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Abstract

Development of high throughput analytical methods has given physicians the potential access to extensive and patient-
specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach
in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a
mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of
large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different
cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues) algorithm. The INIT algorithm uses
cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of
evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a
comprehensive description (accessible online) of the metabolism of different human cell types, and will allow for tissue-level
and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis
between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific
metabolic features that constitute generic potential drug targets for cancer treatment.
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Introduction

Abnormal metabolic states are at the origin of many diseases

such as diabetes, hypertension, hearth diseases and cancer, which

can be seen in many aspects as a metabolic disease. Cancer and

coronary diseases are the two main causes of death in the

developed countries. It is expected that by 2030 close to 200

million persons (33% of the total population) will be obese in the

EU alone, and many of these will have one or more of the

following co-morbidities: diabetes, hypertension, heart disease and

increased risk of cancer, and the direct (medical treatment) and

indirect (inability to work) costs are estimated to amount to more

than J100 billion per year [1,2]. The molecular mechanisms

involved in these kinds of diseases are complex and in many cases

different underlying molecular causes lead to the same disease

phenotypes. A good understanding of human metabolism in

different human cell types, whole tissues, and the interactions

between them is therefore a necessary step towards efficient

diagnosis and treatment of these diseases. Metabolism is, however,

complex and involves a very large number of individual reactions

that are highly interconnected through the sharing of common

metabolites [3]. Understanding the function of metabolism

therefore requires analysis of the complete metabolic network,

and this is best done through the use of so-called genome-scale

metabolic models (GEMs) [4,5,6].

There are three generic genome-scale human metabolic

networks currently available, namely Recon1 [7], the Edinburgh

Human Metabolic Network (EHMN) [8] and HumanCyc [9].

These reconstructions, however, are not tissue specific, which

prevents their applicability to the study of particular human cell

types or diseases. Tissue specific transcription profiles were used to

generate tissue specific models for 10 different human tissues [10],

which are subsets of Recon1, but these networks were not

sufficiently flexible to explore the metabolic states of the tissues

under various genetic and physiological conditions [11]. The same

group later proposed a different algorithm that combines

transcriptomic and proteomic data to generate a more flexible

liver specific metabolic model [11], also using Recon1 as a

template. Besides the mentioned automatically generated models,

an extensive effort led to the publication of a manually

reconstructed and annotated liver specific metabolic model

referred as HepatoNet1 [12]. Models have also been developed

for kidney [13], brain [14], erythrocytes [15] and alveolar

macrophages [16]. Computational methods used to construct cell
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type specific metabolic models aim to integrate the evidence about

the presence or absence of metabolic enzymes in a particular cell

type, while at the same time maintaining a well-connected network

(e.g. metabolites consumed in one reaction should be able to be

produced in another reaction or to be taken up from the cell

environment). Transcriptome data are often noisy and differences

in mRNA expression are not absolute but relative to a reference

condition, and in most cases do not correlate well with enzyme

levels [17]. In the frame of the Human Protein Atlas (HPA)

[18,19,20] cell type specific high quality proteomic data are being

generated based on specific antibodies, and this represents an

essential source for protein evidence in different human cell types.

Here we present a pipeline for automatic identification of

expressed cell type specific genome-scale metabolic networks

(Figure 1). A key element of the pipeline is the INIT (Integrative

Network Inference for Tissues) algorithm (Figure 2), which relies

on the HPA as the main evidence source for assessing the presence

or absence of metabolic enzymes in each of the human cell types

that are present in the HPA. Tissue specific gene expression [21]

was used as an extra source of evidence in INIT. Metabolomic

data from the Human Metabolome Database (HMDB) [22] are

also used as constraints in such a way that if a metabolite has been

found in a particular tissue the resulting network should be able to

produce this metabolite from simple precursors. More details can

be found in the description of the method.

The output of our analysis is a cell type specific metabolic

network for each of the cell types profiled in the HPA. As we are

using HPA and gene expression data our networks do not

represent the complete metabolic network that may be expressed

in each cell type, but solely the part of the metabolic network that

is expressed and hence the part of the network that is likely to be

active. In order to provide a reliable and up to date genome-scale

model template for our tissue/cell type specific metabolic

networks, we first constructed the Human Metabolic Reaction

(HMR) database containing the elements of previously published

generic genome-scale human metabolic models [7,8,9] as well as

the KEGG [23] database. This HMR database, which is

publically available at www.metabolicatlas.com, will be periodi-

cally updated as new reactions are added to KEGG or MetaCyc or

expression profiles for more proteins become available in HPA or

other databases.

In order to evaluate the capability of our pipeline to generate

reliable tissue specific metabolic networks, the metabolic model

generated for hepatocytes was compared to HepatoNet1 [12],

which is an extensively manually curated and annotated model of

high quality. The availability of active metabolic networks

corresponding to a broad set of healthy human cell types and

cancers allows for a comparative analysis between cancer and

healthy cell types in order to identify cancer specific metabolic

features that constitute potential drug targets.

