onto its surface. Intuitively, the
probability of finding a cone with cone angle a can be thought of in
terms of choosing three non-bifurcating points that fall onto the base
circle of this cone, i.e. the intersection of the cone with the sphere. B.
The circumference of the base circle gets larger as the cone angle
increases. C. Overlay of the random bifurcations’ distribution of cone
angles with the biological distributions shows that the distribution of all
biological bifurcations deviates significantly from the random one (KS
test, p-value = 1025). D. The probability distribution for random
bifurcations is P að Þ~(3=4)sin3(a=2) (where a is in radians). The
probability of cone angles .160u is 26%.
doi:10.1371/journal.pcbi.1002474.g002

Figure 3. A bifurcation in an optimal wiring cost tree has to lie
on a plane and consecutive planes are independent of each
other. A. Projecting the red bifurcation point (nb) onto the blue
bifurcation plane reduces the costs of all three edges involved, and
therefore the total cost of the entire tree. Note that in this example the
bifurcation plane is defined by neighboring bifurcation points
(np,nd1

,nd2
), but some or all of these could be replaced by fixed or

terminal points. B. Most of the distributions of angles between
consecutive bifurcation planes approximate the uniform distribution,
except for Purkinje cells, L5 PFC pyramidal cells and M. mirabilis. Data
from the other 6 neuron types and 3 coral species were statistically
consistent with a uniform distribution (p.0.05, one-sample Kolmo-
gorov-Smirnov test, considering only basal dendrites for L2/3 pyramidal
neurons). C. Example of bifurcation planes in a L2/3 somatosensory
cortex pyramidal cell. The bifurcation planes are color coded according
to their cone angles.
doi:10.1371/journal.pcbi.1002474.g003

Bifurcations in Minimal Wiring Cost Trees Are Flat
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branching angles distributions for the 4 related species are clearly

species-specific. Usually the classical taxonomy (e.g. [53,54] for

Madracis) in corals is based on corallite morphologies, while the

overall colony is described in a rather qualitative and informal

way.

Here, we have provided a general, geometric explanation for

the planarity of bifurcations. To the best of our knowledge, it is

the first proof of the requirement of planarity of bifurcations in a

general spatial framework of wiring cost optimization with

varying wiring cost. One of the strengths of our contribution is

to show that planarity can be understood at a fairly abstract level

and a wide variety of branched tree structures in all areas of

biology.

Materials and Methods

Data Analysis
Scleractinian coral data. We used 3D morphological data

of 4 species of the branching coral of the genus Madracis. The

species analyzed were Madracis carmabi, Madracis decactis, Madracis

formosa and Madracis mirabilis (See Table S1 for further details).

Details of the data acquisition method can be found in [16] .

Neuronal Data. We used 3D morphological data of 8

extensively studied mammalian neuron types taken from normal,

untreated animals. The morphological data were downloaded

from the Neuromorpho.org database [55]. The cells were

hippocampal granule cells, Layer 2/3 somatosensory cortex

pyramidal cells, Layer 5 prefrontal cortex pyramidal cells, cortical

basket, Martinotti and bitufted cells, cerebellar Purkinje cells and

alpha motor neurons (See Table S1 for further details).

Measurements. The points used for constructing individual

bifurcations were either bifurcation points or terminal points (see

Text S1 and Figure S2 for an alternative approach). We measured

the cone angle of each bifurcation. From a single bifurcation, a

cone was constructed using the bifurcation point as the tip and

letting the three non-bifurcating points define the surface of the

cone. A novel, more robust method to calculate the cone angle is

detailed in the Text S1. For the measurement of the angle between

two consecutive bifurcation planes, planes were constructed using

parent and both daughter points. Two planes were considered

consecutive when one of the daughter points of one bifurcation

was the bifurcation point of the next bifurcation. A normal vector

was constructed from each plane, and the angle between two

normal vectors was measured. Since the angles were symmetric

around 90u, all the angles that were larger than 90u were reduced

to the range of 0u to 90u.
Proof of planar bifurcations for wiring cost optimization

