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Abstract

A protein at equilibrium is commonly thought of as a fully relaxed structure, with the intra-molecular interactions showing
fluctuations around their energy minimum. In contrast, here we find direct evidence for a protein as a molecular tensegrity
structure, comprising a balance of tensed and compressed interactions, a concept that has been put forward for
macroscopic structures. We quantified the distribution of inter-residue prestress in ubiquitin and immunoglobulin from all-
atom molecular dynamics simulations. The network of highly fluctuating yet significant inter-residue forces in proteins is a
consequence of the intrinsic frustration of a protein when sampling its rugged energy landscape. In beta sheets, this
balance of forces is found to compress the intra-strand hydrogen bonds. We estimate that the observed magnitude of this
pre-compression is enough to induce significant changes in the hydrogen bond lifetimes; thus, prestress, which can be as
high as a few 100 pN, can be considered a key factor in determining the unfolding kinetics and pathway of proteins under
force. Strong pre-tension in certain salt bridges on the other hand is connected to the thermodynamic stability of ubiquitin.
Effective force profiles between some side-chains reveal the signature of multiple, distinct conformational states, and such
static disorder could be one factor explaining the growing body of experiments revealing non-exponential unfolding
kinetics of proteins. The design of prestress distributions in engineering proteins promises to be a new tool for tailoring the
mechanical properties of made-to-order nanomaterials.
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Introduction

The principle of ‘minimal frustration’ [1,2] underlies the

thermodynamic picture of protein folding. According to this

picture, proteins negotiate a rough, funnel-shaped energy land-

scape during the folding process, and eventually settle in a state

that, as much as possible, satisfies the energetic constraints arising

from the multitude of interatomic covalent, electrostatic and van

der Waals interactions. Although frustration is minimised in the

native state, it is not completely eradicated. Even in the simplest

crystals, the equilibrium state is one that minimises the energy of

the structure as a whole, not every atom-atom interaction

individually; global constraints prevent every pairwise interactions

from being perfectly satisfied. This is even more the case for

proteins, in which the topological contraints of the backbone

peptide bonds further restrict the freedom of individual atoms to

individually satisfy every interaction.

Such local frustration in a protein must give rise to residual

mechanical forces – thus, proteins are in some sense prestressed

materials. D. Ingber has proposed that proteins and other

biological structures should be understood in light of the

architectural concept of tensegrity [3,4], popularised by Buckminster

Fuller, describing structures the mechanical stability of which

arises purely from a balance between pre-tensed and pre-

compressed members. The concept of biomolecular tensegrity

has come under focus very recently in the work of Shih, Ingber,

and co-workers, who have designed and synthesised prestressed

DNA structures [5]; it has also been invoked in a novel method for

interpreting free energy profiles inferred from the forced unfolding

of single biomolecules [6]. In contrast to this tensegrity picture,

classic coarse-grained models of proteins, which have been used

extensively to study protein folding and dynamics, typically neglect

prestress. Both G�oo-style models [7–9] and elastic network models

[10,11] define the equilibrium separation of every residue pair to

be precisely the separation measured in the native state, and thus

every residue-residue interaction is individually relaxed; as such,

the native state is defined to contain no residual force. Thus,

especially in research areas that rely on these coarse-grained

approaches, the consequences of prestress for folding and

dynamics have not been well explored.

It has been demonstrated recently [12] that, in graphene sheets,

the prestress of bonds around defects at grain boundaries is the key

determining factor for toughness of the sheets. This result

highlights the fact that the existence of prestress can qualitatively

change the mechanical properties of a structure, and raises the

question of to what extent such effects are utilised by nature to

tune the mechanical stability of proteins. Since concentrations of

internal force in a molecule could be used to drive conformational

changes if released, via thermal fluctuations or due to interactions

with other molecules, the spatial distribution of prestress in a

protein may also provide important clues for understanding the

mechanisms for protein-protein interactions [13,14], protein-DNA

interactions [15], and allostery; indeed, the existence of ‘tensed’

and ‘relaxed’ states in allosteric proteins has been a central concept

in models of allosteric transitions since the classic early models of

inter-domain allostery in hemoglobin [16–18]. Elastic stress also
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plays a central role in the more recent allosteric model of Savir and

Tlusty [19]. Using short lengths of pre-tensed double-stranded

DNA to stretch individual molecules, it is now possible to directly

observe the role played by elastic stress in the allosteric control of

protein enzymes [20,21] and ribozyme [22].