Author Summary

Many serious diseases have a strong metabolic compo-
nent. The abnormal metabolic states of diseased cells
could therefore be targets for treatment. However,
metabolism is a highly complex and interconnected
system in which thousands of metabolic reactions occur
simultaneously in any given cell type. In order to
understand how metabolism of a diseased cell differs
from its healthy counterpart we must therefore study the
system as a whole. We have developed an algorithm that
integrates several types of data in order to generate active
metabolic networks; catalogues of the metabolic reactions
that are likely to be active in a given cell type. We applied
this algorithm to data for 69 healthy cell types and 16
cancer cell types. These metabolic networks can form the
basis for simulation of metabolic interactions between
organs or as scaffolds for interpretation of high-through-
put data. We used these networks to perform an analysis
between cancer and healthy cell types in order to identify
cancer specific metabolic features that constitute potential
drug targets. Several of the resulting targets were already
known and used clinically, but we also found high-ranking
reactions and metabolites which have not yet been
investigated as drug targets.

Figure 1. General pipeline used in the reconstruction of cell specific genome-scale metabolic networks. Biological information at the
genome, transcriptome, proteome and metabolome levels contained in publicly available databases and generic human GEMs (Recon1, EHMN,
HumanCyc) is integrated to form a generic human metabolic network, which is processed in order to obtain the connected iHuman1512 network.
Subsequently, the cell type specific evidence is used to generate cell type specific subnetworks using the INIT algorithm.
doi:10.1371/journal.pcbi.1002518.g001

Reconstruction of Metabolic Networks Using INIT
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Results/Discussion

Database construction
The existing methods for the inference of tissue specific active

metabolic networks have only used Recon1 as a scaffold. In order

to integrate other sources of information we constructed the

Human Metabolic Reaction database (HMR), containing the two

existing genome-scale metabolic models, Recon1 and EHMN, as

well as incorporating information from HumanCyc and KEGG.

The HMR database has a hierarchical structure in which the

genes are at the top and are linked to information about their

tissue specific expression profiles reported by Su et al [21] via

BioGPS [24]. Each gene is linked to its different splicing variants

and those to their corresponding proteins. Each protein is linked to

its tissue specific abundances in the HPA database [18] and to the

reactions they catalyze. The reactions are linked to metabolites

that themselves are linked to their tissue specific information

collected from the HMDB [22]. The HMR database will be

regularly updated with new reactions contained in future genome-

scale human metabolic reconstructions, as well as with new

evidence included in future versions of the HPA, HMDB and

newly published specific transcriptome data. Details regarding the

construction and curation of the HMR database are available in

the Methods section. The INIT algorithm requires a connected

template human metabolic model as input, and this template

model was generated from HMR. The template model contains

4,137 metabolites (3,397 unique) and 5,535 reactions (4,144

unique), which are associated to 1,512 metabolic genes. This

template model is referred to as iHuman1512.

Generation of 69 tissue specific and 16 cancer type
specific genome-scale active metabolic networks

Using the INIT algorithm (see supplementary material for a

detailed description), genome-scale active networks for 69 different

cell types and 16 cancers were automatically generated. The

resulting active metabolic networks are provided in SBML [25]

format and are available at www.metabolicatlas.com.

The tissue specific models generated were compared with the

BRENDA [26] collection of detected enzymes in various tissues. A

hypergeometric test was carried out using the R statistical

software. The reported p-values are the probabilities of obtaining

an overlap higher than the observed with a random set of

metabolic genes of the same size as the corresponding BRENDA

entry. As it is shown in Table S1, all the comparisons between the

models generated by our algorithm and BRENDA showed

overlaps with p-values lower than 5e-4. Our computational liver

model (iHepatocyte1154) shows a p-value of 1e-200, which is similar

to the value obtained by comparing the manually reconstructed

HepatoNet1 to BRENDA. 55% of the genes in iHepatocyte1154 are

also in BRENDA, while only 43% of the genes in HepatoNet1 are

in BRENDA. The comparatively high p-values are for tissues for

which there are very few annotated enzymes in BRENDA.

In order to validate the output of our algorithm, our

automatically generated hepatocyte model was compared with

HepatoNet1 [12], a manually curated and functional model of

hepatocyte metabolism. The comparison was carried out at the

gene level to avoid ambiguous decisions about reaction similarity.

