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Abstract

Many morphogenetic processes involve mechanical rearrangements of epithelial tissues that are driven by precisely
regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the
targets of regulation, but are themselves the likely signals that coordinate developmental process. Yet, because it is difficult
to directly measure mechanical stress in vivo on sub-cellular scale, little is understood about the role of mechanics in
development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of
morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative
magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial
tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell
layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer
interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical
Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the
Drosophila embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical
anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The
proposed method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics.
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Introduction

Genetics and biochemistry are central to all aspects of biological

function. Physics is often less recognized yet also important at

many levels, everywhere from intramolecular to organismal scales.

For example, many important aspects of cell behavior depend

directly and indirectly on its mechanical state defined by its

interaction with neighboring cells and adhesion to the extracellular

matrix [1–3]. Cytoskeletal mechanics and cell-cell adhesion

determine geometric properties of cells [1,4–6], as well as the

dynamics of biological tissues [5,7–13]. In plants, cells do not

move, but the rigidity of cellulose membranes makes mechanical

stress an obvious factor for cell division and proliferation [14,15].

It is known that animal cell proliferation also depends on substrate

adhesion and the degree of cell confinement [2,16–19]. It has also

been demonstrated that (stem) cell differentiation is affected by

substrate rigidity [20]. More speculatively, mechanical feedback

interactions have been conjectured to have a role in coordination

of growth during development [1,9,21,22]. Mechanical transfor-

mation of epithelial tissue is of course itself central to many

morphogenetic processes: gastrulation [7] and convergent exten-

sion [1], to name a few. Understanding how mechanical changes

in cells orchestrate morphological reorganization of tissues is an

open problem and a subject of much current work [1,7,8]

Our present understanding of the role of mechanics as one of

the regulatory inputs into the cell is strongly impaired by the

difficulty of quantitatively characterizing the mechanical state (i.e.

stress and deformation) of the cell. Among the available techniques

are laser tweezers [23] and ‘‘traction force microscopy’’ [18,24]

performed on cultured cells. UV laser ablation allows the

mechanical perturbation of tissues [8,25,26] on the cellular scale

with the time-lapse imaging of subsequent relaxation providing

information on the mechanical state of the tissue. The ablation

approach is widely used on live preps, for example, in the study of

Drosophila embryonic development. Yet, this technique is

definitely not a ‘‘non-destructive’’ one.

On the other hand one of the major recent technical advances

in developmental biology is the improvement of live fluorescent

imaging. These provide high quality time lapse movies of

developmental processes, including interesting morphological

transformations such as gastrulation and convergent extension

[7,26,27]. The purpose of the present investigation is to explore

what insight into the mechanical state of cells may be gleaned from

a quantitative examination of high quality images of the type

shown in Fig. 1A. Our goal is to use image analysis as a non-

destructive approach to obtaining quantitative measures of stress

in these systems. A similar strategy has been pursued by the

recently proposed ‘‘Video Force Microscopy’’ (VFM) approach by

Brodland et al [28]. Our approach will differ from VFM in its

assumptions about mechanical state of tissue, in the parameter-

ization of forces and in the way imaging data is utilized.

Below we shall define a general model parameterizing the

mechanical state of cells in two dimensional epithelial tissue and

provide a computational method for inferring these parameters from

the observed geometry of the cell array. We shall study the sensitivity

of the proposed Mechanical Inverse (MI) method to errors in
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measured cell geometry and identify conditions under which robust

inference is possible. We then illustrate the proposed MI method by

applying it to the analysis of two different biological processes:

cochlear neurogenesis [29] and ventral furrow formation[27].

Materials and Methods

Model of epithelial tissue mechanics
Our approach is based on the assumption that epithelial

monolayers are in an instantaneous mechanical equilibrium,

characterized by a static balance of the forces acting at

intercellular junctions. The second important assumption is that

epithelial mechanics is dominated by the actomyosin cortices and

inter-cellular Adherens Junctions [1] both localized at cell

boundaries, which form a visible two-dimensional web, as shown

in Fig. 1A. Thus we assume that the mechanical state of a cell can

be described by an effectively two-dimensional model with tension at

the interface and the hydrostatic pressure in the cell interior. Yet,

because cells can independently regulate their mechanical state,

e.g. by modulating myosin activity or cell-cell adhesion, we allow

for the possibility of each intercellular interface to have a different

effective tension, Tab, and for each cell to have a different internal

pressure Pa (where a labels cells and ab labels the interface

between cells a and b), as shown in Fig. 1D. Mechanical

equilibrium then corresponds to the condition that the forces

acting on each ‘‘vertex’’~rri (defined as a junction of three cells and

therefore of three interfaces) add up to zero.

