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Abstract

Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following
infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular
simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural
calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The
water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-
fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding
sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the
binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is
initiated at the 3-fold axis.
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Introduction

Non-enveloped icosahedral viruses often contain binding sites

for divalent cations, usually Ca2z. The ions are typically bound

between coat proteins or on the icosahedral symmetry axes. This is

broadly observed in three plant virus taxa: the family Tombusviridae

(and an associate satellite virus), the genus Sobemoviruses and the

family Bromoviridae [1–4]. Binding sites for calcium ions have also

been found in bacteriophages of the Leviviridae family [5], fish and

insect viruses of the Nodaviridae family [6] and in the Picornaviridae

family, e.g. several human rhinoviruses [7].

In many of the plant viruses it is possible to induce a

conformational change in vitro by removing the ions, either by a

chelating agent such as ethylenediaminetetraacetic acid (EDTA) or

by exhaustive dialysis against deionized water. Ion-deprived

virions reversibly expand on the order of 5–10% at neutral or

slightly alkaline pH. In the swollen state internal parts of the virion

as well as the RNA molecule may become susceptible to degrading

enzymes [8,9]. Chelation of the metal ions is also required for

synthesis of virus proteins in cell-free translation systems [9]. Only

two low-resolution crystal structures of expanded virons are

available: tobacco bushy stunt virus (TBSV) at 8 Å [10] and

satellite tobacco necrosis virus (STNV) at 7.5 Å [11]. The radial

increases are about 11% and 4%, respectively. In addition, an

expanded cowpea chlorotic mottle virus (CCMV) virion was

imaged with cryo-electron microscopy at 29 Å and interpreted

using rigid body fitting of the high-resolution structures of the

native proteins [4]. The dynamic nature of the swelling process as

well as the limited resolution of swollen virus particles structures

prompted us to perform a simulation study of the capsid of STNV,

with and without bound Ca2z, over one microsecond. The

simulations allowed us to reproduce the swelling behavior upon

removal of the calcium in silico and develop an atomistic

description of the process.

The T = 1 capsid of STNV consists of 60 identical coat proteins

with one protein per icosahedral asymmetric unit. The coat

protein is 195 amino acid residues long where residues 25–195

make up the main domain that constitutes the capsid shell. The

virions readily crystallize and the major part of the coat protein

has been resolved by X-ray crystallography [2,12–14]. The shell

domain at the C-terminus folds as a b-jelly roll similar to many

other single-stranded RNA plant viruses. Residues 12–24 form a

helical structure that together with the helices of two neighboring

subunits form a short stalk that projects inwards into the central

cavity around the icosahedral 3-fold axis. The first 11 residues at

the N-terminus are disordered and cannot be detected in the

electron density maps – in the simulations these residues were

modeled as a helix as well. This N-terminal arm and the interior

surface of the capsid are lined with positively charged residues that

presumably interact with the single-stranded positive-sense RNA

molecule [14]. The 1239 nucleotide long genome encompasses

only one open reading frame that encodes the coat protein and

hence STNV is dependent on the co-infection of a helper virus

(tobacco necrosis virus) for copying its RNA genome.

The capsid has three different types of Ca2z binding sites

(Figure 1). Type I is between two subunits close to the 3-fold

symmetry axis. The protein ligands are the carboxyl groups of

Asp194 and Glu25 as well as the main chain carbonyl oxygens of

Ser61 and Gln64. Type II is on the 3-fold symmetry axis 8.05 nm

from the center of the virion. It is coordinated by the carboxyl
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groups of three Asp55 residues. Type III is on the 5-fold symmetry

axis 9.04 nm from the center. This Ca2z is coordinated by the

main chain carbonyl oxygen of five Thr138 residues. In total the

capsid can accommodate 92 Ca2z ions (60 at type I sites, 20 at

type II sites and 12 at type III sites).

