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Abstract

The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through
complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are
classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of
bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented
inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically
involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying
molecular mechanisms are not well understood. By means of a computational search through the parameter space of a
coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network
topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy,
suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain
existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify
mechanisms of endotoxin priming and tolerance.
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Introduction

Innate immune cells such as macrophages and dendritic cells

constitute the first layer of host defense. Like policemen constantly

patrolling the streets for criminal activity, these cells are

responsible for initiating the first attack against invading pathogens

[1,2]. For example, using Toll-like receptor 4 (TLR4), macro-

phages recognize lipopolysaccharide (LPS, also called endotoxin),

a pathogen-associated molecular pattern (PAMP) that is expressed

on the outer membrane of gram-negative bacteria. Within hours

of stimulation, hundreds of regulatory genes, kinases, cytokines,

and chemokines are activated in sequential waves, leading to a

profound inflammatory and anti-microbial response in macro-

phages [3]. Although effective levels of inflammation require

potent cytokine production, excessive or prolonged expression can

be detrimental, resulting in various immune diseases, such as

autoimmunity, atherosclerosis, sepsis shock and cancers [3,4].

Owing to this double-edged nature of innate immunity, living

organisms have evolved a highly complex signaling network to

fine-tune the expression of cytokines [5]. A fundamental question

in this field is what kinds of network topologies and dynamics in

the signaling network ensure the appropriate expression of

cytokines. This question is part of a larger current theme in

systems biology of the design principles of biological networks. Are

there small network motifs that serve as building blocks to perform

complex ‘‘information processing’’ functions in biological signaling

networks [6–12]? In this context, a systems and computational

biology approach may greatly deepen our understanding in innate

immunity [13–17].

Here we focus on the signaling motifs responsible for endotoxin

priming and tolerance of macrophages. The interaction between

host macrophages and bacterial endotoxin is arguably one of the

most ancient and highly conserved phenomena in multi-cellular

eukaryotic organisms [5]. Through TLR4, LPS activates MyD88-

dependent and MyD88-independent pathways, which eventually

lead to the regulation of a number of downstream genes and

pathways, including the mitogen-activated protein kinase (MAPK),

phosphoinositide 3-kinase (PI3K), and nuclear factor kB (NFkB).

The integration of these intracellular pathways leads to measured

induction of pro-inflammatory mediators. Intriguingly, the induc-

tion of inflammatory mediators is also finely controlled by the

quantities and prior history of LPS challenges. The latter is

physiologically relevant since cells are likely repetitively exposed to

stimulants in their natural environment. For example, numerous in

vitro studies have found that significant induction of cytokine TNF-

a and IL-6 requires at least 10 ng/mL LPS in mouse peritoneal

macrophages [18,19] and macrophage cell lines [20], and a high

dose of LPS (100 ng/mL) is sufficient to trigger a catastrophic

‘‘cytokine storm’’. Strikingly, however, the dose-response relation-

ship can be reprogrammed by two successive treatments with LPS,
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to give either a reduced or an augmented expression of cytokines

(Figure 1A). In vitro, preconditioning macrophages with a high dose

(HD) of LPS (10–100 ng/mL) renders the cells much less

responsive to a subsequent HD stimulation in terms of pro-

inflammatory cytokine expression. This phenomenon, known as

‘‘endotoxin tolerance’’ or ‘‘LPS tolerance’’ [21], is reported to last

up to 3 weeks in vivo [22]. On the other hand, macrophages primed

by a low dose (LD) of LPS (0.05–1 ng/mL) show an augmented

production of cytokine in response to a subsequent HD challenge,

a phenomenon known as ‘‘LPS priming’’ [18,19,23–25]. Both

priming and tolerance are present in other cells of the innate

immune system including monocytes and fibroblasts, and are

highly conserved from mice to humans. Our own studies on

murine macrophages show both effects (Figure 1B).

Endotoxin priming and tolerance may confer significant

survival advantages to higher eukaryotes. Priming of innate

immune cells may enable robust and expedient defense against

invading pathogens, a mechanism crudely analogous to vaccina-

tion of the adaptive immune system. On the other hand, tolerance

may promote proper homeostasis following robust innate immune

responses. However, despite these survival advantages, endotoxin

priming and tolerance are also closely associated with the

pathogenesis of both chronic and acute human diseases. For

example, despite the potential ability to limit pro-inflammatory

cytokine production, endotoxin tolerance is responsible for the

induction of immunosuppression in patients with sepsis shock, and

this suppression leads to increased incidence to secondary

infections and mortality [22]. Endotoxin priming, on the other

hand, reprograms macrophages to super-induction of proinflam-

matory cytokines. Increasing evidence relates this phenomenon

to low-grade metabolic endotoxemia, where an elevated but

physiological level of LPS in the host’s bloodstream results in a

higher incidence of insulin resistance, diabetes and atherosclerosis

[26–29]. Augmented IL-6 expression has also been observed in

human blood cells that were primed by LD and challenged by HD

LPS [30].

Despite the significance and intense research efforts, molecular

mechanisms responsible for endotoxin priming and tolerance are not

well understood, apparently due to the complex nature of intracellular

signaling networks. Tolerance has been attributed to the negative

regulators at multiple levels of the TLR4 signaling pathway. These

include signaling molecules (e.g. SHIP, ST2, induction of IRAK-M

and suppression of IRAK-1), transcriptional modulators (e.g. ATF3,

p50/p50 homodimers), soluble factors (e.g. IL-10 and TGFb), and

gene-specific chromatin modifications [21,31–38]. These negative

regulators are likely to work together to drive macrophages into a

transient refractory state for cytokine expression after LPS pretreat-

ment [33]. Molecular mechanisms for priming are rarely studied and

even less well understood than tolerance. Early studies suggest that

like endotoxin tolerance, both intra- and inter-cellular events may be

involved in LPS priming [24]. Morrison and coworkers first revealed

that LPS priming of cytokine TNF-a production is induced, at least in

part, by a reprogrammed counterbalance between endogenous IL-10

and IL-12 in an autocrine fashion [19]. However, it is still elusive

exactly how the change in two counteracting soluble secretory

products can contribute to the priming effect, and whether LPS

priming is exclusively an intercellular event or it takes place at both

intra- and inter-cellular levels.