tree. We prove, under quite general conditions, that bifurca-

tions in a tree optimizing wiring cost must be planar. We do not

attempt to provide any method or algorithm for constructing such

an optimal tree. Rather, we derive certain properties a globally

optimal tree must possess. We work within the framework of

geometric graph theory, making use of undirected graphs

embedded in three-dimensional Euclidean space (E3). We assume

that all trees contain a finite number of points and that all edges

are line segments. We consider only trees, since total wiring cost

can always be reduced by eliminating one edge in a loop, an

operation which does not change connectivity. We also consider

only connected trees, since our intended application is to

individual dendritic trees. Our proof does not require the existence

of any quantity which might be called a force. Instead, we work

exclusively with a definition of cost. Our results therefore also

apply to systems for which mechanistic explanations of bifurcation

planarity do not apply.

Let us imagine a tree involving N distinct internal vertices

u1,u2, . . . ,uN and M distinct terminal vertices

uNz1,uNz2, . . . ,uNzM in three-dimensional Euclidean space

(E3). Each vertex is restricted to lie within its own given region

(a finite union of closed subsets of E3 with continuous boundary),

which we denote R1,R2, . . . ,RNzM , respectively. Internal

vertices will not typically be spatially restricted (i.e. their given

regions will be E3), but can be, to accommodate any target points

which are not terminal points.

Furthermore, let us suppose that the tree is optimal with respect

to wiring cost, in the sense that the positions of the NzM vertices

minimize the wiring cost

W (u1, . . . ,uNzM )~
1

2

XNzM

i~1

XNzM

j~1

ei,j fi,j d(ui,uj)
� �

ð2Þ

where the elements ei,j of the adjacency matrix e are either (i) zero

or (ii) equal to unity if and only if the vertices ui and uj are

connected by an edge. d(X ,Y ) is the Euclidean distance between

points X ,Y [ E3. We furthermore assume that the functions

fi,j : R?R are continuous, strictly increasing and symmetric with

respect to their indices, so that fi,j(x)~fj,i(x) for all

i,j [ f1,2, :::, NzMg and all x [ R. We will make particular

use of the fact that they are strictly increasing, and thus have the

property that

d(X ,Y )wd(X ’,Y ’) [fi,j d(X ,Y )ð Þwfi,j d(X ’,Y ’)ð Þ

for all X ,Y ,X ’,Y ’[E3. Note that we do not require that the fi,j be

differentiable everywhere, nor that their first derivative be always

positive when defined [56], but we assume continuity because it

guarantees the existence of optima [57].

Thus, we are interested in properties of global optima with

respect to the optimization problem

argmin W u1, . . . ,uN ,uNz1, . . . ,uNzMð Þ

u1 [ R1

..

.

uNzM [ RNzM

ð3Þ

The optimization problem [3] does not explicitly touch upon the

issue of optimization of tree topology (encoded in the adjacency

matrix e). This does not restrict the applicability of our approach,

since the properties we establish are independent of topology.

For our purposes, we define a bifurcation to be the union of the

edges joining an internal vertex ub (b [ f1,2, ::: ,Ng) of degree

three to its neighbours up, ud1
and ud2

, any of which may be a

terminal vertex (p, d1, d2 [ f1,:::, NzMg), assuming that all four

points are distinct. We define a bifurcation plane to be the plane

defined by the three vertices up, ud1
and ud2

of the bifurcation.

We define a deformable bifurcation to be a bifurcation which could

be made planar by projecting ub onto the bifurcation plane

(Figure 3A). In other words, the given region for ub (i.e. Rb) must

contain the projection of ub onto the bifurcation plane. By

‘‘deformable’’, we intend to mean something like ‘‘can be

flattened’’.

Now we will prove that all deformable bifurcations in an

optimal tree are planar, by showing that any non-planar

deformable bifurcation in a tree implies that the tree cannot be

optimal.

