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Abstract

Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts
to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer
than that frequently used by animals to make decisions about the environment. How reliably sensory information is
encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that
neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested
systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the
information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1
cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be
extracted from spike latencies as from firing rates measured over much longer durations. To extract this information,
stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can
provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population,
provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a
few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over
the very brief time scales in which behavioral judgments must sometimes be made.
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Introduction

Firing rates of many primary visual cortical cells are tuned to the

orientation of visual stimuli [1]. This dependence of neuronal firing

rates on the stimulus implies that information about the stimulus can

be decoded from the spike count. The trial to trial variability of

firing limits the accuracy with which a stimulus can be estimated

from the neuronal spike count [2–4]. To decrease this variability

and increase the accuracy of the rate code, studies have typically

used responses measured over several hundred milliseconds [1,2,5].

However, increasing evidence indicates that the central nervous

system can process complex information on very short time scales.

Visual psychophysical and evoked potential studies have shown

that human subjects can classify natural scenes or emotional facial

expressions on the basis of 100–150 ms of processing [6–12].

Evidence for fast processing of visual stimuli also exists from

behavioral and electrophysiological experiments in monkeys [13–

15]. A recent study by Stanford et al. [15] shows that monkeys can

make perceptual decisions regarding the color of stimuli after

about 30 ms of processing time. Evidence for fast coding also exists

for the auditory system [16,17] and the somatosensory system

[18,19]. The overall theme deriving from these studies is that

sensory systems are able to process the gist of a scene rapidly [20].

It has been suggested that the temporal structure of the

neuronal response and in particular, response latency, is the source

of fast decisions in the brain [18,19,21–33]. However, the

accuracy of codes based on these responses has not been studied

in the visual system systematically.

A common approach to measuring response latency is to define

it as the transition from spontaneous firing to stimulus-dependent

firing, e.g., by detecting the time at the which the PSTH (Post

Stimulus Time Histogram) reaches half of its maximal firing rate

[26]. This attempts to estimate the ‘pure’ latency component of the

response, but it involves defining that quantity by a different

number of spikes for each condition. For instance, latency might

be defined by the time to the first ten spikes at the preferred

stimulus and to the first spike at a non-preferred stimulus. Thus, in

this approach the criterion for neural response time depends on

the stimulus, making it impractical for decoding: the readout

parameters cannot scale in a stimulus dependent manner, as that

requires the readout to know the stimulus in order to estimate it.

Recently, we proposed a simple spike latency code readout [34],

the temporal Winner-take-all (tWTA). The tWTA determines the

external stimulus by the label, e.g. preferred orientation, of the cell

that fired the first spike in the population. It avoids attempting to

estimate ‘pure’ onset latency and instead takes a pragmatic
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approach in which each cell’s time to first spike will depend both

on its latency and the strength of its response.

Formally, consider a population of N neurons coding for the

orientation of a visual stimulus, h. Let us denote by t(i) the time of

the first spike of neuron i, with preferred orientation Qi, following

some reference signal tref. The tWTA algorithm estimates the

orientation of the external stimulus as the preferred orientation of

the neuron which fired first with respect to tref:

ĥh~Qk, where k~argmini[f1,2,...,Ng t(i)
� �

This definition can be generalized to estimate the stimulus by the

preferred orientation of the cell that fired the nth spike first, or to

incorporate a competition between groups, ‘columns’ of cells (see

below). Here we investigate neural coding on brief time scales by

applying the tWTA to simultaneously recorded populations of

neurons in the primary visual cortex of macaque monkeys

responding to the orientation of visual stimuli.

Results

Responses of multiple neurons were measured in primary visual

cortex (V1) of anesthetized monkeys using electrode arrays. The

stimuli were drifting sinusoidal gratings of varying orientations.

The duration of each stimulus was 300–400 ms and each stimulus

was repeated 200–400 times. Details about stimulus parameters

and numbers of recorded units in each dataset appear in Table 1

(see Materials and Methods). The recorded cells consisted of well-

isolated single units and small multiunit clusters.

Tuning of spike latencies
We first investigated the tuning of first spike times to stimulus

orientation. Figure 1A presents eight raster plots showing the

response of the same V1 neuron to eight different orientations of

the visual stimulus. Qualitatively, both response strength and

response latency seem tuned to the stimulus. Measuring latency by

simply calculating the mean time to the first spike is problematic

because stimuli that evoke weak responses may result in no spikes

on some trials. A more principled approach is to incorporate both

response time and probability of firing by computing the

probability density function and the corresponding cumulative

distribution function of the first spike latency.

Figure 1B (upper panel) shows the cumulative distribution

function, F1(h,t); i.e., the probability of firing the first spike before

time t for a given orientation h (t is measured with respect to the

onset of the external stimulus). It is convenient to think of the level

curves of this function, F1(h,t)~const:, as tuning curves of the

neuron. For instance, Figure 1C shows the F1(h,t)~0:5 level

curve (red circles, fits shown by the solid red line and the dashed

line in Figure 1B), which indicates the time at which there was a

50% chance that the neuron had fired its first spike, for each

orientation. Typically, the level curves have unimodal orientation

tuning, with a single minimum which we define as the latency-

based preferred orientation of the cell. Note that although the

choice of the 0.5 level curve is arbitrary, similar results were

obtained for other criteria. For comparison, the conventional rate-

tuning curve of the same neuron is shown in Figure 1D (black

circles represent mean firing rates over the entire response, solid

curve represents fitted von-Mises function, stimulus duration was

400 ms; see Materials and Methods). The rate tuning is also

characterized by a unimodal curve that peaks at the rate-based

preferred orientation.

Figure 2 shows three additional examples of V1 responses in

each column. Eight raster plots for eight orientations are depicted

at the top row for each cell. The stimulus dependence of the

temporal structure of neural response can be seen from the PSTHs

at the second row. The latency tuning curve, in terms of 0.5 level

curve of first spike time cumulative distribution, is shown on the

third row, and the conventional rate tuning curve appears on the

fourth row for comparison. Examining the PSTHs of each cell,

one can see that response strength has a considerable contribution

to first spike latency, in our definition. For example, in cell B it is

mainly the firing rate that is tuned to stimulus orientation.

Nevertheless, due to the high firing rate near the preferred

orientation, the first spike times tend to be shorter near that

orientation. It is also evident that the temporal structure of the

response is tuned to the stimulus as well. The modulation of the

entire temporal structure (and not a simple temporal shift) limits

the ability to extract the ‘pure’ latency tuning. However, as

mentioned above, it is the distribution of the nth spike time that

governs the tWTA readout accuracy; hence, the definition of spike

latency used here.