Simulations were performed of the capsid with and without

Ca2z at two different salt concentrations for one microsecond

each (Table 1). The carboxyl groups of one of the three Asp55

residues at each of the type II calcium binding sites were

protonated in the two simulations without Ca2z, effectively

simulating the capsid at a slightly acidic pH to mimic the

conditions of the expanded capsid in the 7.5 Å crystal structure

[11]. The RNA molecule was not included in our simulations since

it cannot be modeled completely in the electron density maps

[14,15]. The aim of this work was to probe the dynamic behavior

of a virus capsid over timescales that are more than an order of

magnitude longer than what has been reported from simulations of

viruses previously [16–18], and therewith to investigate the role of

the structural calcium ions in initiating the dissolution of the

satellite tobacco necrosis virus. We particularly looked into the

structural features facilitating breaking up of the capsid associated

with virus infection.
Results

The capsid expands upon calcium removal
The capsids were stable and remained intact throughout all four

trajectories. Removing the Ca2z had a pronouced effect on the

capsid radius. An increase in the radius of gyration (RG) of 2.6% in

SimNoCaDneut and of 2.4% in SimNoCaDphys was found over the

course of 1 ms. The two trajectories with bound Ca2z (SimCaDneut

and SimCaDphys) showed a weak tendency to increase in size, 0.78%

and 0.58% respectively (Table 1 and Figure 2).

The capsids retained their overall spherical shape with just some

minor degree of elongation. Figures 3A and 3C emphasize the

local anisotropy in the structural changes. The largest changes

occurred in the parts of the shell close to the icosahedral 3-fold

axes. This area accommodates four calcium binding sites and all of

them have charged carboxyl groups as ligands. The charge

repulsion induced the formation of small water-filled cavities

between the proteins at this protein/protein interface (Figure 4D).

An analysis where the root mean square deviation (RMSd) from

the crystal structure for protein dimers, trimers and pentamers was

computed is presented in Table 1. The trimers have clearly larger

than average RMSd, whereas dimers and pentamers form very

stable complexes. This effect is more pronounced in the

simulations without Ca2z.

Dynamics of the coat protein
The secondary structure elements and the overall fold of all the

coat proteins were stable throughout the simulations. The N-

terminal arm was the most flexible element (Figures 1, 3 and 5A).

The a-helix in the N-terminal arm observed in the crystal structure

was stable: at the end of the simulation the number of a-helical

Figure 1. Fold of the coat protein. The main chain of all 60 proteins
in SimNoCaDneut after 1 ms (violet) aligned to the crystal structure (blue).
Symmetry axes and Ca2z binding sites of all types are indicated, along
with residues mentioned in the text.
doi:10.1371/journal.pcbi.1002502.g001

Table 1. System compositions and simulation results.

CaDneut CaDphys NoCaDneut NoCaDphys

NCa2z 92 92 0 0

NNaz 0 657 0 657

NCl{ 664 1321 500 1157

NWater 330540 329226 330704 329390

DRshell +0.78% +0.58% +2.6% +2.4%

Crossings 13838 10204 150689 92090

Pf (10{3cm=s) 2.7+0.3 2.4+0.3 37.2+1.9 26.8+1.5

pf (10{14cm3=s) 1.1+0.1 1.0+0.1 14.9+0.8 10.8+0.6

anterm 11.6+0.03 11.9+0.03 9.7+0.02 10.7+0.03

HB2x 8.2+0.7 8.7+0.6 6.5+0.5 7.2+0.5

HB3x 2.8+0.1 3.0+0.2 1.7+0.1 1.5+0.1

HB5x 10.2+0.1 10.1+0.1 10.1+0.2 10.0+0.2

RMSd2x (nm) 0.11+0.02 0.10+0.01 0.15+0.02 0.15+0.03

RMSd3x (nm) 0.13+0.01 0.13+0.01 0.20+0.02 0.20+0.02

RMSd5x (nm) 0.11+0.01 0.11+0.01 0.15+0.03 0.15+0.03

DRshell : Increase in the radius of gyration (Ca of res. 25–195). Crossings: Water
permeation events during 1 ms. Pf : Osmotic water permeability coefficient. pf :
Single pore osmotic water permeability coefficient for the 3-fold axis. anterm :
Number of a-helix residues in the N-terminus. HBNx : Number of intermolecular
hydrogen bonds between pairs of subunits related by 2-, 3- or 5-fold symmetry
(disregarding interactions between the N-terminal 11 residues). RMSdNx : RMSd
from the crystal structure for 2-, 3- or 5-protein oligomers calculated for the
main domain (Ca of residue 25–195). Average values from the last 0.1 ms where
the ranges indicate the standard error.
doi:10.1371/journal.pcbi.1002502.t001

Author Summary

We have studied the capsid of satellite tobacco necrosis
virus using large scale molecular dynamics simulations,
where the atomic motions of 1,2 million particles were
tracked over one microsecond. We find that the capsid
swells in the simulations, and that the permeability for
water increases 10-fold upon removal of the structural
calcium ions. The water leaks in predominantly near the
three-fold symmetry axis, suggesting that this is the spot
where capsid dissociation is initiated following infection.