Let~rri and~rrj be the vertices belonging to the interface ab and let

~rrij:~rrj{~rri be the vector from vertex i to j. The force exerted by

this interface on vertex i is

Fa
ij ~Tab

ra
ij

Drij D
z

1

2
(Pa{Pb)r

b
ijeba, ð1Þ

where a labels vector components in the xy plane and eba is the

anti-symmetric tensor (exy~{eyx~1 and exx~eyy~0). As shown

in Fig. 2, this expression accurately represents the Young-Laplace

balance between interfacial tension and the pressure differential

across the interface Pa{Pb~kabTab, as long as the interfacial

curvature kab is small (see Supplementary Text S1). This fact

enables us to formulate all mechanical balance conditions in terms

of a polygonal approximation of the cell array, thus allowing us to

reduce the problem to a generalized ‘‘vertex model’’ [8,9].

Remarkably, the forces given by (1) correspond to the

mechanical energy in the form of the following simple Hamilto-

nian

H(f~rrig)~
X

a

Ha½Aa,f‘abg� ð2Þ

where Aa is the area of cell a, ‘ab~Drij D is the length of the interface

between cells a and b and f‘abg denotes the set of interfaces

belonging to cell a. Both Aa and ‘ab’s are defined in the polygonal

approximation. This Hamiltonian is a generalization of the vertex

models often used to describe epithelial sheet mechanics [8,9,26].

Pressure and tension are defined by considering the differential

form of H:

dH~
X
SabT

LH

L‘ab

d‘abz
X

a

LH

LAa

dAa

~
X
SabT

Tabd‘ab{
X

a

PadAa

ð3Þ

where we define Tab: LH
L‘ab

and Pa:{ LH
LAa

. The SabT sum runs

over all edges, i.e. pairs of neighboring cells a, b. This tangent

representation of mechanical energy expresses interfacial tension

T and intracellular pressure P as conjugate variables to edge

lengths and cell areas, respectively. (The reader will notice that

strictly speaking our Pa refers to a two-dimensional pressure which

relates to the hydrostatic pressure only with the additional

assumption that dAa entails a change of cell volume. Alternatively

Figure 1. Micrographs of a fixed avian cochlear epithelium
(kindly provided by Goodyear and Richardson, see [29] for
details) at the E9 stage of development just following the
onset of differentiation of cells into hair cell precursors and
surrounding support cells. Panel (A) visualizes cell boundaries using
and anti-cingulin (a tight junction protein) staning. Panel (B) shows the
same tissue with pro-neural cells [29] stained via an anti-hair cell
antigen. (C) is a computer generated segmentation of the raw image in
(A) as a polygonal tiling which approximates cell geometry. The
zoomed-in image (D) defines our parametrization of cell geometry in
terms of vertex coordinates ri and of the mechanical state of the cell in
terms of interfacial tensions Tab and hydrostatic pressures Pa.
doi:10.1371/journal.pcbi.1002512.g001

Author Summary

Mechanical forces play many important roles in cell
biology and animal and plant development. In contrast
to inanimate matter, forces in living matter are generated
by active and highly regulated processes within and
between cells. The ability to directly measure forces and
mechanical stress on the cellular scale within living tissues
is critically important for understanding many morphoge-
netic processes but is a serious experimental challenge.
The present work proposes an alternative approach based
on the analysis of images that provide a visualization of
cell boundaries in two dimensional epithelial tissues. The
method uses the assumption of force balance within the
epithelial layer to infer, on the basis of image-derived
geometric data, the mechanical state of each cell. The
proposed Mechanical Inverse method is illustrated on the
analysis of two examples: the initial step of the gastrula-
tion process in the Drosophila embryo, and the process of
neurogenesis in the developing avian cochlea.

Mechanical Stress Inference
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P may be thought of as the axial component of the three-

dimensional stress tensor.)