The overlap between the lists of genes included in each of the

Figure 2. Illustration of the principles of the INIT algorithm. The hierarchical structure of GEMs is characterized by its gene-transcript-protein-
reaction (GTPR) associations. In GEMs, each metabolic reaction is associated to one or more enzymes, which in turn are associated to transcripts and
genes. Depending on the evidence for presence/absence of a given enzyme/gene in a cell type, a score can be calculated for the reaction(s) catalyzed
by that enzyme. The HPA evidence scores are illustrated as red, light, medium and dark green representing negative, weak, moderate and strong
evidence, respectively. The transcriptome evidence scores (GeneX), which are illustrated as red, light, medium, and dark blue representing low,
medium and high expression, respectively. No evidence is present as white object. For some metabolites (yellow filled circle), metabolomic data are
available to prove that they are present in the considered cell type. The aim of the algorithm is to find a sub-network in which the involved genes/
proteins have strong evidence supporting their presence in the cell type under consideration. This is done by maximizing the sum of evidence scores.
All the included reactions should be able to carry a flux and all the metabolites observed experimentally should be synthesized from precursors that
the cell is known to take up. The bold lines represent the resulting network after optimization.
doi:10.1371/journal.pcbi.1002518.g002

Reconstruction of Metabolic Networks Using INIT
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models is showed in Figure 3. Our hepatocyte model (iHepato-

cyte1154) contains 1,154 genes, of which 452 are also included in

HepatoNet1 and 702 are absent. The evidence for the expression

and translation of the 702 absent genes is as good as the evidence

for the 452 genes that are in both networks, and we are therefore

confident that the presence of most of the 702 extra genes has been

correctly inferred by our algorithm. The HepatoNet1 network

contains 261 genes not included in iHepatocyte1154, of which 156

were absent from our initial connected human network. Our

algorithm could therefore not have assigned these genes to the

hepatocyte sub-network and their existence reveals just a

limitation of the data that were used as an input and not a

limitation of our algorithm. 80 of these genes were not in HMR

(see Table S2), but closer examination revealed that the majority

(62 genes) of these genes corresponded to reactions that were

actually present in HMR, but with different or absent gene

associations. 13 out of the 18 remaining genes encode for

transporters to the sinusoidal space; a type of blood vessels in

the liver and therefore not a part of hepatocytes. The other 76

genes that were absent from iHuman1512, and their corresponding

reactions, were removed because of being unbalanced, uncon-

nected or otherwise problematic (see Table S3). 105 genes

included in HepatoNet1, and present in iHuman1512, were not

assigned by our algorithm to the hepatocyte-specific network.

These genes correspond to 237 reactions, 132 of them still exist in

iHepatocyte1154 associated to different isoenzymes. The experi-

mental evidences for the presence of these 105 genes (see Table S4)

in the hepatocytes is mostly weak or negative, even slightly worse

than the evidence for the 253 genes that were both rejected by our

algorithm and absent in HepatoNet1, and we are therefore

confident that these 105 genes were correctly rejected. This shows

the importance of using cell type specific data when reconstructing

GEMs, as enzyme isoforms can be differentially expressed in

different cell types. Based on the above we can conclude that the

Figure 3. Gene content comparison between our hepatocyte model and HepatoNet1. The Venn diagram shows the overlap in terms of
included genes between three models. The blue, green and red squares represent iHuman1512, our hepatocyte model iHepatocyte1154 and
HepatoNet1, respectively. The distribution of evidence scores of each section of the Venn diagram is plotted. The HPA evidence scores are illustrated
as red, light, medium and dark green represent negative, weak moderate and strong expression, respectively. The transcriptome evidence scores
(GeneX) are illustrated as red, light, medium and dark blue representing low, medium and high expression, respectively. No evidence (NE) is
illustrated as grey color.
doi:10.1371/journal.pcbi.1002518.g003
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mismatches between our hepatocyte-specific metabolic network

and HepatoNet1 are accompanied by experimental evidence in

favour of the choices made by our algorithm.

Finally we clustered the 69 plus 16 metabolic networks

according to their similarity in terms of shared metabolic genes

using unsupervised hierarchical clustering with average linkage

and multiscale bootstrap resampling [27] (10,000 repetitions)

implemented in the R statistical software (see Figure S1). The

clustering shows, as it could be expected, local grouping of closely

related cell types on the basis of cell anatomy (e.g. spleen in red

pulp and white pulp cluster together). Interestingly, the cancers are

separated into three different clusters, one containing liver,

colorectal, breast and endometrial cancer, another minor cluster

including cervical and head cancer and a third one containing the

remaining ten cancers. It is also of interest to note that only 189

reactions (4.1% of the total number of reactions) are unique to a

single cell or cancer type, while there is a larger core-set of 501

reactions (11.0% of total number of reactions) that are in common

to all cells. Figure S2 shows the enrichment of some important

metabolic pathways in the models.