Virus Capsid Dissolution
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residues in the N-terminal arm was close to 11, slightly lower in the

two trajectories without bound Ca2z than the simulations with

bound Ca2z (Table 1). Residues 1–11 did not show any

propensity to stay in a helical conformation. These residues were

modeled as a helix in the starting structure, but they progressively

lost that structure. This might be a result of the absence of the

RNA molecule since the addition of molecules that mimic the

phosphate backbone of RNA has been shown to promote

formation of helices in the positively charged N-terminus of

CCMV, that presumably plays a similar RNA-binding role

[19,20]. The number of intermolecular protein-protein hydrogen

bonds was slightly lower in the STNV capsids without Ca2z, in

particular the number of hydrogen bonds between pairs of 2-fold

and 3-fold related subunits decreased (Table 1).

The Ca atoms in the shell domain moved on average 0.27 nm

in SimNoCaDneut, 0.26 nm in SimNoCaDphys, 0.15 in SimCaDneut and

0.14 in SimCaDphys predominantly due to the overall radial

expansion of the capsid (Figure 5A). The RMSd after fitting each

protein to the crystal structure individually was small (ƒ0.1 nm)

apart from the termini and some of the loop regions (Figure 5B).

The flexibility was highest in the two termini, in the loops between

secondary structure elements and in the short helix centered at

residue Thr119 (Figure 5C). The bD–bE loop (using the same

nomenclature as in [2]) centered at residue Thr80 and the bH–bI
loop centered at residue Leu180 show high flexibility both with

and without bound Ca2z (Figure 5C). Both of these loops are

located close to the 5-fold axis, facing the exterior of the capsid

(Figure 1). The bC–bD loop at residue Asp55, the bG–bH loop at

residue Thr160 and the C-terminus on the other hand show an

Figure 2. Radius of gyration. The RG of the Ca atoms of the shell
domain (residues 25–195) plotted every 1 ns with a running average
over 10 points (non-averaged data also shown for SimNoCaDneut).
doi:10.1371/journal.pcbi.1002502.g002

Figure 3. Structural changes of the capsid. Van der Waals surfaces of the capsid shell after 1 ms viewed along one of the 5-fold symmetry axes.
Top row (A, B) shows SimCaDneut and bottom row (C, D) shows SimNoCaDneut. Right column (B, D) shows the interior structure when the 15 frontmost
proteins has been removed. Each capsid inscribed in an icosahedron with 22 nm between opposing vertices. The N-terminal domains are
represented as ribbons. Colors according to the RMSd from the crystal structure. The color scale goes from blue (0.0 nm) through cyan, green, lime-
green, yellow and red (§1:0nm). Location of symmetry axes marked for one icosahedral face in (A). The outline of the proteins in one trimer traced in
(C).
doi:10.1371/journal.pcbi.1002502.g003
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increased flexibility mainly in the two capsids that had no Ca2z

(Figure 5C). These elements are all located close to the 3-fold axis

and Asp55 is the Ca2z ligand for the type II sites.

Calcium binding sites
When the Ca2z ions were removed from the capsid, the type III

calcium binding sites on the icosahedral 5-fold symmetry axis were

populated by either Naz (SimNoCaDphys only) or water.

SimNoCaDphys had 7 out of 12 type III binding sites occupied by

sodium ions throughout the simulation. The remaining type III

sites as well as all the type III sites in the capsid of SimNoCaDneut

were occupied by one or two water molecules. The sodium ions

were bound at the same position as the calcium ions – at the

geometric center of the five Thr138 carbonyl groups – but half of

the time, one of the five carbonyl groups pointed away from the 5-

fold axis and engaged in hydrogen bonds with other water

molecules. Water molecules bound to the type III sites were

located on the 5-fold axis slightly exterior or interior to the binding

site for cations such that they could make hydrogen bonding

interactions with two or three carbonyl groups. In these cases the

5-fold symmetry of the protein subunits was broken with one

(when two water molecules were bound) or two (when one water

molecule was bound) carbonyl groups turned away and engaged in

hydrogen bonds with water molecules from the bulk.