These published observations and our own new experimental

results have inspired us to look for all possible mechanisms for LPS

priming and tolerance. To do this, we computationally searched

the high-dimensional parameter space associated with a generic

mathematical model of a three-node regulatory network. The

search reveals only three mechanisms accounting for priming

(pathway synergy, suppressor deactivation, activator induction)

and one for tolerance (inhibitor persistence). Existing experimental

results support these mechanisms.

In summary, our approach provides a systematic, quantitative

framework for understanding numerous experimental observa-

tions, and it suggests new experimental procedures to identify the

players and investigate the dynamics of priming and tolerance.

Our analysis suggests that endotoxin tolerance and priming are

rooted in the basic structure of the immune regulatory network: a

signal often triggers synergizing pathways to ensure that sufficient

responses can be elicited efficiently, as well as opposing pathways

to ensure that the responses can be resolved eventually [2].

Therefore, in addition to shedding light on LPS-induced tolerance

and priming, our approach is applicable in the more general

context of cross-priming and cross-talk in the signal transduction

mechanisms of the innate immune system [39–41].

Results

Inducing priming and tolerance in a well-controlled
experimental setting

Although separate experimental studies of priming and tolerance

have been carried out in many laboratories, no systematic study of

both effects has been performed in the same setting. Thus, we first

set out to measure priming and tolerance in the same experimental

system. We used murine bone marrow derived macrophages

(BMDM), which are widely used for measuring LPS responses.

BMDM were treated with various combinations of LD (50 pg/mL)

and HD (100 ng/mL) LPS for times indicated in Figure 1B. Cells

were washed with PBS and fresh medium between consecutive

treatments. Figure 1B shows that 50 pg/mL LPS induced negligible

IL-6, while 100 ng/mL LPS induced robust expression of IL-6 in

BMDM (,3300 fold). Consistent with previous findings, cells pre-

treated for 4 h with 50 pg/mL LPS exhibited ,4500 fold induction

of IL-6 when challenged with 100 ng/mL LPS, a ,36%

augmentation as compared to cells treated with 100 ng/mL LPS

Author Summary

Inflammation is a fundamental response of animals to
pathogen invasion. Among the first responders are
macrophage cells, which identify and respond to multiple
challenges. Their responses must be carefully regulated to
kill invading pathogens without causing too much
damage to host cells. Excessive activity of macrophages
is associated with serious diseases like sclerosis and cancer.
Macrophage responses are governed by a complex
signaling network that receives cues, integrates informa-
tion, implements appropriate responses and communi-
cates with neighboring cells. This network must maintain a
short-term memory of pathogen exposure. Endotoxin
priming is an example. If macrophages are exposed to a
small dose of bacterial toxins, they are primed to respond
strongly to a second exposure to a large dose of toxin.
Endotoxin tolerance, on the other hand, refers to the fact
that macrophages are resistant to endotoxin challenges
after a large dose pretreatment. The precise molecular
mechanisms of both priming and tolerance are still poorly
understood. Through computational systems biology, we
have identified basic regulatory motifs for priming and for
tolerance. Using information from databases and the
literature, we have identified molecules that may contrib-
ute to priming and tolerance effects. Our methods are
generally applicable to other types of cellular responses.

Networks for Endotoxin Tolerance and Priming
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alone (p,0.05). In contrast, cells pretreated for 4 h with 100 ng/

mL LPS exhibited only ,700 fold induction of IL-6 when re-

challenged with 100 ng/mL LPS, a ,80% reduction as compared

to cells treated with 100 ng/mL LPS alone (p,0.05).

Identifying motifs that generate priming effect
Figure 1C shows that LPS binding to TLR4 triggers two groups

of parallel pathways: MyD88-dependent and (several) MyD88-

independent pathways. Together, these pathways control the

expression of different but overlapping inflammatory mediators in

a delicate time-dependent and dose-dependent manner. Based on

these parallel pathways, we proposed a three-node model in

Figure 1C as a minimal abstraction of the system. Each node can

positively or negatively regulate the activity of itself and the other

two nodes. The interactions are governed, we assume, by a

standardized set of nonlinear ordinary differential equations

ii.

0

*

*

Figure 1. Formulation of the problem. (A) Schematic illustration of in vitro experimental studies of LPS-induced tolerance and priming effect in
macrophages. (B) IL-6 mRNA levels of murine bone marrow derived macrophages treated with various combinations of LPS. * p,0.05. (C) Abstraction
of the parallel LPS associated pathways into a three-node network motif and the corresponding mathematical model based on ordinary differential
equations. Refer to Materials and Methods for details.
doi:10.1371/journal.pcbi.1002526.g001

Networks for Endotoxin Tolerance and Priming
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(Figure 1C) for xj = activity of the jth node (0#xj#1, j = 1,2,3). For a

complete description of the mathematical model, see the section

on Materials and Methods. The ‘‘network topology’’ of the model

is determined by the sign pattern of the nine interaction

coefficients (21#vji#1, j,i = 1,2,3) which express the magnitude

and direction of the effect of node i on node j. This is a coarse-

grained model, with no distinction between intra- and inter-

cellular events. For example, in a real cell the self-regulation of a

node may correspond to a feedback loop involving many

intermediates, including extracellular cytokines. The simplicity of

the model allows full search of the 14-dimensional parameter

space (although there are 18 parameters in Table 1, four of them

are held constant, as explained in Materials and Methods). Similar

three-node models have been studied in other contexts [6,42,43].