Identification of cancer specific metabolic features
Since the Warburg effect was observed at the beginning of the

20th century, it is known that cancer cells show characteristic

metabolic features that make them different from healthy cells

[28]. This supposed metabolic similarity between cancer cells

justified the development of a generic cancer genome-scale

metabolic model which was used to identify potential drug targets

against cancer proliferation [29]. Here we have inferred active

metabolic networks for 16 different cancer types, which can be

compared with the 24 healthy cell types that they come from (there

are several healthy cell types for some of the tissues associated to

the cancers) in order to identify metabolic features that are

characteristic of cancer. A hypergeometric test was used to identify

genes and reactions that tend to be present in most of the cancer

specific active metabolic networks and absent in most of the

original healthy cell types (see Tables S5 and S6). The p-values

obtained from the hypergeometric test were used to identify

Reporter Metabolites [30] that are significantly more involved in

the metabolism of cancer cells (see Table S7). The sets of genes,

reactions and metabolites showing enrichment in the cancer active

metabolic networks with p-values lower than 1e-4 are listed in the

supplementary material. These lists of genes, reactions and

metabolites are cancer specific features that are likely to be

playing a specific role in proliferation of cancer cells and could be

potential drug targets. Our comparative analysis between two sets

of active metabolic networks can be seen as a high throughput

hypothesis generation method. These hypotheses are not based on

mere correlations between cancer and the presence of a particular

protein, but being based on the underlying metabolic network

structure, and hereby our analysis provides a mechanistic

interpretation about the possible role of each identified feature

on the proliferation of cancer.

One of the most significant results from the Reporter

Metabolites analysis is a much more pronounced metabolism of

polyamines (PAs) such as spermidine, spermine, and putrescine in

cancer cells. PAs play a variety of roles, of which several are

related to oxidative stress prevention and suppression of necrosis

[31]. PAs have long been known to be of particular importance for

rapidly proliferating cells, and as such its transport and synthesis

have been thoroughly investigated as anti-cancer drug targets [32].

Inhibition of single enzymes in the PA synthesis pathway has

proved disappointing, due to extensive regulation of the system

and use of exogenous PAs by the cancer cells. Second generation

drugs instead work by targeting the transport system, by structural

homology to the PAs themselves, or by linking other aneoplastic

drugs to the PAs [33].

Another high-ranking target is the isoprenoid biosynthesis

pathway, in particular the intermediate geranylgeranyl diphos-

phate. This metabolite has been shown to promote oncogenic

events due to its role in prenylation of important cancer proteins

such as Ras and Rho GTPases [34]. Several drugs have therefore

been developed to target the prenylation process [35] or the

biosynthesis of geranylgeranyl diphosphate [36].

A third prominent group among the Reporter Metabolites is

prostaglandins and leukotrienes together with the intermediate

HPETE. These autocrine compounds are synthesized from

arachidonic acid and are elevated in connection with inflamma-

tion. They have been shown to aid in cancer progression by

promoting metastasis and by influencing the immune system [37].

Of particular interest is prostaglandin E2, where both the synthesis

and degradation have been investigated as promising targets for

drug development [38].

The fact that so many of the identified targets correspond to

well known and used drug targets, indicates that the method is able

to generate biologically relevant hypotheses. Of particular interest

are therefore the Reporter Metabolites that are currently not

targeted in cancer treatment. Among the top-scoring Reporter

Metabolites we identified biliverdin and bilirubin (Figure 4).

Biliverdin reductase and the reactions catalyzed by this enzyme

also appear among the genes and reaction most enriched in the

cancer networks. Biliverdin reductase is known to be a major

physiologic cytoprotectant against oxidative stress [39]. Cancer

cells are known to be exposed to high oxidative stress resulting

from the hydrogen peroxide generated during the oxidation of

polyamines and other products of amino acid breakdown taking

place in the peroxisome. Bilirubin is oxidized to biliverdin by

hydrogen peroxide and subsequently reduced back to bilirubin by

biliverdin reductase. This mechanism has been proven to be a

major relief system for oxidative stress and could be considered a

potential target against cancer proliferation. One of the hydrogen

peroxide generating reactions taking place in the peroxisomes is

the transformation of aminoacetone, which is an intermediate in

the degradation of glycine, into methylglyoxal. Another source of

methylglyoxal in cancer cells is from gluconeogenesis [40].

Methylglyoxal is known to be a toxic compound [41] that has

been proven to induce apoptosis in some cancer cell lines [42].

Methylglyoxal also appeared among our top scoring reporter

metabolites and both the gene coding for lactoylglutathione lyase

(an enzyme that transforms methylglyoxal and glutathione into

lactoylglutathione) and its associated reactions appear among the

most enriched genes and reactions in the cancer active metabolic

networks. Lactoylglutathione is further transformed into glutathi-

one and lactic acid by the enzyme lactoylglutathione hydrolase

(which also shows a significant enrichment in cancer metabolic

networks with a p-value of 2e-3). Lactic acid is a well known

metabolite produced by cancer cells. The mentioned two enzymes

seem to be playing a relevant role in relieving the toxicity

generated by methylglyoxal and could be potential drug targets

against cancer proliferation. Targeting these enzymes would have

the same effect on cancer cells as using methylglyoxal as a drug,

but the advantage is that there would be no toxicity effects of

methylglyoxal on healthy tissues.