The middle and bottom panels of Figure 1B depict the

cumulative distribution function for the second and third spike

times, respectively; the green and blue traces in Figure 1C show

the corresponding latency tuning curves (level curves at 0.5). The

level curve for the cumulative distribution of the nth spike time

indicates a tradeoff: the curves are delayed in time as n increases,

but tuning becomes more pronounced. To quantify this behavior

we characterized each tuning curve by a ‘DC’ component,

denoted by A, which represents the mean latency across all

orientations, and by the ‘modulation amplitude’, denoted by B (see

Materials and Methods). Figures 3A and B show the dependence

of the mean (A) and the modulation amplitude (B) of the spike-time

tuning curve as a function of n, averaged across the population

(dataset 3 in Table 1). The delay is evident from the linear increase

of A with the spike number, while the increase of tuning amplitude,

B, indicates that the tuning becomes more pronounced as n

increases. A scatter plot showing the mean latency of the first spike

against the tuning modulation of the first spike indicates that they

are correlated (Figure 3C; correlation coefficient 0.85). This is a

manifestation of an empirical result that the first spike latency at

the preferred orientation (A–B) is approximately constant, and thus

neurons with larger modulation amplitudes also have larger mean

latencies. Note, that because (A–B) is the fitted latency at the

preferred orientation and is expected to be positive, we would

expect that in general A will be larger than B. We find that,

typically, the rate-based preferred orientation is very close to the

latency-based preferred orientation. Figure 3D shows the distri-

bution of the difference (in absolute value) between the rate and

Author Summary

How can humans and animals make complex decisions on
time scales as short as 100 ms? The information required
for such decisions is coded in neural activity and should be
read out on a very brief time scale. Traditional approaches
to coding of neural information rely on the number of
electrical pulses, or spikes, that neurons fire in a certain
time window. Although this type of code is likely to be
used by the brain for higher cognitive tasks, it may be too
slow for fast decisions. Here, we explore an alternative
code which is based on the latency of spikes with respect
to a reference signal. By analyzing the simultaneous
responses of many cells in monkey visual cortex, we show
that information about the orientation of visual stimuli can
be extracted reliably from spike latencies on very short
time scales.

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002536



the latency preferred orientations of cells with a tuned first spike

latency. In about 90% of the cells this difference is less than 20u.
In summary, the latency to the first spike is stimulus dependent:

it is shortest for the same orientation that evokes the highest firing

rate in the cell. Defining response latency by the first two or three

spikes, rather than the first single spike, results in tuning with the

same preference but with deeper modulation. Thus, spike latency

appears to contain useful information about stimulus orientation.

Generating a reference signal to measure spike latencies
Because the brain does not have direct access to information

about when a stimulus was presented, a reference signal is required

to extract information about stimulus orientation from the first

spike latency. Such a reference signal can be reported by neurons

which are sensitive to the mere onset of the stimulus. An ideal

onset neuron is expected not only to have a uniform spike time

latency for all orientations, but also a low spontaneous firing rate,

to prevent false alarms. In fact, several neurons in the data showed

weak orientation tuning of their first spike latency as well as a low

spontaneous firing rate. Figure 4A shows a scatter plot of the

spontaneous firing rate against the modulation amplitude, B, of the

latency tuning curve for a single dataset (dataset 3 in Table 1). We

categorized neurons as onset detectors if their modulation

amplitude was less than 15 ms and their spontaneous firing rate

was less than 5 spks/sec (gray shading in Figure 4A). Typically, we

had 10–25 onset detectors in a dataset (10–25% of the population

[35]; see Table 1). Because the parameters A and B are correlated,

these neurons also tend to have an earlier latency (Figure 3C, red

dots).

In a given trial, onset time was determined using a simple

coincidence detection mechanism. Stimulus presence was detected

if the group of onset cells fired at least m spikes during a time

interval of T ms, and stimulus onset was estimated by the first

crossing time of this threshold. A high value of the threshold m

results in a very low false-alarm rate but compromises the

probability of hit, whereas a low value of m increases the hit

probability but also the false-alarm rate. By varying the m criterion

we can quantify the Receiver-Operating Characteristic (ROC)

curve of this onset detection mechanism; i.e., the dependence of

the hit probability on the false alarm rate (Figure 4B). Note that, in

contrast to standard two alternative forced choice tasks, in a

detection task there are no well-defined trials of ‘no stimulus’, and

the stimulus may be absent over a wide range of time intervals.

The mean number of false alarms will scale linearly with the

duration in which they are counted. Hence, in a detection task,

false alarm is measured in rate of occurrence and not in

probability. Unless otherwise stated, throughout this paper we

use the following parameters for onset detection: a time window of

T = 20 ms, with a criterion of 4 standard deviations above the

mean number of spikes in this time interval during spontaneous

firing. This choice takes into account the need for a fast detection

of the onset (Figure 4C) while maintaining a high hit probability

and a low false-alarm rate. The distribution of estimated onset

times (relative to stimulus onset) with this criterion is depicted in

Figure 4D. Because the detection of stimulus onset involves a

simple integration of spikes emitted by onset detectors, it can be

realized in a straightforward way in an integrate-and-fire neuron,

producing a similar distribution of onset times (Figure S1).

The temporal Winner-Take-All Readout
We have shown that first spike latency contains information

about stimulus orientation and that there is a distinct subset of

neurons whose responses can be used as a timing reference signal.

To read out the information embedded in the neural response
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latencies, we used a temporal Winner-Take-All (tWTA) mecha-

nism, with respect to the above onset mechanism [34]. The

complete definition of the method used to compute tWTA

performance is provided in Materials and Methods.