We searched the 14-dimensional parameter space of the model for

priming and then for tolerance. The behavior of the model is defined

as ‘‘priming’’ if the maximum level of the output variable x3 under

the priming dose (step 3 in Figure 1A) is small (x3,0.3), but with the

subsequent high dose (step 4 in Figure 1A) x3 is at least 50% higher

than the level reached without priming (step 1 in Figure 1A).

Similarly, for ‘‘tolerance’’ the maximum level of x3 must be high

enough under the first HD exposure (x3.0.3) but less intense by at

least 50% under the second HD challenge (step 2 in Figure 1A).

Precise criteria for priming and tolerance are provided in Table S1.

Brute force search of the parameter space is impractical. Unbiased

searching results in ,1000 parameter sets exhibiting priming after

108 Monte Carlo steps. Noticing that parameter sets giving priming

or tolerance (called ‘‘good sets’’ for convenience) are clustered into a

small number of isolated regions in parameter space, we designed a

two-stage sampling procedure. First we perform a Metropolis search

slightly biased for good sets. Next, to identify any isolated regions of

parameter space where good sets are clustered, we analyzed the good

sets using K-means clustering and Principal Component Analysis

(see Text S1). The good sets then serve as seeds in the second stage of

sampling, which restricts Metropolis searching to each local region of

good sets. This two-stage procedure allows us to search the

parameter space thoroughly and to obtain good-set samples that

are large enough for statistical analysis. The overall procedure is

illustrated schematically in Figure S1 and discussed in Text S1.

Three basic mechanisms for the priming effect of LPS
By trial-and-error, we found that the two experimentally

measurable quantities, Dx1 and Dx2 (see Figure 2A), are effective

in dividing the ‘‘good’’ parameter sets into three regions (see

Figure 2B). Here Dx1 = maximum difference between x1 during the

LD priming stage and the steady state value of x1 in the absence of

any stimulus, and Dx2 = difference between the maximum values

of x2 during the HD period with and without the priming

pretreatment (Figure 2A). Further analysis (discussed below)

revealed that the three groups correspond to three distinct priming

mechanisms: ‘‘Pathway Synergy’’ (PS), ‘‘Activator Induction’’ (AI),

and ‘‘Suppressor Deactivation’’ (SD). All AI and PS parameter sets

show considerable increase in x2 (.0.1) after the priming stage,

while SD does not (Figure S2).

To characterize these priming mechanisms, we next examined

the parameter sets within each group for shared topological features.

The topology of a regulatory motif is defined as the sign pattern

(+, 2 or 0) of the nine interaction coefficients, vji, with the proviso

that vji’s in the interval [20.1, 0.1] are set = 0. We define a

backbone motif as the simplest network topology that is shared by

most of the good priming sets in each group and that is able to

generate a priming effect on its own. Therefore, a backbone motif

represents a core network structure in each group. Figure 3A shows

that each group has its unique backbone motif(s), directly revealing

Table 1. Description of modeling parameters.

Parameter Description

xj Concentration (or activity) of species j

cj Time scale of xj dynamics

vji Regulation strength of xi on xj

vj0 Activation threshold of xj

sj Nonlinearity of the regulation relation associated to species xj

Sj External signal strength acting on xj. (S3 = 0, S1 = S2)

doi:10.1371/journal.pcbi.1002526.t001

Figure 2. Three priming mechanisms revealed by time-course patterns. (A) Definition of clustering axis Dx1 and Dx2. Dx1 refers to the
maximum difference between x1 during the LD priming stage and the steady state value of x1 in the absence of any stimulus. Dx2 refers to the
difference between the maximum values of x2 during the HD period with and without priming pretreatment. (B) The time courses of the priming data
sets naturally divide into three clusters, corresponding to three priming mechanisms. The pie chart shows the relative frequencies of the priming
mechanisms among all the priming parameter sets.
doi:10.1371/journal.pcbi.1002526.g002

Networks for Endotoxin Tolerance and Priming
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different priming mechanisms in each group. Figure S3 and Text S1

provide detailed statistical methods used to identify the backbone

motifs. The two-dimensional parameter histograms in Figure S4

provide further support for the backbone motifs we have identified.

Figure 3B–D shows typical time-courses and state-space

trajectories for the three priming mechanisms (see Table S2 for

the parameter values used to generate this figure).

Pathway Synergy (PS): As shown in the upper left panel of

Figure 3A, the backbone motif of PS mechanism contains both

pathways through x1 and x2 activating x3. Under a single HD, the

faster pathway through x1 prevents activation of x2, either directly

or through x3. Consequently there is no synergy between the two

pathways after a single HD. With LD pretreatment, however, x2 is

partially activated. During the following HD treatment, this partial

5

1

Figure 3. Details of the three priming mechanisms. (A) Backbone motifs (topological features shared by most of the good parameter sets) of
each priming mechanism (see Figure S3 and Text S1 for details). The width of a line is proportional to the mean value of the corresponding vji among
data sets under each priming mechanism. The ‘‘slow’’ and ‘‘fast’’ time scales reflect the values of cj in comparison to c3 = 1. (B–D) Typical time courses
and corresponding phase space trajectories with or without LD pretreatment. Bistable results for AI and SD are shown in Figure S5.
doi:10.1371/journal.pcbi.1002526.g003

Networks for Endotoxin Tolerance and Priming
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activation allows x2 to increase significantly, either transiently

(Figure 3B left panel, called ‘‘monostable’’) or persistently

(Figure 3B right panel, called ‘‘bistable’’), despite inhibition from

x1 and/or x3. Simultaneous activation of both pathways leads to

synergy between them and a priming effect for x3.