Conclusions and perspectives
We here present a method that is able to integrate different

sources of biological evidence to generate high quality cell type

specific metabolic networks. We used this method to generate

Reconstruction of Metabolic Networks Using INIT
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genome-scale metabolic networks for 69 different human cell types

and 16 cancer types, and this is the first step towards the

establishment of a Human Metabolic Atlas, which may become a

central portal for further advancing human metabolic models with

the capability of performing tissue-level and organism-level

metabolic simulations, allowing for a better understanding of

complex diseases. The Human Metabolic Atlas and will be made

publicly accessible for the medical and scientific community and

may hereby become a valuable resource in the development of

personalized medicine based on system-level analysis. An example

of system-level analysis is the identification of cancer specific

metabolic features that we have performed by comparing the

networks generated using the INIT algorithm.

Methods

Database construction
In order to have an unambiguous characterization of metab-

olites and reactions, KEGG and InChI identifiers were used for

standardization. Metabolites lacking identifiers to external data-

bases were left out of the HMR database together with their

corresponding reactions. The metabolite identifiers were used to

infer if two reactions coming from different sources were the same.

Each reaction was assigned to one or several of the eight

compartments included in the HMR database: nucleus, cytosol,

endoplasmatic reticulum, Golgi apparatus, peroxisomes, lyso-

somes, mitochondria and extracellular. In cases where the sub-

cellular localization was absent from the template models it was

inferred from immunohistochemical staining in the HPA. For

enzymes that were not in the HPA, Swiss-Prot and GO were used

to infer localization (see Table S8 for database versions). After

removing the compounds that lack identifiers, the database

contained 9,922 reactions, 2,366 genes, and 9,581 metabolites

for the eight different compartments (3,547 unique metabolites

and 6,319 unique reactions when compartmentalization is not

considered). There are 338 of these metabolites which, even if they

have KEGG identifiers, are generic compounds such as ‘‘Lipid’’ or

‘‘2-oxoacid’’. Such compounds can lead to reactions that are

elementally unbalanced. These problematic metabolites were

removed, together with the 418 reactions in which they were

involved after a detailed manual curation process. 38 reactions

with wrong or unbalanced stoichiometries were also substituted by

balanced versions during the curation process. In order to avoid

problems associated with proton balancing, which arise from

undefined protonation states of many metabolites, free exchange

of protons was allowed in the models. Finally, all reactions unable

to carry flux under any circumstance were removed. The reason

for removing these unconnected reactions was that the algorithm

requires a connected model as input. After this filtering, our

template model contains 4,137 metabolites (3,397 unique) and

5,535 reactions (4,144 unique), which are associated to 1,512

metabolic genes (based on the Ensemble gene catalogue). This

template model is referred to as iHuman1512. The numbers of

genes maintained in each of the above mentioned steps are listed

in Table S9. The discrepancy between the large number of

reactions and the relatively small number of genes, which is also

seen in previously published metabolic networks, is due to the fact

that many reactions are included in the template networks based

on literature studies or for connectivity reasons. In addition, some

enzymes catalyze a large number of reactions and some enzymes

catalyze reactions in several compartments. A comparison

between iHuman1512 and some published human metabolic

networks is available in Table S10.

Algorithm for the generation of tissue-specific models
Several algorithms aiming to obtain a tissue or condition-

specific active set of metabolic reactions from a generic model

have been previously developed. The first of these algorithms was

the Gene Inactivity Moderated by Metabolism and Expression

(GIMME) algorithm [43], which uses mRNA expression data as

Figure 4. Example of a metabolic sub-network that was identified as being significantly more present in cancer tissues compared to
their corresponding healthy tissues. Aminoacetone, which is a toxic by-product of amino acid catabolism, is converted to toxic methylglyoxal in
a reaction that also result in hydrogen peroxide. The toxicity of methylglyoxal is relieved by two reaction steps involving ligation to glutathione and
resulting in lactic acid. The generated hydrogen peroxide is taken care of by the enzyme biliverdin reductase. This is an example of how network-
based analysis can lead to a more mechanistic interpretation of data.
doi:10.1371/journal.pcbi.1002518.g004

Reconstruction of Metabolic Networks Using INIT
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input. Two other algorithms were developed with the specific aim

of generating human tissue specific metabolic networks. The first

of those [10],_ENREF_10 developed by Shlomi and co-workers,

used transcriptomic data as its sole input. The second one [11] was

developed by the same authors in order to obtain a functional

model for human hepatocytes and is able to integrate also

metabolomic and proteomic data.