But how is such a global elastic stress built up within a protein

scaffold? We used all-atom Molecular Dynamics (MD) simulations

to quantify the importance of prestress in the native state of

ubiquitin. To this end, we adapted an earlier technique for

measuring force distributions in mechanically perturbed proteins

[23,24] to allow the calculation of effective pairwise residue-

residue force profiles. This procedure is a direct force measure-

ment, unlike other methods based on inferring pairwise forces

from fluctuations [25,26], and does not require any a priori

assumptions about the form of the force profile. From the effective

force profiles we extracted average forces for each residue pair,

thereby constructing a prestress network for the protein. We found

that high residual forces exist throughout the protein, and are

particularly associated with hydrogen bonds and salt bridges. The

magnitude of these forces is shown to be enough to significantly

influence the protein’s mechanical properties, most notably its

unfolding pathway. We also discover that, for some side-chains,

prestress is dynamic – inter-residue mechancial coupling switches

between a number of distinct regimes depending on side-chain

conformations.

Results

Average residual force network
From 100 ns of MD trajectories, we calcuated effective force

profiles for every pair of amino acid residues in ubiquitin (Fig. 1a),

as described in the Methods section. The average forces inferred

from these profiles are plotted in Fig. 1b superimposed on the 3D

structure of the protein. For clarity, the same force network is also

represented in Fig. 1c as a circular graph, with each vertex

corresponding to a residue. Covalently bonded residue pairs are

neglected [see the Supplementary Material (Text S1 and Figs. S6

and S7) for details on covalent bond forces]. Red (blue) edges

represent attractive (repulsive) forces, and edge thicknesses

correspond to the magnitude of the forces, which range between

2490 pN (attractive) and +407 pN (repulsive). In the context of

cell biology these are high forces – for comparison, the forces

generated by the kinesin walk have been measured to be on the

order of 2 pN [27]. An animation showing the projection of this

network on the three-dimensional structure of the protein is

provided in the Supplementary Material (Video S1).

The most obvious large-scale structures in the network are the

relatively ordered bands of both tensile and compressive forces

that connect neighboring beta strands: specifically, the two parallel

pairs of beta strands 1/2 and 3/5, and the anti-parallel beta strand

pair 1/5. In contrast, isolated cases of strongly tensed (red) residue

pairs are also observed, such as Lys27-Asp52 and Lys11-Glu34,

which do not correlate with neighboring residues. These high

tensile forces occur only between residues with charged side-

chains; as discussed in more detail below, they correspond to

tensed salt bridges.

Hydrogen bonds are pre-compressed in beta sheets, and
pre-tensed in alpha helices

To get a clearer picture of the prestress pattern associated with

the main-chain interactions in beta sheets, the force network

accounting for only inter–main-chain interactions is shown in

Fig. 2a and Video S2 [here ‘main-chain’ refers to the N, C, Ca, O,

and H atoms making up the backbone]. Inter–main-chain

interactions are found to be predominantly attractive, with a few

strongly repulsive pairs. To better understand this phenomenon

we examine in more detail the residue-wise force distribution in

beta strands 1 and 5. These strands are of special relevance to the

mechanical stability of ubiquitin, since they form a ‘force clamp’

that provides the primary resistance against rupturing of the

protein by stretching from the N and C termini [28]. In Fig. 2b the

residue-wise average main-chain forces within the beta force

clamp are illustrated. Forces between neighboring, covalently-

bonded residues are not shown, and will be discussed separately.

There are five hydrogen bonds between these beta strands, formed

by residues Gln2 and Glu64, Phe4 and Ser65, Phe4 and Leu67,

Lys6 and Leu67, and Lys6 and Leu69; and it is evident that these

pairs are precisely those for which the average pairwise force is

repulsive (blue).

Apart from the hydrogen-bonded pairs, every other residue pair

in beta strand pair 1/5 experiences an average attractive force (red

lines in Fig. 2a); they are all pre-tensed. This gives the beta sheet

an overall appearance reminiscent of a tensegrity structure, the

mechanical stability of which is determined by a balance between

tensed and compressed structural members [3]. The origin of the

pre-compression of the hydrogen bonds can be understood via this

tensegrity analogy: the ‘tensed’ attractive interactions between the

two beta strands act to pull the strands closer together than they

would otherwise like, compressing the hydrogen bonds until the

tensile and compressive forces balance. The same pattern, of

hydrogen bonds compressed by other attractive cross-strand

interactions, also holds for the other beta strand pairs in the

protein, both parallel and anti-parallel; see Fig. S1 for the force

distributions in the anti-parallel beta strand pairs 1/2 and 3/5.