Mechanical equilibrium means that H is minimized with the

respect to vertex positions

Fa
i ~

X
j(i)

Fa
ij ~{

LH(f~rrig)
Lra

i

~0 ð4Þ

which defines the static force balance constraints (the sum is over

the vertices j(i) neighboring i). Our analysis will be based on the

assumption that the cell layer is close to mechanical equilibrium in

the sense of the magnitude of the net resultant force acting on

vertices being much smaller than the average magnitude of the

component forces that vectorially add to the resultant

D~FFi D~D
P

j(i)
~FFij Dvv

1
3

P
j(i) D~FFij D. Stated in other words, we assume

that the internal forces that balance each other in the (approx-

imate) instantaneous mechanical equilibrium state are much larger

than the unbalanced residual force that drives residual physical

motion and (through viscous effects) defines its velocity. More

generally, the dynamics of passive relaxation towards this

mechanical equilibrium would be described by

n
P

j(i)
d
dt
~rri{~rrj(i)

� �
~{

LH(f~rrig)
L~rri

, where n is the ‘‘effective viscosity’’

and the sum is again over the vertices j(i) that neighbor i. In

principle, given that vertex velocities can be directly measured by

time-lapse microscopy in live tissues, d
dt
~rri{~rrj(i)

� �
can be obtained

directly from the experiment, allowing a straightforward extension

of the method described below toward the VFM method [28]

(where viscous forces were assumed to dominate).

The mechanical inverse problem
We can now inquire to what extent the knowledge that a given

cell array geometry is in a mechanical equilibrium constrains the

parameters Pa, Tab describing the mechanical state of cells. We

proceed by a simple count of mechanical constraints and of the

free parameters for two cases i) a closed cell array, shown in Fig. 3A

and ii) an open cell array, shown in Fig. 3B.

Let us begin with the closed cell array where v,e, and c are the

total number of vertices, edges, and cells, respectively. For v
vertices in two dimensions, we have exactly nc~2v{3 mechanical

constraints, where the extra three degrees of freedom are

associated with global translation and rotation symmetries

(alternatively, three constraints are redundant because the total

force and total torque in the closed system are equal to zero). On

the other hand, the number of unknown tension parameters is e,

and the number of unknown pressures is c, so that the total

number of parameters is np~ezc. Our closed system, if we count

the exterior as an additional ‘‘cell’’, is topologically equivalent to a

sphere so that Euler’s theorem reads

v{ez(cz1)~2: ð5Þ

Combining this relation with the condition that vertices are points

where three edges meet and each edge impinges on two vertices,

that is 3v~2e, we obtain the result

ezc~2vz1: ð6Þ

This implies np~ncz4, which means that our unknown

parameters can be determined up to four free constants. One of

the latter is the arbitrary overall scale of Tab and Pa which cannot

be constrained by the force balance conditions (note that since Pa

is only defined up to an additive constant, one can set the pressure

in the exterior of the domain to zero). Yet the good news is that the

number of free constants is finite, while the number of nontrivial

constraints scales with the number of cells! This counting

argument can be readily generalized (see SI) to the case where a

fraction of vertices has more than three incoming edges: the so

called ‘‘rosettes’’ that can be quite common in certain tissues [30].

Repeating the counting procedure for the open system, one

finds that ezc~2vzbz1, where b is the number of cells at the

boundary of the domain. It follows that np~nczbz1. Thus

mechanical parameters are determined up to bz1 free constants:

we can still choose the overall scale while the additional b degrees

of freedom may be regarded as the boundary conditions such as

Pa’s of the cells at the edge of the domain. Again, for a large array,

because b*
ffiffiffi
c
p

while np*c, the number of parameters and

constraints is much larger than the number of free constants.

Figure 2. Schematic representation of an edge between two
cells in the tissue, comparing a curved interface (blue) with its
approximation by a chord that defines the edge in the
polygonal representation of cells. Mechanical stress parameters
are in red, and geometric quantities are labeled in black. Provided that
the curvature of the interface kab (and hence the angle h) is small, the
Young-Laplace equation Pa{Pb~kabTab defines the force on the
vertex i between cells a and b which obeys Eqn. (1).
doi:10.1371/journal.pcbi.1002512.g002

Figure 3. Examples of computer generated closed (A) and open
(B) cell arrays. Closed arrays provide an idealized context for defining
the mechanical inverse problem, while the analysis of experimental data
requires dealing with open arrays, corresponding to convex patches of
cells defined by or within the field of view.
doi:10.1371/journal.pcbi.1002512.g003