The two types of calcium binding sites close to the icosahedral

3-fold symmetry axis were less stable than the type III sites upon

Ca2z removal as reflected in the higher RMSd and RMSf of

residues close to the 3-fold axis (Figure 5). In SimNoCaDphys all type

II sites were occupied by one or two sodium ions subsequent to the

equilibration simulation (in which the protein was restrained from

moving away from the crystal structure). However, at the end of

the production simulation only 1 of the 20 sites was intact with all

three carboxyl groups of Asp55 coordinating a sodium ion. The

rest of the type II sites were broken up with the carboxyl groups

facing other directions(Figure 4D). The type I site also lost its

structure in the calcium-free capsids. The four residues that

contributed oxygen atoms to coordinate the calcium ion had high

RMSf (Figure 5C) and did not retain their relative positions. The

negatively charged carboxyl side chains of all the type I sites

together bound approximately 30 sodium ions in an irregular

fashion.

Water permeability
The capsids were permeable to water in all trajectories. Assuming

a homogeneous permeability across the entire surface of the capsid,

an osmotic water permeability coefficient, Pf , was calculated [21].

With Ca2z bound there were about 10,000 permeation events in

either direction and the capsid had an average permeability

coefficient Pf = 2:6|10{3 cm/s. After removing the Ca2z Pf

increased to about 30|10{3 cm/s (Table 1). The water transport

resulted in a net inflow of water in conjunction with the swelling.

In order to detect structural features associated with water

permeability, the crossing events were mapped onto the virus

particle. For each water molecule traversing the width of the

Figure 4. The 3-fold axis. Close-up of an icosahedral 3-fold symmetry axis from the final frame of the (A, C) SimCaDneut and the (B, D) SimNoCaDneut

trajectories showing the main water permeation site. Calcium ion depicted as a cyan sphere and water molecules as blue sticks.
doi:10.1371/journal.pcbi.1002502.g004
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capsid shell successfully, the closest protein residue (Ca) was

determined for the water molecule half-way (in time) through, and

statistics of permeation per residue were gathered. In the

simulations with bound Ca2z the permeation mainly occurred

between the icosahedral 2-fold and 3-fold symmetry axis, at the

junction between three subunits (Figures 6A–C and 4). The

protein–water contacts suggest that this potential water pore is

lined by five motifs: the short helix centered at residues 118–119,

residues 156–158 in the bG–bH loop, the end of the bC–bD
loop, the beginning of the bD-strand and to some degree residues

25–30 close to the flexible loop connecting the N-terminal arm to

the shell domain (Figure 5D). In the simulations without bound

Ca2z the permeability increased at this site, as well as at the

protein/protein interface at the 3-fold symmetry axis (Figures 5D,

6D–F).

If we consider the region around each icosahedral 3-fold axis to

be a water pore, we can estimate the single pore permeability

coefficient, pf , to be 1:1|10{14cm3=s in the capsid with bound

Ca2z and 13|10{14cm3=s without these ions (Table 1).

Discussion

Many plant viruses employ the extremely low concentration of

Ca2z in the cytoplasm of their host cells (the homeostatic

concentration of free Ca2z is between 100–200 nM [22]) as a cue

to initiate the replication stage of their life-cycle. The capsid will be

effectively depleted of calcium as the equilibrium between

occupied and unoccupied sites shifts to the latter.

Capsid swelling
Four different crystals of STNV treated with EDTA were

investigated by Montelius et al., but the capsid expanded in only

one of those [11] and that particular crystal diffracted to a

resolution of 7.5 Å only. In our simulations we could observe a

higher degree of fluctuations as well as loss of the icosahedral

symmetry in the calcium-deprived capsids compared to the ones

with bound calcium. Both higher flexibilty and a lower degree of

symmetry would contribute to a lower crystal quality and could

explain why there have not been any successful attempts to solve a

high-resolution structure of an expanded capsid so far. The

trajectories did not quite reach an equilibrium swollen state. The

radius of the calcium-depleted capsid can be extrapolated to an

‘‘equilibrium radius’’ Rg(?) by fitting the Rg(t) curve (Figure 2)

to Rg(t) = Rg(?)2(Rg(?)2Rg(0))exp({t=t). With this fit an

equilibrium radius of &8:22nm is predicted, about a quarter of a

percent higher than the value at the end of the SimNoCaDneut

simulation. The weak increase in the radius of the calcium-

containing capsids is probably an artifact due to the lack of the

RNA molecule and confirms the long-term unstable nature of the

RNA-free capsid.