The underlying atomic forces that give rise to the attractive and

repulsive residue-residue forces are illustrated in Fig. S2.

To investigate how the combination of atomic forces gives rise

to an effective force profile for each residue pair, we plot the

distribution of residue-wise force versus separation of the Ca
atoms. Fig. 2c shows the result of this procedure for the hydrogen-

bonded residue pair Gln2-Glu64. Each point in the figure

corresponds to a single frame of the trajectory. The scatter of

Author Summary

A tensegrity structure is one composed of members that
are permanently under either tension or compression, and
the balance of these tensile and compressive forces
provides the structure with its mechanical stability.
Macroscale tensegrity structures, which include Buckmin-
ster Fuller’s geodesic domes, achieve exceptional structur-
al integrity with a minimal use of resources. The question
we address in this work is whether nature makes use of
molecular-scale tensegrity in the design of proteins. Using
Molecular Dynamics simulations of the protein ubiquitin,
we measure the network of pairwise forces connecting the
amino acid residues and show that this network does
indeed have the character of a tensegrity structure.
Furthermore, we find that the arrangement of tensile
and compressive forces is such that hydrogen bonds in the
protein’s beta sheet, which are crucial for bearing
mechanical loads, are compressed. This pre-compression
is enough to significantly lengthen the lifetime of a bond
under a given force, and thus should be an important
factor in determining the protein’s mechanical strength.
The rational design of molecular prestress networks
promises to be a new avenue for the engineering of
proteins with made-to-order mechanical properties, for
applications in medicine, materials and nanotechnology.
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the data points is large, due to fluctuations in the conformations

and relative orientations of the two residues. The average fit (blue

curve) represents an ‘effective’ pairwise force profile averaging

over these fluctuations [29]. Around the mean separation, the

effective force profile is approximately linear, and thus has the

character of a compressed Hookean spring. But the curve is clearly

non-linear at larger separations, approaching the rupture distance

of the bond. The overall shape is reminiscent of a Morse-type

potential traditionally used to approximate chemical bonds.

Similar profiles are obtained for the other hydrogen bonds in

the sheet.

Fig. 2d shows the effective force profile for one of the ‘tensed’

non-hydrogen-bonded pairs (Ile3-Ser65). The magnitude of the

attractive force is found to reduce with separation. Such behaviour

cannot be approximated by a physical Hookean spring, since the

local effective spring constant is negative; it is instead more like a

Morse-type potential where the interacting pair only samples the

tail of the potential, never even approaching the equilibrium

separation. Thus the analogy with macroscopic tensegrity struc-

tures is only superficial: it is not accurate to think of the tensed

residue pairs as prestressed cables, which would exhibit Hookean

behavior. Due to the partially non-Hookean springs in the network

of ubiquitin, the prestress can be expected to have an impact on

both the elastic behavior of the protein (if any) as well as the

inelastic behavior including rupture.

Although the alpha helix does not play a direct role in

determining the mechanical stability of the protein, it is interesting

to look at the pattern of prestress in the helix and see whether pre-

compression of hydrogen bonds is a general phenomenon or one

restricted to beta sheets. Fig. S3 shows the main-chain-only

residue-wise forces within the helix. Similar to the beta sheets, the

helix exhibits a tensegrity-like pattern of balancing compressive

and tensile forces. However, in this case the hydrogen bonded

residue pairs are under tension, in contrast to the compressed beta-

sheet hydrogen bonds. We conclude that pre-compression of

hydrogen bonds is not a property intrinsic to all hydrogen bonds,

but rather a context-dependent phenomenon: prestress in a given

bond is determined by the interactions between other residues in

its immediate neighborhood, and the local molecular geometry.

This points to the fascinating possibility that the distribution of

prestress in a protein can be engineered by intelligent modifications

to the amino acid sequence, providing a new tool for designing

proteins with made-to-order mechanical properties [30].