Mechanical Stress Inference
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To actually determine the Tab and Pa parameters, we use the

fact that they appear only linearly in the force balance equations

(4). This results in a linear system for

yT~ T1, . . . ,Te,P1, . . . ,Pcð Þ ð7Þ

in the form

My~C ð8Þ

with M being an np|(ncz1) matrix where the 1st nc rows impose

the force balance conditions from equation (4), and the additional

row imposes the scale. This is performed by constraining the average

tension to be equal to one. Correspondingly the top nc entries of the

column vector C are zero, while the bottom row Cncz1~e.

The rectangular system (8) is solved via a pseudo-inverse [31]

with the general solution of the form

y~Yz
Xnz

n~1

Anwn ð9Þ

with

Y~ ~MM{1C, ð10Þ

Mwn~0 ð11Þ

where ~MM{1 is the pseudo-inverse of the rectangular matrix M and the

free parameters, An, are the amplitudes of the nz~np{nc{1 ‘‘zero

modes’’ wn. Additional details regarding the formulation and solution of

the inverse problem are provided in the Supplementary Text S1.

Fixing the remaining nz degrees of freedom requires introducing

additional constraints: e.g. one may have reasons to seek a solution

that minimizes variation of Pa’s or Tab’s. In choosing such

additional assumptions one may want to use all the information

that one has for specific applications, as we shall do below.

However, before proceeding to the applications we must consider

the issue of error sensitivity.

Sensitivity of the inverse
Our approach to mechanical parameter inference is based on the

observed geometry of the cell array. How sensitive are the results to

the inaccuracy of vertex positions f~rrig? Such inaccuracies will

inevitably arise in the process of imaging, image segmentation, and

more importantly from the fact that the cells themselves fluctuate.

(These fluctuations are of course related to the fact that mechanical

equilibrium is itself at best approximate.) To quantify the stability of

the inverse we consider the effect of an arbitrary small perturbation

in vertex positions, fd~rrig. Since the inhomogeneous term C in (8) is

independent of cell geometry, the first order response of the

parameters dy to positional error is given by

Mdyz
LM

L~rr
y

� �
d~rr~0 ð12Þ

dy~Ld~rr~ ~MM{1 LM

L~rr
y

� �
d~rr: ð13Þ

Ideally the error response matrix L would have small

eigenvalues providing a relatively robust inverse. On the other

hand, large eigenvalues of L would indicate high error sensitivity.

These sensitive modes appear via the pseudoinverse matrix ~MM{1.

A histogram of singular values of the matrix ~MM{1 is shown in blue

in Fig. 4 (for a closed system with &800 cells). One notes that a

substantial fraction of modes have eigenvalues larger than one. As

a result, small errors in positions can result in large error in

inferred parameters.

The simplest way to solve the sensitivity problem is to reduce

the number of parameters. For example, as we shall argue below,

in some contexts it may be reasonable to neglect variation in cell

pressure and set Pa~P0 which eliminates c parameters, reducing

np from 4c to 3c. In that case the mechanical constraint system

given by (8) becomes overdetermined and can be solved only in the

sense of least square minimization: i.e. minimization of

Tr½(M ’y{C)T(M ’y{C)�: ð14Þ

The solution of the minimization problem is still given by the

pseudo-inverse of the rectangular matrix M ’ which extends the

force balance matrix M by including additional (linear) equations

that constrain y. Fig. 4 shows (in red) the distribution of singular

values governing the sensitivity of the reduced or partial inverse

problem. We note a substantial reduction in sensitivity.

The partial inverse approach is then tested in silico. To that end

we consider a closed array of cells and define cell geometry by

minimizing elastic energy given by

HV (f~rrg)~
X
SabT

kab(‘ab{1)2: ð15Þ

with uniformly distributed kab[½0:7,1:3�. The absence of area terms

imposes a constant pressure. (The closed cell array is relaxed under

toroidal boundary conditions to prevent a collapse into the zero

tension ground state.) The vertex model parameters are computed

via equation (2). These quantities are then compared to values

obtained by applying the partial inverse algorithm to the vertex

‘‘data’’ f~rrig corrupted by random noise fd~rrig with an r.m.s.

variation of 5% of the average length of cell edge (see Fig. 5). The

correlation coefficient between inferred and computed parameters is

0.85, which confirms the ability of our method to extract information

Figure 4. The distribution of singular values (which correspond
to the square root of non-zero eigenvalues of ½MT M�{1) for the
~MM{1 matrix before (blue) and after (red) parameter reduction.