Bifurcations in Minimal Wiring Cost Trees Are Flat
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Let us assume that ub is an internal vertex of degree three in an

optimal tree, and that it does not lie in the plane Pb passing

through the three points ub is joined to, which we will identify as

up, ud1
and ud2

, as in Figure 3A. Pb is, by construction, the

bifurcation plane. In other words, we assume that this bifurcation

is not planar. Let u’b be the unique point in Pb closest to ub. The

line passing through ub and u’b must make a right angle with Pb.

Since the line segment joining ub and up is the hypotenuse of the

right triangle Dubupu’b, we have d ub,up

� �
wd u’b,up

� �
and therefore

fb,p d ub,up

� �� �
wfb,p d u’b,up

� �� �
.

One can readily verify that the same is true in the cases of the

right triangles Dubud1
u’b and Dubud2

u’b. Since ub enters into the

wiring cost only via the six terms eb,pfb,p d(ub,up)
� �

=2 ,eb,d1
fb,d1

d(ub,ud1
)ð Þ=2 , eb,d2

fb,d2
d(ub,ud2

)ð Þ=2, and ep,bfp,b d(up,ub)
� �

=
2 ,ed1,bfd1,b d(ud1

,ub)ð Þ=2 and ed2,bfd2,b d(ud2
,ub)ð Þ=2, and their sum

is fp,b d(up,ub)
� �

zfb, d1
d(ub,ud1

)ð Þzfb, d2
d(ub,ud2

)ð Þ it follows that

W u1, . . . , ub, . . . , uNzMð ÞwW u1, . . . , u’b, . . . , uNzMð Þ.
Therefore, the tree cannot have been optimal, which is a

contradiction.

Since our choice of deformable bifurcation was arbitrary, an

optimal tree may not contain a non-planar deformable bifurcation.

Our proof is complete.

Supporting Information

Figure S1 Measurements for axonal bifurcations for layer 2/3

pyramidal neurons, basket cells, Martinotti cells and bitufted cells.

This axonal data was available for the same neurons for which the

dendritic bifurcations are analysed in Figure 1B. The cone angle

values are marked in color with the range of 0 to 180u. A. Cone

angle distributions of the axonal bifurcations B. 2D branching

angles C. Angles between consecutive bifurcation planes of axons

approximate the uniform distribution for Layer 2/3 somatosen-

sory pyramidal cell and bitufted cell (p.0.05, one-sample

Kolmogorov-Smirnov test).

(EPS)

Figure S2 A. Cone angle distributions for cone angles computed

among the points closest to the bifurcation point for each branch

in the reconstruction. B. Comparison with cone angle distribution

for random bifurcations.

(EPS)

Figure S3 Definition of the cone angle a, given the four points

A, B, C and D of a bifurcation in three dimensions, where A is the

point of bifurcation. B’, C’ and D’ are chosen such that the lengths

AB’, AC’ and AD’ are all equal to unity. a is the angle indicated in

the white triangle. The side of the white triangle opposing A is a

diameter of the circle passing through B’, C’ and D’.
(TIFF)

Figure S4 Definition of the distance y~sin(s=2). Note that s is

the angle DAB, AB’~AC’~AD’~1, so y~D’B’=2.

(TIFF)

Table S1 Details of the experimental data used in the paper.

Details of coral data can be found in [16]. Reconstructed neurons

were acquired from the database Neuromorpho.org [55].

(DOC)

Table S2 Comparisons between bifurcations with different

orientations with respect to Z-plane. First two columns: % of

bifurcations that belonged to each group. Third column: Jensen-

Shannon divergence between the cone angle distributions for the

two experimental groups (* two distributions are not different from

each other, Kolmogorov-Smirnov test p-value = 0.01). Last two

columns: Jensen-Shannon divergence of experimental groups with

the cone angle distribution for random bifurcations.

(DOC)

Text S1 This file contains computing cone angle from the first

bifurcation segment, assessing the possible effect of shrinkage

artefacts in neuronal reconstruction data, extended comments

relating to the proof, numerical evaluation of the cone angle and

cone angle distribution for random points.

(PDF)
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