Activator Induction (AI): In the backbone motif (see upper

right panel of Figure 3A), the pathway through x1 (with high

activation threshold) inhibits x3, whereas the pathway through x2

(with a low activation threshold) activates x3. Consequently, under

a single HD, the two pathways work against each other to prevent

full activation of x3. A LD pretreatment partially activates x2

without significantly affecting x1. Then, during the following HD

treatment, x2 gets a head start on x1 to induce greater activation of

x3 than observed under a single HD. The activation of x3 can be

either transient (monostable) or persistent (bistable), as illustrated

in Figure 3C and Figure S5A.

Suppressor Deactivation (SD): In this case there are two

backbone motifs slightly different from each other (the lower panel

of Figure 3A). Both motifs contain an inhibition pathway (x1 _| x3)

with slow dynamics and low sensitivity to LPS, and an activation

pathway (x2Rx3) with fast dynamics and high sensitivity to LPS.

The basal level of the suppressor x1 is relatively high, which is

typical of some suppressors (e.g. TOLLIP, TRAILR, PI3K and

nuclear receptors) that are constitutively expressed in macrophages

to prevent unwanted expression of downstream pro-inflammatory

genes under non-stimulated conditions [44,45]. Compared to AI,

in this case the LD pretreatment decreases the level of suppressor

x1, through direct inhibition of x1 by x2. The basic SD effect is

amplified either by x2 self-activation (backbone motif I) or by

negative feedback from x3 to x1 (backbone motif II). As before, the

activation of x3 can be either transient (monostable) or persistent

(bistable), as illustrated in Figure 3B and Figure S5B.

Combined backbone motifs may enhance the robustness
of the priming effect

Each of these groups contains many different network topologies

(187 in PS, 139 in SD, and 82 in AI). Taking SD as an example,

Figure 4A shows the sorted density distribution of the 139 unique

topologies represented by the SD parameter sets. The top 7 of these

topologies (Figure 4B) comprise 31% of all the SD parameter sets.

Consistent with other studies [6,43], the most highly represented

topologies contain more links than the corresponding backbone

motif, indicating that additional links may increase the robustness of

a network. While the two backbone motifs rank Top 27 and Top 10

respectively (Figure 4B), their combination ranks Top 4. The Venn

diagram in Figure 4C shows that of the 93% of SD parameter sets

that contain at least one of the two backbone motifs, 64% contain

both. Notice that the two backbone motifs use different helpers to

deactivate the suppressor (x1) under LD, the combination of motifs

(Top 4) integrates both helpers so that deactivation of the suppressor

can be enhanced (Figure 4C). The results of a similar analysis

applied to PS and AI mechanisms are given in Figure S7.

Additionally, in the Figure S8 and Text S1, we discuss a

parameter compensation effect that further expands the priming

region in the parameter space.

Slow inhibitor relaxation dynamics is essential for the
induction of tolerance

We used the 3-node model to search for endotoxin-tolerance

motifs. The tolerance effect requires that pro-inflammatory

cytokine expression (x3) is markedly reduced (by at least 1.5 fold)

under two sequential HD treatments with LPS, compared to the

level induced by a single HD (see Table S1 for details). Over 1660

unique topologies are found to give a tolerance effect (Figure 5A),

indicating that the requirements for tolerance are much lower than

for priming. A typical time course (Figure 5B, left panel) highlights

the essential dynamical requirement for tolerance — to sustain a

sufficiently high level of inhibitor (x1 in this case) after the first HD

of LPS so that x3 is less responsive to the second HD stimulus. The

effect is transient: if the second HD stimulus is delayed long

enough for the suppressor to return to its basal level, then the

tolerance effect is lost (Figure 5B, right panel). This ‘‘memory’’

effect has been noticed in other modeling studies [46–49] and is

consistent with experimental observations. For example, the

tolerance status of IL-6 is reported to persist for 48 h after the

initial HD of LPS, but beyond this time a re-challenge started to

recover the expression of IL-6 [34]. Figure 5C shows two

backbone motifs that support temporary persistence of the

inhibitor: by slow removal or by positive auto-regulation of the

inhibitor.

The dosing scenarios for priming and tolerance are well
separated

It is of interest to ask whether priming and tolerance can be

observed in a single 3-node network given the corresponding

dosing conditions. It turns out that about 11% of the priming

motifs exhibit tolerance as well, and most of them belong to the

SD or the AI mechanism. Figure 6A shows qualitatively the dose-

response relationship for priming and tolerance in a typical

network motif. First, both priming and tolerance require a

relatively large second dose (.0.5). Second, the dosing regions

for priming and tolerance are well separated. A low first dose (0.1–

0.4) leads to priming while a higher one (0.5–1) leads to tolerance.

There exists a range separating the priming and the tolerance

region where neither are observed.

Signaling durations affect the induction of priming and
tolerance

Most experimental studies of priming and tolerance are

performed with fixed durations of the three time periods (T1,

T2, and T3 in Figure 1A). Time-course measurements are rarely

reported. The phase diagrams in Figure 6B & C show how varying

each time period can affect the induction of priming and tolerance

in a typical network motif. Altogether, these results reveal

important dynamical requirement in priming and tolerance and

suggest systematic studies in real biological experiments.

The left panel of Figure 6B shows the effects of varying stimulus

durations (T1 and T3) at fixed gap duration (T2). To generate

priming, T1 must be sufficiently long, while T3 can be relatively

short (left panel of Figure 6B). A sufficient priming duration is

crucial because the system utilizes this time to activate/deactivate

the regulatory pathway with slower dynamics, i.e., the synergizing

pathway in PS and the suppressor pathway in SD. Therefore, if T1

is too short, one may erroneously conclude that priming does not

exist in the system. On the other hand, tolerance is less dependent

on T1 (right panel of Figure 6B).

Figure 6C shows results when all durations are varied under the

constraint T1 = T3. In this case, both priming and tolerance

require that T2 is sufficiently short compared to the time required

for the system to relax to its basal state after the first stimulus. This

result reveals priming and tolerance as essentially the result of

cellular memory of the first stimulation.