Note that prior to parameter reduction there is a substantial fraction of
eigenvalues w10 which means that small errors in vertex positions are
significantly amplified in solving the inverse problem. Large eigenvalues
are effectively suppressed after parameter reduction.
doi:10.1371/journal.pcbi.1002512.g004

Mechanical Stress Inference
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from noisy data. The Supplementary Figure S4 shows results under a

10% random corruption in vertex positions. In that case the

correlation coefficient is reduced to 0.65, which remains serviceable.

We note that the’’soft modes’’ that contribute to the sensitivity

of the full inverse problem are quite interesting. The formulation

of the minimally constrained problem is analogous to the isostatic

systems studied in jamming transitions of amorphous solids [32].

These isostatic systems live on the boundary of Maxwell’s criterion

for rigidity, and much like amorphous solids they must satisfy both

the local and global rigidity conditions. In our mechanical inverse

formulation, ‘‘rigidity’’ corresponds to a fully constrained set of

mechanical (Tab and Pa) parameters. Amusingly, local soft modes

for the MI problem correspond to special local geometries:

specifically, polygons that can be inscribed into circles (i.e. a

generalization of regular polygons) - a category which includes

triangles of any shape. These interesting mathematical aspects of

the problem will be discussed in a separate publication.

Results

Mechanical differentiation of cells in the developing
avian cochlea

In cochlear development, which takes place during the first two

weeks of chick embryonic development, cells in an initially

homogeneous two dimensional epithelial layer differentiate into

pro-neural (hair-cell) and support cell fates [29]. The process is

driven by Delta/Notch-mediated cell-contact signaling [33], which

causes lateral inhibition: cells which express Delta ligand on their

surface prevent their immediate neighbors from doing the same.

Expression of Delta is an early marker of the pro-neural fate of cells.

Fig. 1A,B presents a micrograph of the cochlea epithelium, obtained

by Goodyear and Richardson [29] at the stage of development

shortly after the onset of differentiation. The images in Fig. 1A,B

were obtained as described in [29] using a double fluorescent

antibody labeling: antibody to the tight junction protein cingulin

allowing visualization of cell boundaries and 275 kDa hair-cell

antigen staining labeling pro-neural cells. Note that the two cell

types already have discernibly different morphology: pro-neural

cells are somewhat smaller and have curved edges. This

dimorphism is supported by direct labeling of specific pro-neural

markers, shown in Fig. 1B and demonstrated in [29].

Our goal is to infer, based on the analysis of the image in

Fig. 1A, the variation in the mechanical parameters between cells.

The visible positive curvature associated with pro-neural cells

suggests that they are under higher internal pressure. Can the

Mechanical Inverse method determine pressure differentials

between cells? Because our approach requires only positions of

cellular vertices, it does not use the information provided by the

interfacial curvatures which are readily measurable on the image.

This additional information will be used as an a posteriori validation

of the inferred results.

To reduce the number of parameters, we assume that interfacial

tensions can be expressed as Tab~hazhb in terms of constant

cortical tensions ha, hb of adjacent cells which reduces the number

of parameters by e{c~2c. This is sufficient to render a robust

partial inverse (in the sense of least squares), yielding ha and Pa for

every cell. Fig. 6 shows the distribution of inferred intracellular

pressures and cortical tensions for the two cell types. We see that

pro-neural cells have on average higher tension and pressure.

While pressure shows some correlation with cell area, there is no

correlation between interfacial tension and its length. However,

there is no reason to expect any specific correlation between these

quantities. On the other hand, Laplace’s Law predicts

Pa{Pb~kabTab which we are in a position to check directly,

thanks to the fact that interfacial curvatures kab are directly

measurable on the images such Fig. 1A. Fig. 7 presents the

‘‘empirical’’ Laplace’s Law obtained on the basis of the inferred

Pa{Pb and Tab. Because the Mechanical Inverse algorithm did

not in any way use the interfacial curvature information, the fact

that inferred parameters approximately obey the Laplace’s Law

provides a validation of the inverse method.