The performance of the tWTA is affected by the spontaneous

firing rates of the neurons, since the mechanism can erroneously

identify a spontaneous spike as an informative one. This effect is

reduced by taking a more general readout, the n-tWTA, in which

Figure 1. Orientation tuning of spike latencies. (A) Raster plot for of a sample cell in the data (taken from dataset 1 in Table 1). For each
orientation, 100 randomly chosen trials (out of 400) are shown. For clarity, only the first 120 ms after stimulus onset are shown. Stimulus duration was
400 ms. (B) Cumulative distribution functions of first, second and third spike latencies (n denotes the spike number) for the same neuron. Each row
corresponds to a different stimulus orientation and the gray levels represent the probability of the spike occurring before the time indicated on the
abscissa. (C) Tuning curves of first, second and third spike latencies, computed as level curves of the corresponding cumulative distributions at 0.5.
Cosine fits are shown as solid lines and are also shown as dashed lines in (A). (Error bars were calculated according to the method described in
Materials and Methods, but are often smaller than the marker size). (D) Rate tuning curve for the same cell over the entire stimulus duration (black
circles) and a fitted von-Mises function (solid line). (Error bars were calculated using the standard error of the mean, but are smaller than the marker
size).
doi:10.1371/journal.pcbi.1002536.g001

Fast Coding of Orientation in V1
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the identity of the stimulus is determined by the cell or group of cells

that fired the first n spikes with respect to the reference signal. This

may come at the expense of the time it takes to make a decision.

However, if the number of spikes, n, is less than or equal to the group

size, N, then the mean decision time of the n-tWTA will be less than

the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell

responses. We consider the case where one of the orientations is

the cell’s preferred orientation h0 (as defined by its latency tuning

curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1
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is to associate the shorter latency with the stimulus at the preferred

orientation of the cell and the longer latency with the other

stimulus. The probability of correct discrimination, PC, using the

n-tWTA was calculated from the probability density function,

fn(h,t), of the n’th spike latency, as estimated from the data with

time relative to the external stimulus onset (see Materials and

Methods). Similar to psychometric curves in psychophysical

experiments, the curve that describes the probability of a correct

response as a function of the orientation difference Dh is termed

the neurometric curve of the cell.

Figures 5A, C and E show the neurometric curves of 3 single

cells. The red, green and blue curves correspond to the n-tWTA

readout for n = 1, 2, and 3, respectively. For comparison, we show

the neurometric curve of the conventional rate code readout in

black (the firing rate was estimated from the total number of spikes

fired by the cell during the entire response). Typically, as n

increases, the performance improves and approaches that of the

rate code. Figures 6A and B compare the accuracy of the first spike

latency code, in terms of probability of correct discrimination, and

the rate code, for a relatively fine discrimination task (Figure 6A;

22.5 deg) and for a coarse one (Figure 6B; 90 deg). Latency and

rate code accuracy are correlated and, for the coarse discrimina-

tion task, the latency code performance is often comparable to that

of the rate code. The cumulative distributions of the accuracy of

the different codes in these two tasks are shown in Figure 6C.

Figures 5B, D and F show the accuracy of the rate code as a

function of the time used for the discrimination for three example

cells (same cells as in Figure 5A, C and E). For comparison we plot

the accuracy of the n’th spike latency code readout at its mean

decision time (see Materials and Methods). On brief timescales, the

latency code readout is superior to that of the conventional rate

code. To quantify this effect, we show in Figure 6D the cumulative

distribution of the difference between the accuracy of the n-tWTA

and the accuracy of the rate code, as computed at the mean

decision time using the n’th spike latency. As is clear from the

figure, this difference is always positive, emphasizing the superi-

ority of the latency code on brief timescales.

The responses we measured were evoked by drifting gratings.

We also recorded and analyzed additional data using flashed static

gratings of brief (50 ms) and long (300 ms) durations. These data

provided qualitatively similar results (see Figure S2).

Discrimination accuracy based on population responses
Decisions in the central nervous system are expected to involve

large numbers of cells. In large populations, the n-tWTA

Figure 3. Population statistics of latency tuning. The tuning
curves were fitted using a cosine function, L h; Qð Þ~A{B cos 2 h{Qð Þð Þ,
where h is the stimulus orientation and Q is the latency preferred
orientation. (A) Dependence of the mean DC component, A, on spike
number (averaged over the population). (B) Dependence of the
modulation amplitude, B, on spike number (averaged over the
population). Error bars in (A) and (B) represent 6onestandard error of
the mean. (C) A scatter plot of A vs. B for first spike latency (each point
represents one unit; correlation coefficient 0.85). The cells that are
marked in red are onset detectors (see text and Figure 4). The statistical
analyses in panels (A)–(C) were performed using dataset 3 in Table 1
(159 cells). Similar results were obtained for the other 4 datasets. The
correlation coefficients between A and B were, in decreasing order: 0.88,
0.84, 0.76 and 0.66 (D) Histogram of the difference between the first
spike latency-based preferred orientation and the conventional rate-
based preferred orientation. In order to avoid artifacts from poorly
tuned cells, the histogram shows only cells for which the modulation, B,
of the first spike latency tuning curve was larger than 15 ms (,50% of
the cells from datasets 1 to 5 in Table 1).
doi:10.1371/journal.pcbi.1002536.g003

Figure 4. Onset detection. (A) Mean spontaneous firing rate vs. the
modulation amplitude, B, of the first spike latency tuning curves. Each
point corresponds to a single neuron. All neurons in this figure were
taken from the same dataset (dataset 3 in Table 1). Neurons were
categorized as onset detectors if the modulation was smaller than
15 ms and the spontaneous rate was below 5 spks/sec (shaded box in
the lower left corner, 25 cells). (B) ‘ROC’ curve of the onset detection
mechanism for a time window of 20 ms. The inset shows the false alarm
rate as a function of detection threshold in standard deviations. (C)
Mean onset time as a function of detection threshold. The gray band
represents 61 standard deviation. The black circles in (B) and (C) mark
the detection threshold of 4 standard deviations above baseline, which
we use throughout the paper. (D) Distribution of onset times. The
number of spikes was required to be 4 standard deviations above the
mean number of spikes in a 20 ms window during spontaneous firing.
doi:10.1371/journal.pcbi.1002536.g004
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discrimination in a two alternative forced choice paradigm can be

thought of as a competition between two ‘columns’ towards a

threshold of firing n spikes. To study the dependence of n-tWTA

accuracy on the population size we divided the tuned neurons

(B.15 ms) into artificial columns of equal orientation width

according to the latency-based preferred orientation of the cells

(see Materials and Methods). For each pair of columns, we

measured the probability of correct discrimination as a function of

the number of cells in the population (see Materials and Methods).

Importantly, unless stated otherwise, the spike latencies in each

trial were measured with respect to the onset detection mechanism

described above. Thus, the analysis uses only information that is

present in the brain, and, in principle, can be performed by an

appropriate neuronal mechanism (see Discussion).