The INIT (Integrative Network Inference for Tissues) algorithm

is formulated as a mixed integer-linear problem (MILP) and is

specially tailored to use the evidence from the HPA as input. The

problem is formulated so that all reactions in the resulting model

are able to carry flux. The stoichiometric matrix S contains the

stoichiometric coefficients for each internal metabolite in each

reaction. By multiplying the stoichiometric matrix by the vector of

reaction rates we obtain a vector of net accumulation or

consumption rates for each internal metabolite. Instead of

imposing the steady state condition for all the internal metabolites,

as it is usually done, we allow for a small positive net accumulation

rate. The net productions of metabolites will be given positive

weights in the optimization. The reason for this choice is that we

prefer to have a network able to synthesize molecules such as

NADH or NADPH, rather than only being able to use them as

cofactors. If a metabolite is present in a cell type (according to the

HMDB) a positive net production of this metabolite will be

imposed to the network in order to assure that all the reactions

necessary for its synthesis are included in the tissue specific model.

Up to this date there is not a human biomass equation available

in the literature (for example Recon1 incorporates a mouse

biomass equation). On the other hand, human cells (with the

exception of cancer cells), in contrast to microorganisms, do not

tend to proliferate or do so slowly in comparison with the rest of

their metabolic functions. This makes the biomass equation less

relevant, unless the aim is to model cancer proliferation. Also

human cells secrete into the blood a much broader spectrum of

compounds than microbial cells secrete into their environment

(which are mainly fermentation products). We therefore chose to

generate networks allowing for secretion (or accumulation) of all

their metabolites. If we had used the stricter steady state

constraint, many reactions would have been removed from the

models just because they were leading to dead end metabolites.

These end metabolites could in fact be added to biomass or just be

secreted into the blood stream, therefore we have aimed for a

more flexible approach by allowing secretion (or net accumulation)

of metabolites.

The MILP used in INIT can be specified as:

max
X
i[R

wiyiz
X
j[M

xj

 !

S~vv~~bb

vij jƒ1000yi

vij jz1000 1{yið Þ§e

vi§0,i[irreversible rxns

bjƒ1000xi

bjz1000 1{xið Þ§e

bj§0

xj~1, j[present

yi,xj[ 0,1f g

ð1Þ

The parameter e is an arbitrarily small positive number. The

weights of the binary variables corresponding to the reactions

account for the evidence of their presence or absence. When the

corresponding enzyme has been characterized in the HPA we

have used values of wi of 20, 15, 10 and 28 for high, medium, low

and absent proteins respectively. These scores are arbitrary and

have been chosen to quantify the evidence colour codes that

appear in the HPA. We have tested the sensitivity of the algorithm

to the variation in these weights by perturbing them by 20% up

and down and the impact on the output of the algorithm resulted

only in small changes of the resulting networks. If the evidence

comes from gene expression levels which were retrieved from

BioGPS [24] and the publicly dataset ‘‘Human Body Index –

Transcriptional Profiling’’ (GSE7307), we have used weights

calculated as follows:

wi,j~5 log
Signali,j

Averagei

� �
ð2Þ

The signal of gene i in tissue j is divided by the average signal

across all the tissues. If the signal in a particular tissue is higher

than its average across all the tissues the weight will be positive, if it

is lower it will have a negative weight.

For the reactions that are related to several genes or proteins the

highest evidence score is used. If no gene is associated to a

particular reaction, or there is no proteomic or transcriptomic

evidence, a weight of 22 is used in order to avoid adding

unnecessary reactions without evidence and keep the network as

parsimonious as possible. If a reaction linked to several genes is

added to the final tissue specific network, only the genes showing a

positive evidence score are kept in the tissue specific reaction-gene

association.

The MILP problem was solved using MOSEK (www.mosek.

com) and its Matlab interface.

Supporting Information

Figure S1 Clustering of 69 predicted cell type specific
genome-scale metabolic models for normal tissues
together with 16 for cancer tissues. A dendrogram

generated by unsupervised hierarchical clustering of the models

based on predicted gene presence and absence is shown.

(PDF)

Figure S2 The relative pathway enrichment profiles,
based on KEGG pathways, for each of the models. Blue

corresponds to underrepresentation and red to overrepresentation.

Note that it is the number of enzymes present for each pathway

that underlie the comparison, not the abundances of the proteins.

(PDF)

Table S1 Evaluation of the models by comparison to
curated tissue-specific enzymes. For each model, the set of

genes is compared to the set of genes annotated as existing in the

corresponding tissue in BRENDA. The p-values are derived from

hypergeometric distribution.

(PDF)

Table S2 Investigation of the 80 genes that were present
in HepatoNet1 but missing in HMR. The 80 missing genes

were associated with 746 reactions in HepatoNet1, of which 597

metabolic and transport reactions were related to the sinusoidal

space compartment. 117 metabolic reactions existed in HMR with

different gene or no gene association and 32 (5 unique) reactions

were altogether absent in HMR. KEGG reaction identifiers or
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Transporter Classification database identifiers (TCDB) are

provided for the missing reactions.