Mechanical anisotropy at the onset of the ventral furrow
formation in Drosophila

During the initial stage of development a Drosophila embryo is

comprised of an ellipsoidal monolayer of cells. The first step

Figure 5. Scatter plot comparing actual values of the tension
parameters Tab defining the in silico cell array to the values
inferred by the partial inverse algorithm applied to the vertex
data corrupted by 5% random noise. The plot exhibits a correlation
coefficient of 0.85 between the estimated and actual tensions.
doi:10.1371/journal.pcbi.1002512.g005

Figure 6. Inferred tensions and pressures for the cochlear
epithelium image shown in Fig. 1A. Hair-cell precursors and
support cells correspond to red and blue dots respectively. Inferred
pressure is plotted versus the observed cell area and the inferred
tension is plotted versus edge length. Note systematically higher
inferred pressure and tension in the hair-cells.
doi:10.1371/journal.pcbi.1002512.g006

Mechanical Stress Inference
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toward more complex morphology that is achieved after

gastrulation, is the formation of a ventral furrow that begins with

the contraction of the apical surfaces of cells along the ventral

midline [27,34,35]. Fig. 8A presents the ventral view of a

Drosophila embryo at the beginning of this mechanical transfor-

mation. The high quality of these images (kindly provided by the

Weischaus lab [27]) makes it possible to attempt the Mechanical

Inverse analysis. Since the process begins even before cellulariza-

tion is completed it is reasonable to assume that cells have the

same internal pressure Pa~P0, allowing us to reduce the number

of parameters enough to achieve a robust partial inverse and infer

Tab for every cell boundary. Note that in contrast to the

developing avian cochlea, cell-cell interfaces exhibit little curvature

and (apical surfaces of) cells are well approximated by polygons

(see in Fig. 8A), which is consistent with pressure differentials being

weak compared to interfacial tensions.

Interestingly, comparing images separated by merely two minutes

(Fig. 9) we found that the inferred Tab at the later time-slice

exhibited statistically significant anisotropy with estimated tensions

of cell interfaces along the AP axis being on average about 15%

higher than those along the DV axis. The inferred increase in AP

tension (relative to DV) is consistent with the laser ablation

measurements made in the Wieschaus lab [7,27]. Yet, mechanical

inverse inference gives information not only on the global, tissue-

wide level, but also on the scale of a single cell and interface. The

analysis also clearly demonstrates the ability to make specific

predictions (for interfacial tensions) that can be directly tested by

combining high quality live imaging with UV pulsed laser ablation.

Intercellular traction forces
The variation of tension from one interface to another implies

the existence of traction forces acting between cells. This traction,

or shear stress, must be entirely borne by the cadherins and other

cell adhesion molecules which bridge cellular membranes and

connect actomyosin cortices of apposing cells [1]. In Fig. 10 we zoom

in on an interface decomposing interfacial tension into the cortical

tensions on the opposite sides of the interface Tab~ha(x)zhb(x),
now allowing for the possibility that the latter are not constant along

the interface and vary as a function of position along the edge

x[½0,‘ab�. This transfer of tension from the cortical bundle in one cell

to the other is possible because of cadherin mediated traction forces

acting between cells. The total shear stress on the interface is

tab~½ha(0){ha(‘ab)�=‘ab~½hb(‘ab){hb(0)�=‘ab. In the Supple-

mentary Text S1 we show that because cortical tensions are

constrained by the continuity conditions at cell ‘‘corners’’ they can be

Figure 7. Scatter plot comparing inferred pressure differential
across an interface, Pa{Pb, with the product of inferred
tension Tab and the measured curvature kab of the same
interface. Different colors distinguish results obtained from different
images. The scatter plot exhibits a clear correlation between the two
quantities, as expected from the Laplace’ law Pa{Pb~kabTab.
doi:10.1371/journal.pcbi.1002512.g007

Figure 8. Confocal images of Spider-GFP labeled cells on the
ventral side of a Drosophila embryo 4 minutes and 2 minutes
prior to ventral furrow invagination [27]. (Previously unpublished
images kindly provided by the Wieschaus’ laboratory). Panel (A) shows
the polygonal tiling array defined by image segmentation at 4 min prior
to invagination. Panel (B) shows inferred tractions obtained from the
partial inverse and Eq. (16) at 2 min prior to invagination. Color
indicates the magnitude of inferred traction with red (blue) being the
relatively high (low) traction. The coefficient of variation of inferred
traction is &0:2.
doi:10.1371/journal.pcbi.1002512.g008