Discussion

Using a simple yet flexible model of cellular signaling pathways,

we have carried out a systematic study of the topological and

Networks for Endotoxin Tolerance and Priming
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dynamic requirements for endotoxin priming and tolerance in cells

of the innate immune system. Our study reveals that the

phenomena of priming and tolerance can be attributed to a few

characteristic network motifs (called ‘‘backbone’’ motifs) that are

simple yet effective combinations of feed-forward loops, negative

feedback signals, and auto-activation. In addition to reconciling

the limited available experimental data on endotoxin priming and

tolerance, our models suggest novel, testable hypotheses regarding

the molecular mechanisms responsible for these effects.

Essential modalities for priming and tolerance
Our in silico analysis identifies three basic mechanisms for

priming (Figure 7). In these mechanisms two pathways interact

either constructively (pathway synergy–PS) or destructively (acti-

vator induction–AI, suppressor deactivation–SD). Compared to

the response of these systems to a single high dose (HD) of LPS, a

priming dose of LPS modifies the relative phases of the two

pathways so as to strengthen pathway synergy (for PS mechanism)

or weaken pathway interference (for SD and AI mechanisms).

In this work we define the priming effect as a response of x3 that

is at least 50% higher with priming than without. The threshold of

50% is consistent with experimental observations [23,25], but to

be sure that our conclusions are robust, we also performed the

computational analysis at two other thresholds: 30% augmentation

or 70% augmentation (i.e., l = 1.3 or l = 1.7 in Table S1). In both

cases we obtained results similar to those shown in Figure 2B,

Figure 4. Analysis of the robust priming topologies in the SD mechanism. (A) 139 unique topologies under SD mechanism sorted by
topology density (see Figure S6 and Text S1 for detailed discussion). (B) The highest seven density topologies and the backbone motifs. Line widths
are proportional to the mean value of samples of the corresponding topology. Dashed lines denote the additional link present in the top topologies
but absent in the backbone motif. (C) Combination of the two backbone motifs is common in the SD data sets. 93% of SD data sets are found to
contain either Motif I or Motif II as the backbone motif. Among them, 64% contain both Motif I and Motif II.
doi:10.1371/journal.pcbi.1002526.g004

Networks for Endotoxin Tolerance and Priming
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0

Figure 5. Analysis of the tolerance data sets. (A) The unique topologies generating a tolerance effect sorted by topology density. (B) Typical
time courses shown with normal (left panel) or elongated (right panel) gap period between the two doses. Solid line: time course tracking the
dynamics of the system under the first HD stimulation, in gap period and under a second HD stimulation. Dashed line: time course tracking the
dynamics under a single HD treatment; in this case the system is treated with no LPS during the otherwise first HD period. (C) Distribution of the
change of x1 level due to the initial HD stimulation reveals two mechanisms to achieve slow relaxation dynamics in the inhibitor (left panel) and the
corresponding two backbone motif (right panel).
doi:10.1371/journal.pcbi.1002526.g005

 

 

 

 

  

 

3

Figure 6. Phase diagrams for priming and tolerance in a typical network motif. (A) Regions of dosing conditions for tolerance and priming
are well separated. (B) Both priming and tolerance effects are affected by the duration of two sequential treatments (with the gap period between
two doses being fixed). (C) Priming and tolerance are also affected by the duration of the gap between two doses. Very long gaps fail to exhibit either
priming or tolerance.
doi:10.1371/journal.pcbi.1002526.g006
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corresponding to the three priming mechanisms, although the

exact percentage of each priming mechanism among the data sets

varies with the priming threshold.

The priming effect may be viewed as a primitive counterpart of

the more sophisticated memory mechanisms of the adaptive

immune system. For a limited period of time after exposure to a

weak stimulus, the system is prepared to launch a stronger

response to a second exposure to the (same or another) stimulus

[39,50]. On the other hand, tolerance reflects a transient

refractory status to produce inflammatory cytokines due to the

memory of an earlier exposure.

Supporting experimental evidences at intra- and inter-
cellular levels

The actual molecular and cellular networks responsible for

endotoxin priming and tolerance are highly complex, involving

both intra- and inter-cellular signaling modalities. A combination

of priming/tolerance motifs most likely coexist in real signaling

networks, and their interactions will determine the specific

properties of the priming/tolerance effect in vivo. LPS is known

to activate multiple intracellular pathways through TLR4,

including MyD88-dependent, TRIF-dependent pathways [51].

Cross-talk among these pathways may be differentially modulated

by low vs. high dosages of LPS, and thus contribute to differential

priming and tolerance [37,52,53].

Endotoxin tolerance has drawn significant attention in the past

due to its relevance to septic shock. Existing literature reveals the

involvement of multiple negative regulators (SHIP, ST2, IL-10,

IRAK-M, SOCS1) at either intracellular or intercellular levels.

Many of them are shown to be persistently elevated during

endotoxin tolerance, a key feature (confirmed by our systems

analysis) creating a refractory state that suppresses the expression

of pro-inflammatory mediators (see Table 2). For example, SHIP

and ST2 are documented to have very slow degradation rates. On

the other hand, negative regulators with faster turn-over rates,

such as A20 and MKP1 (induced between 2–4 h by LPS), are

known not to be required for LPS tolerance [21,54].