Swollen STNV capsids can be returned to their native radius by

lowering the pH [8], suggesting that the mechanism behind the

swelling is electrostatic repulsion of charged aspartate and

glutamate ligands. A similar effect was deduced from electrostatics

calculations of the native and expanded structures of the CCMV

capsid [23]. The protonation state of the carboxyl groups is

probably coupled to the magnitude of the expansion. The crystals

of the expanded STNV formed at pH 6.5 and the expansion was

only moderate, so the capsid may have been protonated at one of

the calcium binding carboxyl groups. Since the type II site has the

highest local density of negative charge, we decided to protonate

one of the three carboxyl groups at each type II binding site in our

simulations of the calcium-free capsid.

Analytic ultracentrifugation measurements estimate that the

STNV particle can expand up to 7% when treated with EDTA

[8]. The crystal structure of the expanded virion showed a radial

expansion of between 0.1–0.4 nm, equivalent to 1%–5% (higher

closer to the icosahedral 3-fold axis). This agrees well with what we

observed in the simulations: an average increase in the RG of 2.5%

(Table 1) and peak RMSd values of the Ca of the shell domain

above 0.35 nm at the 2-fold subunit interface, e.g. residues 96 and

122, and at the 3-fold axis, e.g. residues 25 and 195 (Figure 5A).

Permeability coefficients
The osmotic water permeability Pf of the capsid is comparable

to lipid membranes, which usually have Pf = 2{16|10{3 cm/s

[24]. The protein shell is thinnest at the 5-fold axis, but the

calcium ion at the type III site is the one that is most difficult to

chelate with EDTA [25], something which was corroborated by

spectroscopic measurements showing that the type III site has a

remarkably high binding affinity to the Ca2z analog Eu3z

(1:1+0:3 nM) [26]. In the simulations of the capsid without

calcium, the coordinating cage of oxygen ligands was best

preserved at the type III site. Sodium ions or water molecules

replaced the divalent ion on the icosahedral 5-fold axis and

obstructed the opening, resulting in minimal permeability even

without Ca2z. Instead, we observed extensive water permeation

on the 3-fold axis and in a region close to the 3-fold axis between

the 3-fold and the 2-fold axis (Figure 4). The cluster of four

calcium binding sites around the 3-fold axis contains several

Figure 5. Structural dynamics of the capsid and water contacts.
(A) The RMSd from the crystal structure (without over all rotation and
translation of the entire capsid) for the Ca of the shell domain (average
over the last 0.1 ms and all 60 proteins). (B) As A but after aligning each
protein individually to the crystal structure. (C) The RMSf for the Ca of
the shell domain (average over the last 0.1 ms). (D) The number of
contacts to water molecules crossing the capsid shell. The secondary
structure elements of the crystal structure are shown as gray (b-strand)
or checkered (a-helix) regions.
doi:10.1371/journal.pcbi.1002502.g005
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carboxyl groups from aspartate and glutamate residues. Removing

the calcium ions introduces a large amount of net negative charge

that caused the subunits to move apart, creating water pockets at

the 3-fold axes causing increased water permeability. If the entire

region around the 3-fold axis is considered a water pore, the

permeability of it is comparable to that of membrane proteins that

function as water pores, e.g. mammalian aquaporins that have

reported single pore permeability of 2{25|10{14cm3=s [27].

Comparison to the expanded structure of TBSV
The difference in size and triangulation number makes it

difficult to compare the expanded structure of TBSV and STNV.

The capsid of TBSV consists of 180 identical subunits in a T = 3

arrangement where each of the 60 icosahedral asymmetric units

consists of three proteins in slightly different configuration. At the

center of these three proteins, there is a so called quasi-3-fold axis

that relates three approximately equivalent protein positions [28].