Figure 9. Histograms of inferred tension at the start of the
ventral furrow formation. Red (blue) corresponds to cell edges at an
angle above (below) hc~p=4 relative to the AP axis. Panels (A) and (B)
correspond to respectively the 1st and the 3rd minutes of the furrow
formation process.
doi:10.1371/journal.pcbi.1002512.g009

Mechanical Stress Inference
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readily expressed in terms of interfacial tensions leading to the

following simple expression for the traction force acting between cells

a and b.

tab~
1

‘ab

(Tac{TadzTbd{Tbc) ð16Þ

Fig. 8B shows inferred tractions calculated for the ventral furrow

data taken two minutes prior to invagination. We observe a

significant variability in tractions at different interfaces. Because

traction forces stretch trans-cellular cadherin dimers, they may be

physiologically important. Since at present there is no way of

measuring them directly the possibility of indirect inference is

particularly interesting.

Discussion

We have demonstrated that the readily visualized two

dimensional network of cellular interfaces in an epithelial tissue

holds, potentially, a wealth of information on the relative strength

of mechanical stresses acting in the tissue. The main precondition

is that the tissue is close to the mechanical equilibrium in which

internal cytoskeletal forces are balanced by intercellular interac-

tions. Any imbalance of forces corresponding to directed or

fluctuating motion must be small in comparison to the magnitude

of internal forces that balance each other in mechanical

equilibrium. Force balance is achieved by the suitable adjustment

of cell geometries (parameterized by the positions of vertices).

Conversely we envision changes in tissue geometry to be driven

adiabatically - i.e. without disruption of the mechanical equilib-

rium - by changes in cytoskeletal forces within cells. This picture is

at once similar and dissimilar to the case of soap froths. The

geometry of a soap froth [36–38] is also defined by the

instantaneous force balance and changes adiabatically (when gas

diffuses out of cells with higher internal pressure). Yet epithelial

cells, in contrast to soap bubbles, can control interfacial tension by

regulating myosin activity within actomyosin cortices and there-

fore can generate variation in tension on sub-cellular scale, even

between different interfaces of the same cell.

Our Mechanical Inverse method is fundamentally different from

the Video Force Microscopy [28]. In contrast to our assumption

that cytoskeletal forces are in an approximate instantaneous

balance, VFM is based on the assumption that bulk forces acting

within the tissue are balanced by viscosity. It is therefore based on

the observed velocity of tissue motion and employs finite element

methods to define forces on a computational grid rather than the

underlying cells. The two methods are complementary in the sense

that VFM provides information about the distribution of unbal-

anced bulk force which drives motion on the scale of the embryo,

while our Mechanical Inverse is focused on the internal balance of

forces in relation to cell geometry and its local changes. Our

approach can be extended to include measured velocities which can

be used to define net forces on the vertices, as explained below Eq.

(4), leading to a modified inverse problem. This generalization

would bridge the static inference presented here with the VFM

approach. Yet, to the extent that the dynamics of normal epithelial

cell rearrangement unfolds relatively slowly (on the time scale of

minutes) compared to the rapid (time scale of seconds) viscosity

limited retraction of laser ablated interfaces, it is reasonable to

assume that the contribution of viscous forces during slow normal

developmental dynamics is small compared to the balancing

internal forces, which is the assumption underlying our Eqn. (4).

Recent experiments have demonstrated that actomyosin struc-

tures transiently assembling on the apical or basal surfaces of the

cell, play an active role in defining its mechanical state [7,26,39].

In particular, [7] and [26] argue that coalescing pulses of ‘‘medial

myosin’’ on the apical surface drive a ratchet of apical surface

contraction. Presently, our mechanical model does not explicitly

incorporate such effects, which in full generality would require

introduction of many more parameters (characterizing intracellu-

lar heterogeneity and anisotropy). On the other hand, these effects

are not observed in all epithelial tissues at all times, leaving the

present approach with many possible applications. Furthermore it

may be possible to generalize our approach to model medial

myosin as well, especially if additional information from cell

imaging is used. For example, during convergent extension

investigated in [26] one often observes intracellular medial myosin

filaments attaching to the lateral cortex and causing measurable

deformation of cell-cell boundary. It that case it may be possible to

define an additional ‘‘vertex’’ corresponding to the attachment

point, apply considerations of mechanical balance discussed above

and obtain an estimate of the force applied by the medial myosin

as compared to the cortical tension. Alternatively, when medial

actomyosin structures appear to be isotropic, their effect may be

well approximated by a uniaxial stress which is already param-

eterized already by our existing model. Studying the effect of

medial myosin would be an interesting direction for future work.