Estimating the influence of hydrogen bond pre-
compression on forced unfolding

Any applied external force must work against the inherent

compression imposed by the protein onto the rupturing bonds. We

propose that the hydrogen bond compression influences the

unfolding force and pathway of the force clamp between beta

strands 1 and 5. Fig. 3 is a plot of the average force for each of the

five bonds in this clamp. Of the two bonds at the edge of the sheet,

pair Gln2-Glu64 (F2{64^163 pN) is significantly more com-

pressed than Lys6-Leu69 (F6{69^138 pN). Arguing from Bell’s

theory of the rupture of individual bonds under force [31], it can

be shown that pre-compression of a bond should increase its

average lifetime. Based on the kinetic theory of thermally-activated

rupture in metals [32], Bell wrote down the following expression

for the lifetime t of a single bond subjected to an external force F :

t~t0 exp ½U0{x0F �=kTð Þ ð1Þ

where t0 is the inverse of the atomic oscillation frequency

(*10{12 s), U0 is the height of the energy barrier separating the

bound and unbound states, and x0 is a measure of the distance

between the bound and transition states. If the bond is also

subjected to a compressive ‘prestress’ force Fpre, we then have

tpre~t0 exp ½U0{x0(F{Fpre)�=kT
� �

~t exp x0Fpre=kT
� � ð2Þ

Eq. 2 can be used to estimate the contribution of pre-compression

to the lifetimes of the two end hydrogen bonds. For Gln2-Glu64,

we have t2{64=t^ exp (x0½F2{64�=kT)*400 at room tempera-

ture, assuming x0*1:5 Å; the characteristic lifetime of the Gln2-

Glu64 bond is enhanced by a factor of 400, with respect to a non-

compressed hydrogen bond. The analogous calculation for the

Lys6-Leu69 bond gives t2{64=t^150, suggesting that hydrogen

bond compression extends the lifetime of ubiquitin under a

stretching force significantly, by approximately two orders of

magnitude. We note that the elastic energy stored in such a

prestressed hydrogen bond can be expected to be minor, as a force

of 100 pN approximately corresponds to an energy of only

approximately 1 J/mol.

The magnitude of compression of the hydrogen bonds is not

uniform along the beta strand pair 1/5. We propose that

differences in hydrogen bond compression influence the unfolding

pathway for the beta force clamp. It is known from earlier MD

simulation work [28,33] that the Lys6-Leu69 hydrogen bond

always ruptures first when the protein is unfolded by stretching the

N- and C-termini. The stronger pre-compression of pair Gln2-

Glu64 relative to pair Lys6-Leu69 should be a contributing factor

in determining this unfolding pathway. The ratio of the lifetimes

for the two edge hydrogen bonds is t2{64=t6{69^2:5. Thus,

differences in pre-compression of hydrogen bonds of the magni-

tude we observe here are enough to more than double the relative

lifetime of the more-compressed bond, all else being equal. This

calculation is made under the assumption that the magnitude of

pre-compression does not change as the protein is stretched, which

is unlikely to be the case in reality; how the network of pre-tensile

and pre-compressed forces evolves under an applied stretching

force will be a topic for future study. Despite this simplification,

our rough calculation serves to demonstrate that prestress is an

important factor in determining a protein’s mechanical stability,

and should be taken into account along with other factors such as

the orientation of the bonds relative to the pulling direction and

the shielding from water by hydrophobic side-chains [33].

Figure 1. (a) X-ray structure of ubiquitin (PDB accession code 1UBI). The lower view is rotated 900 around the horizontal axis with respect to
the upper view. Helices are colored red, and beta strands green. Note that the beta strands 1 and 5 are closest to the N- and C- termini respectively,
and thus the interaction between them is the primary determinant of the protein’s mechanical stability against stretching from the termini. (b) The
network representing the inter-residue forces for ubiquitin, averaged over 100 ns of molecular dynamics simulations, superimposed on the 3D
structure of the protein. The color and width of cylinders connecting residue pairs correspond to the direction and magnitude of the mean inter-
residue force: blue for repulsive force, red for attractive force, and the maximum width corresponding to a force magnitude of *500 pN. (c) A circle
graph representation of the prestress network in (b). Numbers around the circumference are residue indices. Colored arcs correspond to secondary
structure: alpha helix (red), beta strand (green), hydrogen-bonded loop (purple) and 3–10 helix (cyan).
doi:10.1371/journal.pcbi.1002509.g001
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Figure 2. (a) As for Fig. 1c, but with only main-chain atoms (N, O, C, Ca, H) included in the force calculation. (b) Mean inter-residue forces (main-chain
only) for beta strands 1 and 5. (c) & (d) Distributions of main-chain–main-chain force vs Ca separation for the residue pairs Gln2-Glu64 (c) and Ile3-
Ser65 (c). Each dot corresponds to a single frame from the MD trajectory. The vertical red line shows the mean separation, and the blue curve is a
local polynomial fit to the data using the Loess method. The inset highlights the relevant residue pair in the beta sheet structure.
doi:10.1371/journal.pcbi.1002509.g002
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Side-chain prestress
Apart from intra-main-chain interactions, we found that side-