In terms of priming, our in silico results are consistent with

limited experimental data regarding potential molecular mecha-

nisms. For example (Figure 8A), IL-12 and IL-10 are differentially

induced by low vs. high dose LPS, and subsequently serve as

autocrine mediators to modulate LPS priming [19]. Figure 8B

provides a second example. Low dose LPS (50 pg/mL) can

selectively activate transcription factor C/EBPd, yet fails to

activate the classic NFkB pathway [53]. Hence, by a pathway

synergy motif, the selective activation of C/EBPd by low dose LPS

may synergize with NFkB under the subsequent high dose to

induce the priming effect. While the removal of nuclear repressor

by low dose LPS is reported [53], further evidence for the

predicted suppressor deactivation mechanism awaits additional,

targeted experimentation. In this context, one needs to be aware

that our predicted network motifs are simple topologies that have

the potential to generate priming or tolerance, within proper

parameter ranges. Our predictions warrant further experimental

studies to determine the physiologically relevant ranges of

signaling parameters required for priming and tolerance.

Our analysis of priming and tolerance is not limited to LPS.

Bagchi et al. showed that cross-priming may happen between

specific TLRs [41]. Ivashkiv and coworkers reported that IFN-c
can prime macrophage for an augmented response to a variety of

stimulants, including bacterial LPS, virus, IFN-a/b and IFN-c
itself [39,40]. IFN-c self-priming is similar to LPS self-priming: a

Figure 7. Schematic illustration of constructive (PS) and destructive (AI, SD) pathway interference leading to priming effect. PS
results from the activation of the LD-responsive pathway (x2) which cooperates with the other HD-responsive pathway (x1) to boost cytokine
expression in response to the following HD stimulus. AI results from activating a LD-responsive pathway (x2), which cancels the inhibition coming
from the other HD-responsive inhibitor (x1) during the HD stage. SD results from deactivating a constitutively expressed suppressor (x1) during the
priming stage. Red line with arrow head: activation pathway. Blue line with bar head: inhibition pathway. Line width denotes strength of the pathway
controlling the downstream cytokine expression.
doi:10.1371/journal.pcbi.1002526.g007
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low dose can prime for boosted expression of interferon-responsive

genes. The priming mechanism as reported by Hu et al. resembles

the AI strategy [55]. Interferon-responsive genes such as IRF1 and

IP-10 are transcriptionally induced by transcription factor STAT1,

and are inhibited by SOCS1 through a negative feedback

mechanism. Low dose IFN-c (1 U/ml) is able to elevate the

expression level of STAT1, preparing macrophage for a boosted

activation of STAT1 (through phosphorylation and dimerization

of STAT1) under the high dose IFN-c stimulation. With STAT1

being active, however, the inhibitor SOCS1 cannot be expressed

during the priming stage, resulting in an augmented expression of

IRF-1 and IP-10 (Figure 8C). Furthermore, Figure 8C suggests a

possible cross-priming between IFN-c and TLR4 via a PS

mechanism. Priming of macrophage by a low dose IFN-c
promotes STAT1 expression, which may synergistically cooperate

with NFkB to give boosted cytokine expression to secondary

stimulation by LPS [55,56]. Further experimental studies are

needed to confirm the prediction.

Limitations of three-node models and further theoretical
studies

Three-node models have been used to analyze functional

network motifs in several contexts [6,7,43]. The simplicity of

three-node models allows a thorough search of the parameter

space. However, the model should be viewed as a minimal system.

A typical biochemical network surely has more than three nodes.

Therefore each node or link in the three-node model is normally

coarse-grained from more complex networks. The model param-

eters are also composite quantities. Three-node models are limited

in their ability to generate certain dynamic features such as time

delays. Figure 3A shows the backbone motifs of the three

mechanisms we have identified. Further studies of models with

additional nodes will be necessary to determine whether all of the

links are necessary. For example, in Figure 8B, we cannot find

evidence for IL-6 inhibiting C/EBPd (either by direct or indirect

links). This lack of evidence may indicate a missing link waiting for

experimental confirmation, or it may indicate a limitation of the

three-node model. The parameter search algorithm developed in

this work can be applied to models with 4 or more nodes, although

the search space grows rapidly with the number of nodes.

Despite the above-mentioned limitations, we expect that the

three priming mechanisms and the one tolerance mechanism

discovered here are quite general, holding beyond the three-node

model. We expect that the present work can serve as a basis for

analyzing larger networks with more mechanistic details. As

illustrated in Figure 8, motifs can be combined together in series or

in parallel, and these combined structures may lead to new

dynamic properties of functional importance.

Suggested experimental design
Our analysis in Figure 6 suggests that systematic studies of signal

durations (T1, T2 and T3) may reveal important details of the

dynamics of priming and tolerance. For example, both relatively

short (4 h, as the experiment in this paper) and longer priming

duration ($20 h) are exhibit priming effects in macrophages [25].

Relatively fast transcriptional regulators like NFkB and AP-1, as

well as numerous signaling repressors such as PI3K and nuclear

receptors, may be involved in intracellular priming motifs,

inducing priming in response to short pretreatments. On the

other hand, a longer pretreatment orchestrates more complex

intercellular pathways whereby autocrine or paracrine signaling of

cytokines (e.g. IL-10, IL-12 and type I IFNs) might dominate the

induction of priming effects [19]. Therefore, measurements of the

full time spectrum are necessary to reveal different parts of the

network contributing to priming/tolerance.

Furthermore, our analysis predicts that priming networks may

respond in two distinct fashions: monostable (transient super-

induction of cytokine) or bistable (sustained super-induction of

cytokines). Time-course measurements can distinguish between

these two responses, keeping in mind that the bistable behavior

predicted here is relative to the effective time-scale of the model.

Each motif considered here is embedded in a larger network.

Eventually, in a healthy organism pro-inflammatory cytokines

have to be cleared out by some other slow processes that resolve

the inflammation. On this longer time scale, the sustained

induction of cytokines predicted by some of our models would

be resolved.

The analysis presented in Figure 2B suggests a plausible

hypothesis to characterize underlying mechanisms of endotoxin

priming. High throughput techniques can be used to identify genes

and proteins that are significantly changed by low dose

pretreatment. Likely candidates can be assayed during the course

of a priming experiment, and the time-course data analyzed as in

Figure 2B to identify the critical regulatory factors.