Figures 7A, B and C show the n-tWTA probability of correct

discrimination for three representative pairs of columns as a

function of the number of cells in each column, N. The pairs of

columns differ in terms of the difference between the preferred

orientations, Dh. The blue curve depicts the performance of the

naı̈ve tWTA (n = 1) readout. Initially, for small N, tWTA

performance increases with N. However, beyond a critical size of

NC*5, tWTA performance saturates. Theory has shown that two

factors may limit tWTA performance. The first is correlations in

the first spike latencies of different cells and the second is the

spontaneous firing of the cells [34]. We find that although first

spike latency is correlated (Figure S3), its effect on tWTA accuracy

is negligible (Figure S4; Text S1). The dominant factor that limits

accumulation of information from large populations is the

spontaneous firing. Clearly, adding more cells also results in

adding more spontaneous spikes which interfere with informative

spikes (see [34] for a detailed analysis). This effect can be

reduced by increasing the decision threshold criterion; i.e., by

increasing n.

Figure 5. Orientation discrimination using single cell spike
latencies and firing rates. (A) Neurometric curves for a single cell
using the first spike latency (red), second spike latency (green), third
spike latency (blue) and the firing rate (black). These curves represent
the probability of correct discrimination in a 2AFC paradigm where one
stimulus is at the cell’s preferred orientation, PO, and the other at
PO6Dh. (Error bars represent the standard error of the mean, but are
often smaller than the marker size). (B) Neurometric curves for 90u
discrimination as a function of decision time. The black curve represents
probability of correct discrimination based on firing rate for different
time windows starting at stimulus onset (the curve starts at 60 ms
because deviation from spontaneous activity starts at about this time).
(The gray band represents 6 standard error of the mean). The
horizontal line represents the asymptotic performance using firing rate
from the full response (black circle at 90u in A). The filled circles
represent decisions using first, second and third spike latencies with the
same color code as in (A) (error bars are smaller than the marker size).
Each circle is plotted at the corresponding mean decision time. This cell
was taken from dataset 1 in Table 1. (C)–(F) The same as (A) and (B) for
two other cells from dataset 5 in Table 1. (The 3 cells in this figure are
the same cells as in Figure 2).
doi:10.1371/journal.pcbi.1002536.g005

Figure 6. Statistics of orientation discrimination using single
cell spike latencies and firing rates. (A)–(B) Pc (probability of
correct discrimination) using first spike latency vs. Pc using the spike
count of the entire response. Each point corresponds to a single cell.
The identity line is shown for comparison (solid black line). (A)
Comparison of performance at a fine resolution discrimination task,
Dh= 22.5u. (B) Comparison of performance at a coarse resolution
discrimination task, Dh= 90u. (C) Proportion of cells above a given
performance level. The dashed curves correspond to a 22.5u
discrimination task and the solid curves to a 90u discrimination task.
Different curves correspond to first spike latency (red), second spike
latency (green), third spike latency (blue) and firing rate from the entire
response (black). (D) Comparison of latency and rate performance at a
given decision time. The abscissa is the difference between Pc using the
n’th spike latency and Pc of the conventional rate code readout, where
the rate is estimated from the spike count in the time window from
stimulus onset to the mean decision time using the n’th spike latency.
These differences correspond to the vertical distances between the
circles and the solid black curve in the right panels of Figure 5. The
curves show the proportion of cells above a given difference. The color
code is the same as in (C). The data for all panels are from the tuned
cells (B.15 ms) in datasets 1, 2, 4 and 5 in Table 1 (244 cells).
doi:10.1371/journal.pcbi.1002536.g006

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 7 June 2012 | Volume 8 | Issue 6 | e1002536



We next analyzed the performance of the n-tWTA readout,

which takes the winning group to be the first to fire n spikes.

Different curves in Figure 7A, B and C correspond to different

values of the decision threshold, n, in the n-tWTA readout. In this

regime, as n is increased the maximal performance is also

increased. Figures 7D, E, and F show the performance of the

best n-tWTA for each N (that is, the value of the uppermost curve

in a vertical cross-section above this N). The inset shows the

corresponding value of n, noptimal, as a function of the population

size N. As the population size, N, grows, it pays to consider more

spikes in the readout. Moreover, for these values of population size

we obtain that noptimal is approximately linear in N.

Figures 7G, H, and I show the mean decision time of the n-

tWTA readout, relative to the onset signal (decision times higher

than 200 ms are truncated). As expected, for a given decision

threshold, n, increasing the number of neurons reduces the

decision time significantly. The important point is that the average

waiting time for the nth spike in a population of N,n cells is

around the average waiting time for the first spike of a single cell

(black filled circles), which is typically in the range of 40–80 ms.

Thus, considering both more spikes and more neurons (N,n) can

substantially improve reliability without compromising the deci-

sion time.

In the preceding analysis we measured response timing relative

to an internal stimulus onset detection mechanism. We wondered

whether performance could be improved by making use of the

absolute timing of stimulus onset. In principle, this could decrease

the detrimental effect of spontaneous firing [34]. To evaluate this

we used an artificial reference signal (i.e. not based on neural

responses) which varied from 0 to 120 ms relative to the external

stimulus onset. Spike times were then measured relative to this

reference signal (spikes before the signal were ignored). Figure 8

shows the accuracy of the tWTA readout (n = 1) as a function of

the onset time. Estimating the onset too early causes the readout

mechanism to consider more spontaneous spikes which only

contribute noise. Overestimating the onset time results in a loss of

informative spikes. The performance is thus non-monotonic.

Since most cells start responding about 60 to 90 ms following

stimulus onset, tWTA accuracy peaks at about this time, at a

performance level comparable to that achieved using the internal

onset detection signal. For comparison, Figure 8 also shows the

mean time (61 standard deviation) of our onset detection

mechanism for the same dataset. As can be seen, the onset

detection mechanism matches the range of times that produce

optimal performance. We conclude that the speed and accuracy

of our decoding is similar to that which would be achieved by

making use of absolute information as to when the stimulus was

presented.