chain–side-chain interactions also exhibit prestress. For clarity, the

inter-side-chain forces are separated into those for side-chains

comprising the hydrophobic core of the protein (Fig. 4a) and for

side-chains facing outwards into the solvent (Fig. 4b). The two are

also shown together, projected on the protein structure, in Video

S3. The inward-facing hydrophobic side-chains, with few excep-

tions, repel each other. None of their atoms are highly charged,

and thus the inter-residue forces are dominated by steric repulsion.

This is consistent with the hydrophobic core being compressed by

tension in the ‘skin’ of the protein comprising the main-chain and

outer side-chains, as well as by entropic forces related to the

hydrophobic effect.

In contrast to the core side-chains, the forces between outward-

facing side-chains are found to exhibit a mix of both compressive

and tensile prestress. The strongest attractive forces (red in the

figure) all correspond to salt bridges between charged side-chains

(lysine and arginine are positively charged, aspartic acid and

glutamic acid negatively charged). The pair with the highest tensile

prestress is Lys11-Glu34, which comprises a salt bridge connecting

the C-end of the alpha helix with the N-end of beta strand 2. This

Figure 3. Average forces for each of the cross-strand hydrogen bonds in beta sheet 1–5. Error bars show the standard error in the mean.
doi:10.1371/journal.pcbi.1002509.g003
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particular salt bridge has been shown experimentally to contribute

significantly to the thermodynamic stability of ubiquitin [34].

Because of the relatively large distance between the two residues,

their side-chains are forced to fully extend to satisfy the electrostatic

attraction, giving rise to the observed prestress of the residue-residue

force: the electrostatic attraction is counterbalanced by entropic

stretching of the side-chains. It is generally true that the residue pairs

with the strongest tensile prestress (eg. Asp21-Lys29, Lys27-Asp52,

and Asp39-Arg74) are salt bridges between spatially separated

residues. Conversely, salt bridges between nearby residues, such as

Glu51-Arg54, can be satisfied without stretching the side-chains and

accordingly the inter-residue forces show no significant prestress.

We find evidence that some of the pre-tensed salt bridges generate

significant torsion in the backbone, and this torque can be removed

by mutating one of the salt bridge partners to ‘break’ the salt bridge

(see Supplementary Text S1 for more details). Thus, side-chain

prestress should be an important factor in stabilising the protein’s

native conformation.

Unlike the main-chain-only prestress network, for which each

residue has significant interactions with at most two others, some

nodes in the side-chain network are connected to as many as four

or five others, widely separated in sequence-space. In the context

of network theory, these residues may be thought of as ‘hubs’ of

the network; perturbing these residues may be expected to lead to

a wide-spread redistribution of force in the prestress network. In

fact, simulations in which two of the most obvious hub residues,

Asp52 and Arg72, were separately mutated to glycines exhibited

no statistically significant changes to the prestress network beyond

the local neighborhood of the mutated residue. This suggests that,

at least with respect to perturbations of these specific residues,

redundancy in the mechanical network imbues the pre-stress

distribution with a certain amount of rigidity, and that intentional

engineering of a protein’s prestress network may require a more

sophisticated mutation strategy beyond simply perturbing individ-

ual network hubs.