The proposed Mechanical Inverse method converts clearly

stated assumptions about the nature of cellular stresses into readily

falsifiable predictions. Using the example of avian cochlea, we

were able to demonstrate that mechanical parameters inferred via

the Mechanical Inverse satisfy non-trivial cross-checks provided by

independent additional information (interfacial curvature mea-

surements) read off the tissue images. Thus our approach is

capable, in realistic applications, of inferring mechanical param-

eters and to uncover interesting aspects of the internal state of the

cell. By combining high quality live imaging with UV pulsed laser

ablation, one will be able to put predictions for local interfacial

tensions obtained via the Mechanical Inverse, to a rigorous

experimental test. We note however, that the predictions do not

have to be very accurate to be useful. Even if inferred tensions

each carry only a single bit of information - i.e. identify interfaces

with high or low tension - correlating tension with the observed

level of myosin, cadherin and/or other proteins involved in

regulation of cell mechanics could be extremely informative (in

addition, since a large number of cells can be imaged and

analyzed, the method is effectively ‘‘high throughput’’!). Finally,

our approach allows for inference of quantities such as inter-

cellular traction forces (or shear stress), which may be important

Figure 10. Schematic decomposition of the effective interfacial
tension into cortical tensions acting within cells:
Tab~ha(x)zhb(x). Because cytoskeletal cortexes of cells are crosslinked
by cadherins via Adherence Junctions, indicated in blue, cortical stress
can be transferred from one cell to another so that ha(0)=ha(‘ab). The
corresponding traction force (or shear stress) is given by Eqn. (16).
doi:10.1371/journal.pcbi.1002512.g010
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for the stability of Adherens Junctions but cannot be directly

measured by any means presently available. Future development

of FRET based molecular sensors of stress [40] may nevertheless

make such measurements possible in the future. Hence we expect

that further development, validation, and application of the

Mechanical Inverse method will lead to new insights into the

molecular biology of epithelial cells and tissues.

Supporting Information

Figure S1 A comparison of inferred tensions between two

optimization schemes: linear least squares (i.e. the pseudo-inverse)

and linear least squares with a tension positivity constraint (i.e.

quadratic programming). Note the small tail of negative tensions

predicted (by the pseudo-inverse) when positivity is not imposed.

(TIF)

Figure S2 Cumulative Distribution Functions (CDF) of inferred

AP and DV tensions at the outset of Drosophila gastrulation, four

minutes and two minutes prior to invagination of the ventral

furrow. The broken (solid) lines indicate distributions obtained at

the earlier (later) time step. The red (blue) lines indicate tensions

oriented predominantly in the DV (AP) direction.

(TIF)

Figure S3 The ‘‘collapse’’ of two three-fold coordinated vertices

into a four-fold coordinated vertex that is shared by cells a, b, c,

and d (also known as a ‘‘rosette’’). This process can be performed

iteratively by collapsing more three-fold coordinated vertices to

obtain vertices of arbitrary order. Each ‘‘collapse’’ creates a new

vertex that is of one coordination higher than the previous, as well

as subtracting one vertex and one edge from the total count.

(TIF)

Figure S4 Tension inference of pressure-constrained simulated

tissue under artificially induced 10% error in vertex positions. The

correlation coefficient here &0:6. While individual tensions may

deviate considerably from their simulated values, the correlation

between inferred and simulated tensions is still significant.

(TIF)

Figure S5 Scatter plot of edge length against mechanically

inferred tension of two time points during Drosophila ventral furrow

formation. Panel A and B respectively show results from 4 and

2 minutes prior to invagination. Analysis indicates only a very

weak negative correlation between inferred tension and edge

length.

(TIF)

Text S1 Additional technical details on the a) vertex model; b)

computational Implementation of the Mechanical Inverse; c)

interfacial traction; d) tension anisotropy; e) counting argument

with higher order vertices.

(PDF)
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