Discriminating multiple alternatives
We next studied the issue of tWTA accuracy in a multiple (M)-

alternative-forced-choice task using the following setting. All the

Figure 7. Orientation discrimination using the n-tWTA readout in populations of neurons. (A–C) Probability of correct discrimination (Pc)
as a function of population size (N) for two populations that differ in preferred orientation by 45u (A), 67.5u (B) and 80u (C). Different curves
correspond to different values of n (see legend). (D–F) Probability of correct discrimination using the optimal value of n for each N (for the above pairs
of populations). The inset shows the optimal n for each N. (G–I) Mean decision times relative to the onset signal for the neurometric curves in the top
panels. (Decision times larger than 200 ms are not shown. Error bars represent 6 standard error of the mean). The black circles mark the decision
times when n = N; i.e., when the number of spikes used for the decision is equal to the group size. Note that the data for the left two columns are
from dataset 5 in Table 1 whereas the data for the right column are from dataset 3. These datasets had different levels of spontaneous and evoked
firing, which are responsible for the differences in the optimal n and in the decision times.
doi:10.1371/journal.pcbi.1002536.g007
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tuned neurons (B.15 ms) in each dataset were divided into M

‘columns’ according to their preferred orientation, as depicted in

Figure 9A (see Materials and Methods). Note that the number of

cells in different groups is not identical and that dividing them into

many groups may result in some that contain no cells. The

orientation label of each column was defined as the center of that

column. The n-tWTA decision in a competition among M

columns was defined as the orientation label of the first column

to reach a threshold of n spikes. The resolution of this decision is

inversely related to the number of alternatives, Dh~ 180o

M
. Figure 9b

shows the probability of correct discrimination of the n-tWTA as a

function of Dh in one of the datasets. Different curves correspond

to different values of n. The dashed line represents chance value,

which is inversely proportional to the number of alternatives. As

the decision threshold, n, is increased, n-tWTA performance

improves. This improvement is more significant for coarse

discrimination tasks; i.e., for largeDh.

To gain more insight, Figure 9C depicts the distribution of

errors in a fine discrimination task (Dh~1o) using the tWTA

(n = 1). The error distribution is very broad and there are relatively

many large errors. These large errors are related to spontaneous

firing and reflect the fact that discrimination at fine resolutions

involves a competition among many groups (180 in this case). In a

substantial fraction of the trials the winning group is the first to fire

a spontaneous spike, which carries no information about the

stimulus; hence errors in these cases are distributed uniformly.

Using the n-tWTA readout with n = 2 decreases this effect and

makes the distribution narrower, as depicted in Figure 9d.

Nevertheless, the decision is still based on a competition between

one ‘‘correct’’ group and many (M21 = 179) ‘‘incorrect’’ groups.

The chances that one of the ‘‘incorrect’’ groups will fire its first two

spikes before the ‘‘correct’’ group are still high and the distribution

of errors is still relatively wide. With larger groups of neurons in

Figure 9. Discrimination among multiple alternatives using the n-tWTA in populations of neurons. (A) The tuned neurons in one of the
datasets (dataset 3 in Table 1) were divided according to their preferred orientations into M groups of equal orientation width, Dh= 180u/M. To
illustrate this division, each point on the circle represents a neuron (the angle is twice the preferred orientation). The left plot illustrates division into
M = 4 groups of width Dh= 45u and the right plot illustrates division into M = 9 groups of width Dh= 20u. Each group is labeled by the orientation of
its center. The lengths of the blue bars are proportional to the number of neurons in each group. (B) Probability of correct discrimination of the n-
tWTA as a function of group width. The different curves correspond to n = 1,2,3,4,5 and 20. (C–D) Distribution of errors for group width of Dh= 1u for
n = 1 (C) and n = 2 (D).
doi:10.1371/journal.pcbi.1002536.g009

Figure 8. Effect of onset time on orientation discrimination
using the first spike latency. To investigate the effect of onset time,
we measured the spike times relative to an artificial reference signal.
The curves show the probability of correct discrimination (Pc) as a
function of onset time for two populations that differ in preferred
orientation by 90u. Each curve corresponds to a different population
size, N (see legend). The black vertical line and the gray band represent
the mean onset time 61 standard deviation using the onset detection
mechanism.
doi:10.1371/journal.pcbi.1002536.g008
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each bin (i.e. with more samples than that provided by our

microelectrode arrays), the decision threshold, n, could be

increased so as to improve performance for these more difficult

discriminations. Nevertheless, for our dataset, we can conclude

that n-tWTA can perform coarse discriminations remarkably

quickly and with high accuracy.

Discussion

We performed a quantitative analysis of spike latency coding of

orientation in primary visual cortex. We found that spike time

latency is tuned to the orientation of visual stimuli. Surprisingly,

for many neurons, the performance of a WTA decoder based on

spike latency was comparable to the performance based on the

total spike count during the entire response. This decoding could

be performed by measuring latency relative to a reference signal in

cortex, namely the pooled responses of a subset of neurons with

low spontaneous rates and poor latency-based selectivity for

orientation. Performance of the decoder could in principle be

improved by using larger populations of neurons. We found that

spontaneous firing limits the ability to accumulate information

from the spike time latencies of large cell populations, but this can

be overcome by scaling the decision threshold linearly with the

population size.

Tuning of spike latencies
Coding of visual attributes by spike latencies was studied

previously in the context of contrast processing [26,31], where it

was demonstrated that higher stimulus contrast results in shorter

response latency. However, some confusion exists in the literature

as to the tuning of first spike latency to the orientation of visual

stimuli. Whereas Celebrini et al [32] reported tuning of spike

latency of V1 neurons to orientation, Gawne et al. [26] claimed

that stimulus orientation mainly modulates response strength and

only weakly affects response latency [26].

We have shown that first spike latencies of V1 neurons are

tuned to the orientation of external stimuli. This tuning is

typically unimodal and the minimal latency is close to the

orientation that evokes the maximal firing in the cell. The

apparent discrepancy with Gawne et al. is due to different

definitions of response latency. In their study, Gawne et al. [26]

defined response latency to be the time at which the PSTH

reaches half of its peak. The utility of this measure is that it

attempts to estimate changes in the ‘pure latency’ in a manner

that is unaffected by the changes in the firing rate of the cell.

However, since firing rate is modulated by orientation, this

definition may measure the latency to a single spike at the null

orientation and the latency to ten spikes at the preferred

orientation. Hence, using this definition should result in flatter

latency tuning curves. Indeed, when applying this definition to

our data, we found little modulation of latency with orientation

(Figure S5). Moreover, since response strength, the temporal

structure of the PSTH, and response latency itself may all be

modulated by the stimulus, it is very difficult to obtain a reliable

estimate of ‘pure latency’ tuning based on finite amounts of

data.