Effective force profiles reveal complex side-chain
dynamics

The connections between the hub residues Lys27, Asp52 and

Arg72 form a clear triangle in Fig. 4b, most notably featuring a

strong tensile prestress between the salt-bridged residues Lys27

and Asp52. A clue to how the high connectivity of these hubs

arises comes from the effective force profile for Asp52 and Arg72

(Fig. 5a). Unlike the main-chain hydrogen bond profiles, this

distribution seems to show at least three separate overlapping force

profiles. This suggests that the side-chains involved are visiting a

number of distinct conformational states over the course of the

simulation. We indeed find evidence of very complex dynamics for

Arg72 and its neighbors, which alternately involves hydrogen

bonds to Asp52 and other competing residues, involving their

sidechains, backbone, or both (Fig. 5a, right). It is now possible to

detect the dynamics of arginine side-chains from NMR [35], so it

should be feasible to directly validate our predictions of Arg72’s

propensities for binding to its neighbors.

Such switching between discrete states is also observed for

hydrophobic residues. Fig. 5b shows the effective force profile for

the residue pair Leu8-Val70. These two residues are functionally

important, since they comprise a hydrophobic binding patch that

is crucial for the binding of Lys48-C-linked polyubiquitin to the

proteasome [36]. The force-distance distribution seems to show

two distinct force curves, one with an equilibrium separation

around 5.5 Å, and another around 6.5 Å. The existence of two

states is confirmed from examining representative states of the

trajectories (Fig. 5b, right), as well as by analysing the distribution

of the angle between the two side-chains as a function of residue-

residue separation over the length of the simulation (Fig. S4). As

for the Asp52-Arg72 pair discussed above, the overlapping

effective force curves here reveal that these different orientational

states for the side-chains correspond to different inter-residue

mechanical coupling regimes. It is conceivable that the switching

between these states has an influence on the local balance of

tension and compression, and thus on the protein’s mechanical

stability. This degeneracy in mechanical stability may contribute

to the signature of static disorder detected in ubiquitin’s rupture

kinetics as measured by recent AFM experiments [37,38]. To what

extent the local sidechain disorder influences the mechanical

Figure 4. (a) and (b) Networks representing the inter-residue
forces for ubiquitin, as for Fig. 1c, but accounting for side-
chain atoms only; (a) inward-pointing side-chains, (b) outward-
facing side-chains.
doi:10.1371/journal.pcbi.1002509.g004
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Figure 5. (a) Left: Effective force profile for the side-chains of Asp52 and Arg72. Right: Snapshots of various hydrogen binding states observed for the
trio of Asp39, Asp52, and Arg72. Sometimes two of the amides in the Asp side-chain are simultaneously hydrogen bonded to the two oxygens in the
Asp side-chain (upper left); sometimes an amide is bound to a side-chain oxygen, and another to the backbone carbonyl oxygen (upper right);
sometimes only a single bond is formed, to the backbone oxygen (lower left); and sometimes the Asp39-Arg72 salt bridge breaks entirely, and Arg72
instead forms a short-lived salt bridge with Asp52, which is simultaneously bound to Lys27 (lower right). (b) As for (a), but for the residues Leu8 and
Val70. In one state (the ‘out’ state), the side-chain of Leu8 is oriented outwards, above that of Val70. In the other (the ‘in’ state), the Leu8 side-chain is
buried underneath Val70. Superimposed on the scatterplot are two density plots, which show the density of points belonging to each of the ‘in’ (red)
and ‘out’ (blue) states. The classification of points into two states is described in Fig. S4.
doi:10.1371/journal.pcbi.1002509.g005
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response might depend in nature on the type of polyubiquitin

linkage, which is a topic for future research.

Discussion

We have shown that forces in the native ensemble of ubiquitin,

measured from all-atom MD simulations, generate a tensegrity-

like pattern of prestress at the residue-residue level. This includes

pre-compression of the hydrogen bonds connecting beta strands,

and conversely pre-tensing of alpha helix hydrogen bonds. The

differences between the pre-compression of individual beta strand

hydrogen bonds are sufficient to significantly modify the kinetics

of hydrogen bond breakage under force, and thus should be an

important factor in determining the protein kinetic stability and

unfolding pathway under mechanical perturbation. Salt bridges

known to be important for ubiquitin’s thermodynamic stability

are found to be strongly pre-tensed, and the effective force

profiles for side-chain–side-chain interactions reveal a connection

between side-chain dynamics and inter-residue mechanical

coupling. We propose that the observed dynamic equilibrium of

multiple side-chain states contributes to the complex rupture

kinetics observed in AFM experiments, since each discrete side-

chain state corresponds to a different well in the rough global

energy landscape. A correlation is found between tensed salt

bridges and twisted peptide bonds in the protein backbone, which

suggests that tension in stretched side-chains, transmitted as

torque to the backbone, might play a role in determining the

conformation of the protein’s native state. Finally, we find the

tensegrity network remarkably robust with regard to mutations at

network hubs.