(PDF)

Table S3 Investigation of the 76 genes that were
removed during the pre-processing steps. 76 genes which

were present in both HepatoNet1 and the HMR database were

removed in order to get a fully connected input network for the

INIT algorithm. This table summarizes which genes were

removed during each of the pre-processing steps (see Table S2

for details).

(PDF)

Table S4 Investigation of the 105 genes which are
present in HepatoNet1 but missing in iHepatocyte1154
due to the INIT algorithm. The 105 missing genes were

associated with 182 reactions in HepatoNet1, of which 5 metabolic

reactions are related to the sinusoidal space compartment. 108

metabolic reactions existed in iHepatocyte1154 with different gene

or no gene association and 69 (60 unique) reactions are absent in

iHepatocyte1154 due to INIT algorithm. KEGG reaction identifiers

are provided for the missing associated reactions to the genes.

(PDF)

Table S5 List of reactions that were significantly more
present in cancer tissues compared to their correspond-
ing normal tissues (p-value,10e-4).
(PDF)

Table S6 List of genes for which their corresponding
reactions were significantly more present in cancer
tissues compared to their corresponding normal tissues
(p-value,10e-4).
(PDF)

Table S7 List of Reporter Metabolites (p-value,10e-4).
(PDF)

Table S8 Versions of the databases used in the creation
of the Human Metabolic Reaction database (HMR).
(PDF)

Table S9 Number of the genes after each pre-process-
ing step during the generation of iHuman1512. Since the

INIT algorithm provides a connected and functional model,

reactions that are unconnected in the template model can never be

included. In order to separate between reactions that were

excluded due to connectivity reasons and those that were excluded

due to negative evidence, a number of preprocessing steps were

performed on the data in the HMR database. In the first step

reactions that contain very generic metabolites such as ‘‘lipid’’ or

‘‘alcohol’’ were removed. Reactions that were elementally

unbalanced were fixed or removed. Simulations were performed

to ensure that the network could not gain carbon, energy or redox

power in an unbalanced manner. In the second step reactions

where directionality information was lacking were removed. In the

third step reactions where one or more of the substrates could not

be synthesized through some other reaction (unconnected

reactions) were removed. Finally, in the fourth step reactions that

couldn’t carry flux when the model had access to all exchange

metabolites (as defined in the EHMN) were removed. Conse-

quently, iHuman1512, a connected human network with 5,535

reactions, associated with 1512 protein coding genes, was

generated. The number of genes associated to the remaining

reactions after each pre-processing steps are presented below.

(PDF)

Table S10 Comparison between iHuman1512 and some
other published human metabolic networks.

(PDF)

Acknowledgments

We acknowledge valuable discussions with Prof. Bernhard Palsson and

Prof. Eytan Ruppin.

Author Contributions

Wrote the paper: RA SB IN JN. Conceived the project: JN. Supervised the

work: SB JN. Developed the INIT algorithm: RA. Performed the

comparative analysis between cancers and healthy cell types: SB.

Performed the comparison of generated models with previously published

models: AM. Developed the HMR database and generated the website for

the Human Metabolic Atlas: NP. Performed analysis of the generated cell

type models: IN. Edited the paper: RA SB AM NP IN JN.

References

1. Caveney E, Caveney BJ, Somaratne R, Turner JR, Gourgiotis L (2011)

Pharmaceutical interventions for obesity: a public health perspective. Diabetes

Obes Metab 13: 490–497.

2. Rokholm B, Baker JL, Sorensen TI (2010) The levelling off of the obesity epidemic

since the year 1999–a review of evidence and perspectives. Obes Rev 11: 835–846.

3. Nielsen J (2009) Systems biology of lipid metabolism: from yeast to human.

FEBS Lett 583: 3905–3913.

4. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-

scale metabolic reconstruction. Nat Protoc 5: 93–121.

5. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale

metabolic reconstructions using Escherichia coli. Nat Biotechnol 26: 659–667.

6. Osterlund T, Nookaew I, Nielsen J (2011) Fifteen years of large scale metabolic

modeling of yeast: Developments and impacts. Biotechnol Adv E-pub ahead of

print.

7. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007) Global

reconstruction of the human metabolic network based on genomic and bibliomic

data. Proc Natl Acad Sci U S A 104: 1777–1782.

8. Hao T, Ma HW, Zhao XM, Goryanin I (2010) Compartmentalization of the

Edinburgh Human Metabolic Network. BMC Bioinformatics 11: 393.

9. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, et al. (2005)

Computational prediction of human metabolic pathways from the complete

human genome. Genome Biol 6: R2.

10. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-

based prediction of human tissue-specific metabolism. Nat Biotechnol 26:

1003–1010.

11. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific

metabolic models: application to human liver metabolism. Mol Syst Biol 6: 401.

12. Gille C, Bolling C, Hoppe A, Bulik S, Hoffmann S, et al. (2010) HepatoNet1: a

comprehensive metabolic reconstruction of the human hepatocyte for the

analysis of liver physiology. Mol Syst Biol 6: 411.

13. Chang RL, Xie L, Bourne PE, Palsson BO (2010) Drug off-target effects

predicted using structural analysis in the context of a metabolic network model.

PLoS Comput Biol 6: e1000938.

14. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, et al.

(2010) Large-scale in silico modeling of metabolic interactions between cell types

in the human brain. Nat Biotechnol 28: 1279–1285.

15. Bordbar A, Jamshidi N, Palsson BO (2011) iAB-RBC-283: A proteomically

derived knowledge-base of erythrocyte metabolism that can be used to simulate

its physiological and patho-physiological states. BMC Syst Biol 5: 110.

16. Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N (2010) Insight

into human alveolar macrophage and M. tuberculosis interactions via metabolic

reconstructions. Mol Syst Biol 6: 422.

17. Olivares-Hernandez R, Bordel S, Nielsen J (2011) Codon usage variability

determines the correlation between proteome and transcriptome fold changes.

BMC Syst Biol 5: 33.

18. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, et al. (2008) A

genecentric Human Protein Atlas for expression profiles based on antibodies.

Mol Cell Proteomics 7: 2019–2027.

19. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. (2010)

Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:

1248–1250.

20. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, et al. (2005) A human

protein atlas for normal and cancer tissues based on antibody proteomics. Mol

Cell Proteomics 4: 1920–1932.

Reconstruction of Metabolic Networks Using INIT

PLoS Computational Biology | www.ploscompbiol.org 8 May 2012 | Volume 8 | Issue 5 | e1002518



21. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad
Sci U S A 101: 6062–6067.

22. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. (2007) HMDB: the

Human Metabolome Database. Nucleic Acids Res 35: D521–526.
23. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. (2008) KEGG for

linking genomes to life and the environment. Nucleic Acids Res 36:
D480–D484.

24. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, et al. (2009) BioGPS: an

extensible and customizable portal for querying and organizing gene annotation
resources. Genome Biol 10: R130.

25. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems
biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524–531.
26. Gremse M, Chang A, Schomburg I, Grote A, Scheer M, et al. (2010) The

BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all

organisms for enzyme sources. Nucleic Acids Res 39: D507–13.
27. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the

uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542.
28. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to

current concepts of cancer metabolism. Nat Rev Cancer 11: 325–337.

29. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011) Predicting
selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:

501.
30. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism

by using metabolic network topology. Proc Natl Acad Sci U S A 102:
2685–2689.

31. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, et al. (2009)

Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:
1305–1314.

32. Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy.

Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr Drug Targets
4: 537–564.

33. Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy.

Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr
Drug Targets 4: 565–585.

34. Sebti SM, Hamilton AD (2000) Farnesyltransferase and geranylgeranyltransfer-
ase I inhibitors and cancer therapy: lessons from mechanism and bench-to-

bedside translational studies. Oncogene 19: 6584–6593.

35. Philips MR, Cox AD (2007) Geranylgeranyltransferase I as a target for anti-
cancer drugs. J Clin Invest 117: 1223–1225.

36. Dudakovic A, Tong H, Hohl RJ (2011) Geranylgeranyl diphosphate depletion
inhibits breast cancer cell migration. Invest New Drugs 29: 912–920.

37. Schneider C, Pozzi A (2011) Cyclooxygenases and lipoxygenases in cancer.
Cancer Metastasis Rev 30: 277–294.

38. Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, et al. (2009)

Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-
infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer.

J Immunol 182: 7548–7557.
39. Baranano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reductase: a

major physiologic cytoprotectant. Proc Natl Acad Sci U S A 99: 16093–16098.

40. Titov VN, Dmitriev LF, Krylin VA (2010) [Methylglyoxal–test for biological
dysfunctions of homeostasis and endoecology, low cytosolic glucose level, and

gluconeogenesis from fatty acids]. Ter Arkh 82: 71–77.
41. Kalapos MP (1994) Methylglyoxal toxicity in mammals. Toxicol Lett 73: 3–24.

42. Kang Y, Edwards LG, Thornalley PJ (1996) Effect of methylglyoxal on human
leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction

of apoptosis. Leuk Res 20: 397–405.

43. Becker SA, Palsson BO (2008) Context-specific metabolic networks are
consistent with experiments. PLoS Comput Biol 4: e1000082.

Reconstruction of Metabolic Networks Using INIT

PLoS Computational Biology | www.ploscompbiol.org 9 May 2012 | Volume 8 | Issue 5 | e1002518