Here we took a more pragmatic approach. Since we are

interested in the issue of decoding neural responses on brief time

scales, we studied latency tuning using the probability density

function of first spike time, which is the quantity that governs

tWTA accuracy. Our results thus hold regardless of whether

differences in first spike latency arise entirely from differences in

response strength, or whether there is some tendency for neurons’

absolute latency to vary with stimulus conditions.

Onset estimation
To extract the information embedded in spike latencies, a

reference signal is required. Note that a reference signal is also

required for decisions based on spike count in order to determine

the start of the counting window. In the general case of latency

coding, the onset signal gives a natural reference for measuring

latency. However, in our case we do not use the absolute response

time, but instead only use relative timing, i.e., who fired first. In

this case, an important feature of the onset signal is to filter out

spontaneous spikes that are not stimulus dependent and hence

carry no information (see Figure 8).

In the case of ‘active sensing’, the intrinsic signal of the motor

command [36] can, in principle, serve as the onset signal.

However, in the case of ‘passive sensing’; e.g., when a child

suddenly jumps in front of your car, the onset signal must be

estimated from the responses of sensory neurons. Here we

suggested a principle by which stimulus onset is estimated by the

group of cells that are not tuned to the information that must be

processed rapidly. We showed that a simple summation of the

responses of ‘onset’ neurons during short time intervals can

provide a reliable reference signal, with sufficient accuracy to allow

for accurate identification of stimulus orientation. The onset cells

were characterized by weak first spike latency tuning, to limit

stimulus dependent bias of the estimated onset time, and low

spontaneous firing rates to reduce the false alarm rate. Because the

tuning modulation and the mean latency are correlated

(Figure 3C), these cells also tend to have an early response.

However, even if the onset signal arrives slightly after the tuned

neurons started to fire, the performance is only mildly decreased

(Figure 8). In terms of the identity of the onset cells, one possibility

is that these are inhibitory interneurons, which are known to be

responsive but poorly tuned [37,38]. Since these neurons do not

project downstream, this would imply that onset detection is

performed locally. A similar approach has been applied in the past

for the estimation of the onset of auditory stimuli by Chase &

Young [24]. The main differences are twofold. One, Chase &

Young used a ‘pseudo population’ signal whereas we use

simultaneous recordings of real neural populations. Two, we used

the responses of a distinguished subclass of cells with weakly tuned

first spike latency for our onset signal, whereas Chase & Young

pooled the responses of all the cells.

A fast and simple readout mechanism in the brain
It remains an open question whether the brain employs a

latency-based readout like the tWTA. Nevertheless, the utility of

the tWTA in our study has been to enable us to investigate and

quantify the information embedded in spike time latency. Let us

consider, for example, the case of a two alternative forced choice

discrimination task, based on a competition between two neurons.

At the time of the first spike the tWTA decision is identical to that

of the conventional rate-based readout. The advantage of a

latency-based readout is clear when both neurons fired one spike

in the counting window. In those cases the latency based readout

can extract information from the temporal structure of the

response, whereas there is no information in the total spike count.

A rate code readout will perform better when more spikes were

fired, but this results in a slower readout. A recent study reported

that the minimal processing time required for visual perceptual

decisions in the monkey is about 30 ms [15]. This brief time scale

is on par with the processing time of the latency readout, i.e the

mean decision time following the internal onset signal (see e.g.

Figure 7I).

To test more directly if a candidate readout mechanism is used

by the brain one would need to correlate the behavior of animals
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with the relevant aspects of neural activity. In a recent study [39],

activity of single neurons in monkey V1 was measured together

with reaction times for visually guided saccades. It was shown that

first spike latency was correlated with behavior whereas firing rate

was not, suggesting that spike latency may indeed serve as a source

of information for fast decisions in the brain.

Implementation of the tWTA readout in the brain
As noted above, the implementation of the n-tWTA readout

requires an integration process and a threshold decision mecha-

nism. In this sense, n-tWTA competition is very similar to the ‘race

to threshold’ mechanism suggested by Mazurek et al [40], in

which the decision in a two alternative task is determined by

integrating ‘evidence’ (spikes) for the two competing alternatives to

reach a decision threshold (n spikes). The decision mechanism

involves a winner-take-all type competition, which is an algorithm

that others have also used to decode neural response [41–43].

Winner-take-all competition can be implemented using reciprocal

inhibition between the integrators that represent the different

alternatives [44,45] (Figure 10). Each inhibitory neuron accumu-

lates evidence for the corresponding alternative and fires when it

crosses a threshold. Higher threshold values reflect a stricter

decision criterion and correspond to higher values of n in the n-

tWTA readout. The integration time constant of the neurons

should be on the order of the relevant time scale for decisions

(,10–30 ms).

The circuit also requires a gating mechanism that triggers the

integration process based on the reference signal. One qualitative

way to implement such a gating mechanism is using NMDA

synapses [33] for the tuned inputs (Figure 10A). The inputs from

the onset cells are first integrated by a coincidence detector, which

in turn excites the inhibitory cells through AMPA synapses (as

shown in Figure S1, such a coincidence detector can be

implemented using a simple integrate-and-fire neuron). Only

when this detector is active, the inhibitory cells become

depolarized and the magnesium block of the NMDA synapses is

removed, allowing for integration of the tuned inputs. When the

onset cells are silent, the NMDA synapses do not allow inputs from

the tuned populations to be integrated. The gating mechanism can

also be implemented using a disinhibition pathway (Figure 10B).

In this case the onset cells are assumed to be inhibitory. Their

inputs are integrated by a neuron which inhibits the competing

neurons. Thus, the competing neurons are released from

inhibition only when the onset cells are active, allowing the ‘race

to threshold’ to begin.

Previous studies have proposed more sophisticated mechanisms

to combine information from the first spikes of different neurons in

a large population. These methods include rank order [30,46] and

synfire chains [47]. The utility of tWTA is that its simplicity

enables statistical analysis of its accuracy, whereas sophisticated

readout mechanisms that rely on specific combinations of firing

orders cannot be tested with finite data on the order of a few

hundred repetitions per stimulus condition. Furthermore, these

readouts may be more difficult to implement in biological circuits.