It remains to be shown whether the observations reported here

apply generally to all proteins, or are specific to ubiquitin. A

preliminary study of the titin immunoglobulin [I27] domain

(PDB code 1WAA [23]) also found compression of hydrogen

bonds in beta sheets, and tension in salt bridges, suggesting that

these are general properties (Fig. S5). An early atomic force

microscope study of the mechanical stability of I27 mutants [39]

showed that the point mutations Val11Pro, Val13Pro and

Val15Pro reduced the protein’s rupture force, as expected due

to proline’s inability to form inter-strand hydrogen bonds;

conversely, and unexpectedly, the mutant Tyr9Pro was found

to be more stable than the wild type. Our I27 prestress network

(Fig. S5) gives an intriguing clue as to the origin of this effect.

Tyr9 is seen to be involved in a number of repulsive force pairs,

with sequentially distant partners - not the case for Val11, Val13

and Val15. It may be that the mutation Tyr9Pro, by removing

these frustrating repulsive forces, allows neighboring residues do

adopt a more favorable conformation and thereby stabilise the

protein. A detailed study of how such mechanically important

point mutations involve changes to the prestress network will be a

focus of future work, as will a survey of a wide range of protein

structural types, necessary to better appreciate to what extent

prestress is a ubiquitous aspect of protein structure. Futhermore,

we have found that the prestress network is dynamic, due to the

influence of side-chain dynamics on residue-residue forces, but

more work needs to be done to quantify the relationship between

applied force, side-chain states and protein function. Another

question is whether the effective force profiles measured here can

be used as a basis for prestressed coarse-grained protein models,

and in what ways the predictions of such a model would differ

from traditional elastic network models, which by definition lack

any prestress. Our study opens the road to re-engineer molecular

tensegrity structures, to eventually allow the rational tuning of

mechanical or allosteric response.

Materials and Methods

We used the Gromacs 4.0.5 package [40] to perform

equilibrium all-atom simulations of ubiquitin, starting from the

x-ray structure with PDB accession code 1UBI [41]. This structure

is illustrated in Fig. 1a. The protein was solvated with TIP4P water

[42] in a periodic cubic box of 6.5 nm per side. 16 pairs of sodium

and calcium ions were added to give an effective salt concentration

of 0.15 M. The OPLS all-atom forcefield [43] was chosen to

describe interatomic energies. The system was subjected to a

steepest-descent energy minimization, followed by a 1 ns solvent

equilibration with position restraints on the heavy atoms of the

protein. Then a further 1 ns equilibration run was performed with

no position restraints. From the second half of the resulting

trajectory, five snapshots were chosen to be the starting

conformations for five independent production runs, each of

which was carried out for 20 ns, giving a total of 100 ns of

simulation time. All runs were performed in the NpT ensemble,

with a Nosé-Hoover thermostat [44,45] set to 300 K and

Parrinello-Rahman barostat [46] at 1 atm, using a time-step of

2 fs. Electrostatic interactions were calculated using the particle

mesh Ewald algorithm [47]. The same procedure was also carried

out for the single-residue mutants Asp52Gly and Arg72Gly, initial

structures of which were generated using PyMOL [48].

For each of the production runs, all pairwise atomic forces

within the protein were output with a frequency of 1 ps using the

modified FDA version of Gromacs 4.0.5 [23]. These pairwise

atomic forces were then converted to residue-wise forces by

summing in a vector-wise fashion, for each frame of the trajectory,

all atomic forces between each pair of residues, and then

projecting this total force on the vector connecting the Ca atoms

of the two residues at that instant of the simulation. We note that

due to the projection, any forces orthogonal to this connecting

vectors, i.e. torques, are neglected. Their contribution to a

protein’s pre-stress will be subject of future investigations. The

magnitudes of the residue-residue forces were then averaged for

each residue pair over the full 100 ns of the simulation to give the

average prestress distribution of the protein. Note that this

procedure differs from earlier applications of FDA, in which

residue-wise forces were calculated simply by summing the scalar

magnitudes of the mean atomic pairwise forces. The protein-water

and protein-ion forces were neglected. Effective force profiles for

each pair of residues were obtained by selecting 10000 evenly-

spaced frames from the total trajectory, and plotting the residue-

wise force for each frame against the separation of the residues’ Ca
atoms. For studying the specific atomic contributions to inter-