The six calcium binding sites of TBSV are located pairwise

between pairs of subunits in the asymmetric unit and each site has

five acidic residues from both proteins. The swollen TBSV was

crystalized at pH 7.5 and the structure is about 7% larger than the

native one. The most predominant structural change is that large

openings appear between the quasi-3-fold and 2-fold related

subunits [10]. The 3-fold axis of STNV resembles the quasi-3-fold

axis of TBSV. The interfaces between the proteins around these

axes contain six (TBSV) respectively four (STNV) Ca2z binding

sites (Figure 1), coordinated by carboxylic groups. In both capsids

the largest structural differences between the expanded and native

structures can be found here.

Factors affecting capsid stability
Not all viruses that have calcium binding sites in the capsid

show a swelling behavior. The rhinoviruses have a calcium

binding site on the 5-fold axis [7], but do not swell upon

removal of these ions. Interestingly, this binding site show

striking similarities to the type III calcium binding site in STNV.

In both cases five backbone carbonyl oxygens point at the 5-fold

axis where the ions are bound. The 5-fold axis is a region with

high degree of symmetry constraints and putting an ion there

solves the problem of fulfilling the symmetry at a very congested

interface. We therefore propose that the carbonyl type of

binding sites have a more structural role, while the carboxyl

type of binding sites may play a role in the dissolution of the

capsid upon infection. This would explain the low degree of

structural change at the 5-five fold site in our simulation and

their high propensity to bind other cations or water molecules,

and this is in line with the relatively higher affinity for ions at

these sites [25,26].

Figure 6. Water permeability mapped on the capsid surface. Van der Waals surface of the capsid after 1 ms simulation. Red color indicates
where water molecules pass in or out of the capsid (averaged over the icosahedral symmetry). Top row (A–C) with calcium is from SimCaDneut (calcium
ions shown as cyan spheres). Bottom row (D–F) is from SimNoCaDneut. Views along an icosahedral 2-fold (A, D), 3-fold (B, E) and 5-fold (C, F) symmetry
axis respectively. Subunits around the central symmetry axis colored for clarity.
doi:10.1371/journal.pcbi.1002502.g006
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There are no atomic structures of the STNV genome available,

although a recently published high-resolution structure shows

short fragments of RNA [14]. RNA-free virus-like particles of the

STNV coat protein have not been observed so far, but the coat

proteins of similar viruses readily form empty shells [29,30].

Rather than inserting a modeled RNA structure into the capsid we

decided to perform the simulations without RNA. The fact that

RNA nevertheless may contribute to the stability of the capsid is

evidenced from our simulations at physiological salt concentration,

providing more shielding of electrostatic interactions. The radial

expansion is less pronounced in this case (Figure 2) and the

number of protein-protein hydrogen bonds seems to increase

slightly (Table 1), a typical ‘‘salting out’’ effect.

Previous all-atom molecular dynamics simulations of capsids

and virus-like particles focused on specific properties like the

mechanical strength using force probes [17,18] or the effect of

hydration on coherent diffraction from single virus particles [31].

It has become clear though that virus simulations are sensitive to

the starting conditions, like a balanced amount of water on the

inside, and they require long equilibration times [18,32].

Therefore we paid special attention to the preparation of the

starting structures with an extensive equilibration protocol with

part of the counter ions specifically added to the interior cavity to

avoid a sudden influx of solvent ions that could disrupt the protein-

protein interactions and by carefully balancing of the hydrostatic

pressure inside and outside of the capsid. By doing control

simulations with Ca2z and be varying the ionic strength we can

draw firm conclusions on the effect of Ca2z removal on STNV.

Conclusions
The simulations presented here illustrate the mechanism by

which an entire virus capsid can transform from a closed

configuration into an open one with significantly increased water

permeability. The magnitude of the expansion in the simulations is

in good agreement with experiments. The higher flexibility and

the degradation of the icosahedral symmetry in combination

explain why it has been difficult to crystallize expanded capsids.

Our work strongly suggests that there are two types of calcium

binding sites, playing different roles in the virus lifecycle. The

binding site on the 5-fold axis has a more structural role and is less

involved in the capsid expansion. The binding sites between 2- and

3-fold related subunits contain many charged carboxylic side

chains. Dissolution of the capsid is initiated here due to the

electrostatic repulsion between these residues, if the Ca2z ions are

removed.

Materials and Methods

All preparations, simulations and analyses were performed with

the GROMACS simulation package version 4.5.3 [33] unless

otherwise stated.