Table 2. Experimental evidence supporting the proposed tolerance mechanism.

Molecular Candidate Inhibition Target Persistent Strategy Reported Evidence Reference

IRAK-M IRAK-1 and IRAK-4 signaling Slow time scale Both mRNA and protein level of IRAK-M kept increased
until 24 h with LPS stimulation.

[31]

SHIP NFkB pathway Slow time scale; Positive
auto-regulation of
upstream regulator

Slow but sustained production of SHIP (peaked at 24 h and
remained high until 48 h with LPS stimulation), regulated
via autocrine-acting TGF-b; long half-life of SHIP protein.

[33]

SOCS1 (under debate) IRAK and NFkB pathway Slow time scale SOCS1 mRNA levels remains detectable 24 h post LPS
stimulation.

[69]

ST2 MyD88 and Mal Slow time scale ST2 is induced at 4 h and lasts until 48 h with LPS stimulation. [32]

IL-10 (required but
not necessary for
tolerance)

MyD88-dependent pathway
(IRAK, TRAF6)

Slow time scale;
Positive autoregulation

Significant level of IL-10 was detected with prolonged (24 h)
LPS stimulation, and the level is sustained until 48 h. The
IL-10-activated STAT3 is required for efficient induction of IL-10.

[35,70–72]

DNA methylation
and chromatin
remodeling

Proinflammatory cytokine
(TNF-a) gene expression

Slow time scale Sustained methylation of H3 (lys9), increased and sustained
binding of RelB (as transcriptional repressor) on TNF-a
promoter in tolerant THP-1 cells.

[36,73]

doi:10.1371/journal.pcbi.1002526.t002
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Our analyses and simulations reveal that the priming effect is

quite sensitive to system dynamics, i.e., to parameter values and

initial conditions. It is well documented that many biological

control systems, especially those involving gene expression, are

stochastic in nature. Consequently a population of seemingly

identical cells may respond heterogeneously to a fixed experimen-

tal protocol. In this case, single-cell measurements may reveal cell-

to-cell variations in priming and tolerance responses [57–59].

Figure 8. Example regulatory networks supporting the priming mechanisms. (A) The AI mechanism is consistent with observed intra- and
inter-cellular molecular mechanisms for LPS priming, based on counterbalanced IL-10 and IL-12 signaling [19]. (B) The PS mechanism inspires this
predicted intracellular molecular mechanism based on the selective activation of C/EBPd by LD LPS. (C) IFN-c self-priming and cross-priming to LPS
follows the AI and PS mechanisms. Network details are retrieved from the database IPA (@Ingenuity) as well as the experimental literature listed in
Table S3. Dashed lines refer to indirect regulations involving autocrine signaling loops.
doi:10.1371/journal.pcbi.1002526.g008
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Taken together, our integrated and systems analyses reconcile

the intriguing paradigm of priming and tolerance in monocytes

and macrophages. Given the significance and prevalence of this

paradigm in immune cells to diverse stimulants other than LPS,

our identified functional motifs will serve as potential guidance for

future experimental works related to macrophage polarization as

well as dynamic balance of immune homeostasis and pathogenesis

of inflammatory diseases.

Materials and Methods

Mathematical description
The following mathematical formalism is used to describe the

dynamics of the three-node system,

dxj

dt
~cj(G(sjWj){xj)

where G(a)~ 1
1ze{a, and Wj~vj0z

P3
i~1 vjixizSj . Notice that

xj(t) lies between 0 and 1 for all t. All variables and parameters are

dimensionless. G(sjWj) is a generic ‘‘sigmoidal’’ function with

steepness (slope at Wj = 0) that increases with sj. Each vji is a real

number in [-1, 1] with its absolute value denoting the strength of

the regulation; vji.0 for the ‘‘activators’’ and vji,0 for

‘‘inhibitors’’ of node j. The sum, Wj, is the net activation or

inhibition on node j, and vj0 determines whether node j is ‘‘on’’ or

‘‘off’’ when all input signals are 0. The parameters cj determine

how quickly each variable approaches its goal value, G(sjWj) for

the present value of Wj. Because the magnitudes of the weights are

bounded, |vji|,1, it is possible to do a thorough and systematic

search of all possible weight matrices, even for networks of

moderate complexity, e.g., K ( = number of non-zero vji’s),20.

The formalism is close to that used by Vohradsky [60,61] and

others [62,63] previously. More detailed discussions and applica-

tions of the formalism can be found in [64–66].

The model contains 18 parameters: 9 vji’s, 3 cj’s, 3 sj’s and 3

vj0’s. By setting c3~1, we fix the time scale of the model to be the

response time of the output variable, x3(t). We set v30~{0:50, so

that the response variable is close to x3~0 in the absence of input.

We also chose s3~6 as a moderate value for the sigmoidicity of the

output response. Apart from that, v20 is set to be {0:25 so that the

x2 pathway is responsive to LD stimulation.

Monte Carlo sampling algorithm
Our goal is to sample points in a 14-dimensional parameter

space that is bounded and continuous. The sampling algorithm

needs to search the parameter space thoroughly and generate

sample parameter sets that are statistically unbiased and signifi-

cant. Our strategy is a random walk based on the Metropolis

Algorithm [67] through parameter space according to the

following rules:

1. Choose an initial parameter set h0 and determine its score:

V0~0 if it is a ‘‘good’’ set, or V0~1 if it is not. (See Text S1 for

the definition of a good set of parameters for priming or for

tolerance.)

2. Generate parameter set hkz1 from hk by hkz1~hkzlf, where

l~0:025 specifies the maximum displacement per step, and f
is a vector of random numbers with uniform distribution

between 20.5 and 0.5.

3. Compute Vkz1. If Vkz1ƒVk, then accept the step from k to

k+1. If Vkz1wVk, then accept the step from k to k+1 with

probability r. Otherwise, reject the step k to k+1.