residue forces in more detail, the average atom-atom force

distribution was also calculated, simply by averaging the total force

between each pair of atoms in the protein over the 100 ns of

simulation time. We refer to the network of forces in the protein

also as ‘prestress’, in aid of establishing an analogy to previous

work on the link between prestress and protein function and

allostery, even though a normalization of forces by area has not

been carried out, and ‘preforce’ would be the more accurate

terminology. The standard error of the mean for time-averaged

forces from the five independent trajectories was typically in the

range of 10 pN, which is less than 10% of typical forces in

hydrogen bonds, suggesting sufficient convergence. Protein

visualisations were carried out with VMD [49] and PyMOL [48].

Supporting Information

Figure S1 Average residue-residue forces in the antiparallel beta

sheets 12 (left) and 15 right.

(PDF)
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Figure S2 Average atomic forces for main-chain inter-residue

interactions between Lys6 on beta strand 1, and Leu67, His68 and

Leu69 on strand 5. Atom colors: cyan (carbon), blue (nitrogen), red

(oxygen), white (hydrogen). Red (blue) lines represent attractive

(repulsive) forces.

(PDF)

Figure S3 (a) Mean inter-residue forces (mainchain only) for the

alpha helix. Vertices connecting residue pairs have the same

meaning as in Fig. 1b. (b) The same forces plotted for i:i+2 (solid

line), i:i+3 (dashed line) and i:i+4 (dotted line) pairs for each residue i

in the helix. Note that i:i+4 pairs are hydrogen-bonded.

(PDF)

Figure S4 For the residue pair Leu8/Val70, a scatterplot of the

angle h between the side-chains of the residues versus the Ca-Ca
distance d. The directions of the side-chains are defined by the Ca-

Cc vector for Leu8 and the Ca-Cb vector for Val70. Each dot in

the scatterplot corresponds to a single frame taken from the 100 ns

worth of MD production runs. There are two strong density peaks:

one at around (6.8 Å, 500), and another at (5.5 Å, 1100),
corresponding to the two distinct side-chain conformational states

described in the main text. We arbitrarily define the boundary

between the two states to be the straight line hb(d)~½33d{133�0.
Dots above the line are assigned to the in state (blue) and dots

below the line to the out state (red); this classification is then used

in Fig. 5b for generating the two overlapping force-vs-distance

density plots.

(PDF)

Figure S5 (a) The network representing the inter-residue forces for

the titin immunoglobulin domain, averaged over 50 ns of molecular

dynamics simulations, superimposed on the 3D structure of the

protein (PDB code 1WAA). The color and width of cylinders have the

same meaning as Fig. 1b. (b) A circle graph representation of the

prestress network in (a). The numbers around the circumference are

residue indices. The green arcs show the locations of beta strands.

(PDF)

Figure S6 (a) Average length and (b) average torsional angle

(1800{v) of the peptide bonds between neighboring residues i

and i+1 along the protein backbone. In both cases, the grey area

corresponds to the standard deviation. Standard error in the mean

is smaller than the line width for (a), and +0:50 on average for (b).

In (b), the red stars mark the two regions that deviate most strongly

from the mean of around 50.

(PDF)

Figure S7 Dv~vmutant{vwildtype for the Asp52Gly mutant,

where v is the torsional angle of the peptide bond connecting

neighboring residues i and i+1. The grey area shows the standard error

in the mean. The dip around residues 51 and 52 corresponds to the

eradication of the strong twist observed in wildtype ubiquitin (Fig. S6).

(PDF)

Text S1 Backbone stress correlates with tensed salt bridges.

(PDF)

Video S1 Average inter-residue forces, measured from 100 ns of

MD simulation, projected on the 3D structure of ubiquitin (PDB

code 1UBI). Blue (red) cylinders represent repulsive (attractive)

forces, and cylinder width is proportional to force magnitude, with

the maximum force around 500 nN.

(MPG)

Video S2 As for Video S1, but forces are calculated using only

main-chain atoms.

(MPG)

Video S3 As for Video S1, but forces are calculated using only

side-chain atoms.

(MPG)
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