System preparation
The starting structures were prepared from the X-ray crystal

structure of the coat protein of STNV (PDB ID: 2buk) [2]. Since

residue 1–11 can not be resolved in the crystal structure, these

were modeled as an a-helix in a direction that did not cause steric

clashes with neighboring proteins. The full capsid was generated

by applying the icosahedral rotation-translation matrices in the

PDB file. One Ca2z ion was kept at each of the 92 calcium

binding sites. The Amber99sb-ILDN forcefield [34,35] was used

for the protein combined with TIP3P water [36] in a rhombic

dodecahedron simulation box with a side of about 25 nm. Water

molecules on the inside of the capsid were replaced with Cl{ ions

to obtain a neutral system (SimCaDneut). Additional Naz and Cl{

ions were added to obtain a system with an approximately

physiological ion concentration of 150 mM (SimCaDphys). The

calcium ions were removed, a proton was added to one Asp55 side

chain at each of the type II calcium bindings sites and the number

of counter ions was adjusted to obtain two neutral calcium-free

systems (SimNoCaDneut and SimNoCaDphys respectively). Each system

consisted of roughly 1.2 million atoms (Table 1).

Preparatory simulations
The starting structures were energy minimized and subsequently

the solvent was equilibrated for 10 ns while restraining the protein

atoms and the calcium ions to the crystal coordinates with harmonic

potentials with a force constant of 1000 kJ mol{1 nm{2. During

the equilibration a 2 fs integration timestep was used and the

neighbor lists were updated every 10th timestep. Short range non-

bonded Van der Waals (Lennard-Jones) and Coulomb interactions

were calculated within a cut-off radius of 1.15 nm. The long range

electrostatic interactions were calculated with the particle mesh

Ewald (PME) method [37] with a grid spacing of 0.133 nm. The

long range Lennard-Jones interactions were analytically corrected

for in the calculation of the pressure and the energy. The pressure of

the simulation box was kept at an average of 1 bar using the

isotropic Berendsen barostat [38] with a time constant of 25 ps and

a compressibility of 4:5|10{5bar{1. The solvent and the capsid

were coupled separately to an external heat bath at 300 K with the

velocity-rescaling thermostat [39] using a time constant of 0.5 ps.

Water molecules were constrained using the SETTLE algorithm

[40] and the covalent bonds in the proteins were constrained using

the P-LINCS algorithm [33]. Boundaries were treated periodically.

Production simulations
After the equilibration, the position restraints were removed and

an integration time step of 4 fs was used to generate 1 ms
trajectories. In addition to constraining bond lengths, virtual

hydrogen atoms were used [41] which allows slightly longer time

steps. The isotropic Parrinello-Rahman barostat [42,43] was used

to keep the average pressure at 1 bar with a time constant of 1 ps.

The calcium ions were tethered to the oxygen ligands using

harmonic potentials with force constants of 5000 kJ mol{1 nm{2.

All other simulation parameters were the same as during the

equilibration. The trajectories were sampled every 50 ps for

analysis. The production simulations were calculated in parallel on

a Cray XE6 system over 2016 cores (612 of which for PME

calculations) at a speed of 30 ns/day.

Analysis
Unless otherwise stated, all trajectories were analyzed at 1 ns

intervals and final values were calculated as the average over the

last 100 ns. Root-mean-square displacement (RMSd) and fluctu-

ation (RMSf) was calculated as:

RMSd~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(r{rcrystal)

2

N

s
ð1Þ

RMSf ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(r{~rr)2

N

s
ð2Þ

The number of a-helical residues was calculated using the

g_helix program of the GROMACS package. In the water
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permeability analysis water molecules were counted when they

had traversed the entire width of the capsid shell. Visual inspection

did not imply a single-file type of permeation mechanism, which

justifies that the distinction between a diffusive and osmotic

permeation coefficients was not required [21]. The osmotic water

permeability coefficient, Pf , and the single pore osmotic water

permeability coefficient, pf , was calculated as the average

permeability in both directions using these formulas:

Pf ~
N

tDCA
ð3Þ

pf ~
N

tDC
ð4Þ

Where N is the number of permeation events, t is the duration,

A is the area and DC is the concentration gradient, i.e. 55 mol/L

for pure water. The capsid was approximated to have the same

area as a sphere with radius 8 nm.
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