Recently first spike latency code has been analyzed in the

framework of fast discrimination of sound source location in the

auditory system [48]. There are several interesting similarities and

differences worth noting. In both systems, many cells exhibit

tuning of their first spike latency to the stimulus. Tuned cells are

typically characterized by a unimodal latency tuning curve that

peaks close to the preferred stimulus of the cell, as defined by the

rate tuning curve. In addition, the accuracy of first spike latency

readout is typically comparable though somewhat inferior to the

accuracy of the conventional rate code in single tuned cells in both

systems. The main differences between the systems are the higher

spontaneous firing rates in visual cortex and the poorer

performance of V1 neurons for orientation discrimination. To

overcome the detrimental effect of spontaneous spikes, we

developed here a novel onset detection mechanism, based on

pooling the responses from a set of simultaneously recorded

neurons. The use of simultaneous data from array recordings

rather than single units also enabled us to investigate the accuracy

of latency coding at the population level without the use of

artificial pseudo populations of neurons.

In summary, our study demonstrates that the orientation tuning

of first spike latencies enables accurate discrimination of orienta-

Figure 10. Neuronal architectures for implementing the tWTA
readout for a two-alternative task. The figure describes in a
qualitative manner neuronal architectures that can implement the
tWTA readout in the context of a two-alternative task. The inputs from
population A and population B represent the two alternatives. Both
architectures rely on reciprocal inhibition for implementing a ‘race to
threshold’ competition but they differ in the implementation of the
gating mechanism (see Discussion for details). (A) Implementation of
the gating mechanism using NMDA synapses. (B) Implementation of
the gating mechanism using disinhibition.
doi:10.1371/journal.pcbi.1002536.g010
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tions on brief time scales. Spontaneous firing limits the resolution

of the decision. However, larger populations can afford better

resolution. Furthermore, in many cases when fast decisions are

essential, it is important that the probability of correct response

will be high but coarse resolution may suffice. This may be a

general principle used by the nervous system when fast decisions

are essential. For example, when an object suddenly appears on

the road while we are driving, all we need to know is its rough

location. In most cases we react before we realize whether this

object is a child, a dog or just a plastic bag. These finer details can

be sorted out later as more spikes are accumulated using readout

mechanisms that take into account the entire neural response.

Materials and Methods

Ethics statement
All procedures were approved by the Institutional Animal Care

and Use Committee at the Albert Einstein College of Medicine of

Yeshiva University, and were in compliance with the guideline set

forth in the United States Public Health Service Guide for the Care

and Use of Laboratory Animals.

Experimental procedures
The methods we use to record from neural populations have

been described in detail [49]. In short, we recorded from

anesthetized (sufentanil citrate, typically 6–18 microg/kg/hr,

adjusted as needed for each animal), paralyzed (vecuronium

bromide, 0.1 mg/kg/h) macaque monkeys (macaca fascicularis).

Vital signs were monitored continuously to assure adequate

anesthesia and the well-being of the animal. The pupils were

dilated with topical atropine and the corneas protected with gas-

permeable hard contact lenses. Supplementary lenses were used to

bring the retinal image into focus.

Neural activity was recorded using the Cyberkinetics ‘‘Utah’’

Array (Cyberkinetics Neurotechnology Systems), using methods

reported previously [49,50]. The array consists of a 10610 grid of

silicon microelectrodes (1 mm in length) spaced 400 mm apart,

thus covering 12.96 mm2. The array was inserted roughly 0.6 mm

into cortex using a pneumatic insertion device [51], resulting in

recordings confined mostly to layers 2–3. Signals from each

microelectrode were amplified and bandpass filtered (250 Hz to

7.5 kHz). Waveform segments that exceeded a threshold (period-

ically adjusted using a multiple of the rms noise on each channel)

were digitized (30 kHz) and sorted off-line. Sorted units included

both well-isolated single units and small multiunit clusters.

Neuronal receptive fields were roughly 2–5u from the fovea.

Visual stimuli were displayed at a resolution of 10246768 pixels

and a video frame rate of 100 Hz on a calibrated CRT monitor.

Stimuli were oriented drifting gratings presented in a circular

aperture surrounded by a gray field of average luminance (8

orientations in 4 datasets and 36 orientations in one dataset).

Stimuli were presented binocularly, for 300–400 ms, and separat-

ed by 500–800 ms intervals during which we presented an

isoluminant gray screen. Stimulus orientation was block random-

ized, and each stimulus was presented 200–400 times (see Table 1

for details). In 4 datasets the initial phase of the drifting grating was

identical across trials. To test whether our results were skewed by

this, we collected and analyzed additional data using initial phases

that were randomized across trials. We obtained similar results

from this dataset (see Figure S6). To verify that our results also

generalize to static images, we collected and analyzed responses to

static gratings presented for 50 or 300 ms (dataset 6 in Table 1).

We obtained similar results from this dataset (see Figure S2).

Rate tuning
The rate tuning curves represent the mean firing rate across all

trials at each orientation. The firing rate in a trial was calculated

using a time window from stimulus onset to 300 ms after stimulus

offset. The tuning curves are well fitted using the Von-Mises

function:

R h; Qð Þ~Aek cos 2 h{Qð Þð Þ

where h is the stimulus orientation and Q is the rate-preferred

orientation of the cell.

Latency tuning
To generate latency tuning curves for a neuron we first estimate

the probability density function of the first spike latency of this

neuron, f1(h,t). This is done by computing the histogram of the first

spike times over trials and then normalizing it. Note that because

in some trials there may be no spikes, the integral of the

probability density function may not be 1 but slightly below. The

spike times are measured with respect to the external stimulus

onset and the histogram is generated using bins of 10 ms from

time 0 to 300 ms after stimulus termination. The corresponding

cumulative distribution, F1(h,t), is generated by direct numerical

integration of the density function. A similar procedure is applied

to obtain the nth spike time probability density, fn(h,t), and

cumulative distribution, Fn(h,t), for general n.

The latency tuning curve of the n’th spike is defined as the level

curve at 0.5 of the corresponding cumulative distribution function.

These level curves are fitted using a cosine function of the form:

L h; Qð Þ~A{B cos 2 h{Qð Þð Þ

where h is the stimulus orientation and Q is termed the latency

preferred orientation of the cell. Parameter A represents the mean

latency and B represents the modulation of the tuning.

Here, the reference time is chosen to be the onset of the external

stimulus, but in principle other external reference times can be

used, e.g. 20 ms after stimulus onset. We note that in the cosine fit,

changing the reference time will change the value of A but not B.

The arbitrary choice of the reference is also why a simple cosine

function is more appropriate here than the von-Mises function.

Choosing the reference such that at some orientations the latency

is zero requires parameter k at the von-Mises function to diverge to

infinity. In addition, if the latency is negative with respect to the

reference at some orientations, the von-Mises function will not fit

at all, as it is purely positive.