4. Update k. If k is larger than a maximum step number, stop.

Otherwise return to step 1.

We pursue this strategy in two stages. In stage 1, we set

r~0:0025 (see Text S1), so that the random walk has larger

tendency to stay in ‘‘good’’ regions of parameter space, but can

also jump out of a good region and searches randomly until it falls

into another good region (which may be the same region it left).

Stage 1 generates a random walk of 109 steps, which is sampled

every 100 steps. From this sample of 107 parameter sets only the

good ones are saved, giving a sample of ,8|104 good parameter

sets. These data are then analyzed as described below:

1. The K-means algorithm is applied to identify possible clusters

of good parameter sets in the 14-dimensional parameter space.

The clustering result is then visualized through the first two

principal components (which account for ,60% of the data

variance) under Principal Component Analysis.

2. One parameter set is chosen from each possible cluster to serve

as starting points for stage 2.

Stage 2 is a repeat of stage 1 with r = 0. In this case the random

walk never leaves a good region. The purpose of stage 3 is to

generate a large sample of good parameter sets that may occupy

different regions of parameter space. The random walks are

sampled every 100 steps, generating 106 good parameter sets from

each starting point. Each parameter set must pass an additional

test for ‘‘biological relevance’’ (see Text S1 for details) before

further analysis.

While the results reported in the main text are from one run of

the search procedure, the whole procedure was repeated several

times with random initial starting point in stage 1. The final results

of these repeated runs agree with each other, confirming the

convergence of our search procedure.

Discretization of continuous parameter matrix into
topology matrix

In order to analyze the topological feature of each priming/

tolerance mechanism, one needs to map the continuous param-

eters vji into a discretized topological matrix tji. In the topological

space, variables are only described by (2, 0, +) representing

inhibition, no regulation and activation, respectively. A cut off

value ( = 0.1) is used to perform the discretization, following the

rules below:

tji~

{1, if vjiƒ{0:1

0, if {0:1vvjiv0:1

1, if vji§0:1

8><
>:

Experimental studies of LPS priming and tolerance
Murine bone marrow derived macrophages from C57BL/6

wild type mice were harvested as described previously [53]. Cells

were cultured in DMEM medium (Invitrogen) supplemented with

100 units/mL penicillin, 100 mg/mL streptomycin, 2 mM l-

glutamine, and 10% fetal bovine serum (Hyclone) in a humidified

incubator with 5% CO2 at 37uC. Cells were treated with LPS (E.

coli 0111:B4, Sigma) as indicated in the figure legend. RNAs were

harvested using Trizol reagent (Invitrogen) as previously described

[53]. Quantitative real-time reverse-transcription (RT)-PCR were

performed as described [68]. The relative levels of IL-6 message

were calculated using the DDCt method, using GAPDH as the

internal control. The relative levels of mRNA from the untreated

samples were adjusted to 1 and served as the basal control value.

0.

1.

2.

3.
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Supporting Information

Figure S1 Illustration of the two-stage Metropolis search

procedure. (A) Schematic illustration of the two-stage Metropolis

search method for priming/tolerance parameter sets. In the first

stage one randomly searches the whole parameter space. K-means

clustering algorithm identifies one or more clusters of the data.

Then one performs a second Metropolis step to search thoroughly

inside each cluster. (B) As a result, we got three priming set clusters

with K-means clustering. By calculating the minimum volume

bounding ellipsoid, we found that cluster 1 and 2 belong to a single

region (Region I) whereas cluster 3 belong to a separate region

(Region II).

(TIF)

Figure S2 Distribution of change in x2’s initial condition prior to

HD without or without priming treatment. Both PS and AI show

considerable increase in x2 in the primed system. PDF: probability

distribution function.

(PDF)

Figure S3 Statistical method used to identify backbone motifs

from priming/tolerance data.

(PDF)

Figure S4 Parameter correlations highlight the backbone motifs

of each priming mechanism: (A) Pathway Synergy, (B) Suppressor

Deactivation, and (C) Activator Induction.

(PDF)

Figure S5 Typical time course and corresponding trajectory in

the phase space. (A) bistable case of AI mechanism. (B) bistable

case of SD mechanism. Refer to Figure 3 of the main text for the

time course trajectories in other cases.

(PDF)

Figure S6 Change in the robustness rank as a result of variations

in the topology cut-off. SD datasets are used as an example. The

robustness rank is calculated based on density (top panel) or

sample frequency (lower panel) of the unique topologies. Changes

in the robustness rank is compared with 10% (left column), 30%

(center column), and 50% (right column) variation in the topology

cut-off t0 = 0.1.

(PDF)

Figure S7 Topologies of the PS and AI mechanisms. (A) The

topology density distribution for the PS mechanism. (B) Top six PS

topologies and the backbone motif. (C) The topology density

distribution for the AI mechanism. (D) Top six AI topologies and

the backbone motif. Line widths are proportional to the mean

value of samples of the corresponding topology. Dashed lines

denote the additional links present in the top topologies but absent

in the backbone motif.

(PDF)

Figure S8 Parameter correlation and compensation affects the

robustness of the model. A) Correlation matrix calculated based on

the samples of each priming mechanism. The p-value is smaller

than 0.05 except where marked. B) The parameter compensation

mechanism is illustrated by the 2D correlation histogram of the

SD samples (left) and the corresponding connection diagrams

(right).

(PDF)

Table S1 Criteria identifying priming and tolerance for a given

parameter set.

(PDF)

Table S2 Parameter sets used to generate time course and

phase-space trajectory in Figure 3 and Figure S5.

(PDF)

Table S3 Experimental literatures supporting the network

details in Figure 8.

(PDF)

Text S1 Detailed explanation of parameter search algorithm,

modeling methods and statistical analysis of motifs.

(PDF)
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