Because in some trials there may be no spikes, error bars for the

latency tuning curves cannot be simply calculated from the

standard error of the mean associated with the spike times. In

order to generate error bars, we first calculated the standard errors

of the mean for the cumulative distribution, F. This can be done

by noting that F is the mean of a Bernoulli variable and thus its

variance is F (1{F ). The standard error of the mean is therefore:

SEM(F )~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F (1{F )=K

p
, where K is the number of trials. We

then calculated the level curves at 0.5 for F+SEM(F) and for F-

SEM(F), and used them to generate lower and upper error bars,

respectively. These error bars are depicted in Figure 1C and in

subsequent plots of spike latency tuning.

Onset detection
In each dataset we identify a group of cells that can serve for the

detection of stimulus onset. These cells are characterized by poor

tuning and low spontaneous firing rates. The spontaneous firing
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rates are estimated from the recordings during the inter-stimulus

interval (ISI) after each stimulus. From each ISI we remove the

first 300 ms, assuming that after this period the cell returned to its

spontaneous rate (i.e. any post-response adaptation of spontaneous

rate would have dissipated). The tuning is characterized by the

modulation amplitude, B, of the cosine fit to the first spike latency

tuning curve. In each dataset, the cells with a spontaneous rate

lower than 5 spks/sec and with a modulation lower than 15 ms,

were labeled as onset detectors. Using this definition, the number

of onset detectors in a dataset is roughly 10–25% of the population

(see Table 1).

The onset signal in each trial is generated using coincidence

detection. We used a running time window of T ms and looked for

the first time in which there were at least m spikes in this window

(but see also Figure S1). The onset time is then defined as the end

of this window. To set m, we first estimated the mean and standard

deviation of the number of spikes that these cells fire in a time

window T during spontaneous firing. We then set the threshold m

to be Nv standard deviations above this baseline value. By varying

Nv for a given T we generated ROC curves for the onset detection

process. In subsequent analyses we used T = 20 ms and Nv = 4

standard deviations. This onset signal was used as the reference

time tref for measuring spike latencies in the tWTA.

Discrimination accuracy based on single cell responses
The discrimination accuracy of single cells is computed in the

context of a Two-Interval 2-Alternative-Forced-Choice paradigm.

We assume that the cell is presented with two stimuli, one at

orientation h1 and the other at orientation h2, where h1 is the

preferred orientation of the cell. The probability that the tWTA

will yield the correct response is the probability that the latency of

the response to h1 will be shorter than the latency of the response

to h2. To find this probability, we multiply the probability that the

neuron first fired at time t in response to h1 by the probability that

it did not fire before t in response to h2, and then we sum over all

possible times, t (the time is measured with respect to the onset of

the external stimulus). Formally, this is given by the following

integral:

Pc~

ð?
0

dtf tDh1ð Þ 1{F tDh2ð Þð Þ

However, recording time is finite. Our data contains only 300–

400 ms of stimulus presence and the following 700–800 ms of

inter-stimulus time; hence, in some cases the decision threshold is

not reached during our recording time. In practice we assume that

after time T0, that contains the stimulus presence time and the

initial 300 ms of the following inter stimulus period, the neuron

returns to its spontaneous firing rate. Assuming Poisson firing with

mean rate l after time T0, we obtain:

Pc~

ðT0

0

dtf tDh1ð Þ 1{F tDh2ð Þð Þz
ð?

T0

dtfBL tDh1ð Þ 1{FBL tDh2ð Þð Þ

~

ðT0

0

dtf tDh1ð Þ 1{F tDh2ð Þð Þz
ð?

T0

dt 1{F T0Dh1ð Þð Þle{l t{Toð Þ 1{F T0Dh2ð Þð Þe{l t{Toð Þ

~

ðT0

0

dtf tDh1ð Þ 1{F tDh2ð Þð Þz 1

2
1{F T0Dh1ð Þð Þ 1{F T0Dh2ð Þð Þ

It is also important to note that f and F are estimated from the data

using time bins of Dt. The spikes from the responses to h1 and h2

may fall within the same time bin, leading to correct discrimina-

tion at chance level. Correcting for this effect we obtain:

Pc~Dt:
XN0

i~1

f ti Dh1ð Þ 1{F ti Dh2ð Þz 1

2
f ti Dh2ð ÞDt

� �

z
1

2
1{F T0Dh1ð Þð Þ 1{F T0Dh2ð Þð Þ

Finally, for general n, the correction that stems from the

spontaneous firing after response termination is more complicated

due to all the combinations of spike trains that have to be taken

into account. The general expression is then:

Pc~Dt:
XN0

i~1

f ti Dh1ð Þ 1{F ti Dh2ð Þz 1

2
f ti Dh2ð ÞDt

� �

z
Xn{1

m1~0

Xn{1

m1~0

an,m1,m2
P1 T ,m1ð ÞP2 T ,m2ð Þ

where the coefficients an,m1,m2
are given by:

an,m1,m2
~

X2n{m1{m2{1

k~n{m1

1

2

� �k k{1

n{m1{1

� �

and Pi T ,mð Þ is the probability that neuron i fired m spikes up to

time T in response to stimulus hi.

The probability of correct response Pc is the mean of a Bernoulli

variable and the corresponding standard error of the mean can be

calculated as SEM(Pc)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc(1{Pc)=K

p
, where K is the number

of trials.

To prevent possible interaction between the discrimination

accuracy analysis and the latency tuning analysis, we separated

each dataset into a training and test set, each consisting of half of

the trials (randomly chosen). The training set was used for

estimating the latency preferred orientation of the cell. The test set

was then used for constructing the neurometric curve, based on

the preferred orientation from the training set.

To calculate the mean decision time we first compute the

probability that decision will be made between t and t+ Dt,

Pdec(t)~f tDh1ð Þ 1{F tDh2ð Þð ÞDtzf tDh2ð Þ 1{F tDh1ð Þð ÞDtz

f tDh1ð Þf tDh2ð ÞDt2

and then compute its mean.

Discrimination accuracy based on population responses
To study the dependence of n-tWTA accuracy on the

population size we divided the neurons into several artificial

columns of equal orientation width (for datasets with 8 orientations

we divided into 8 columns of 22.5u width and for the dataset with

36 orientations (dataset 3 in Table 1) we divided into 9 columns of

20u width). Each neuron was assigned to the column with the

closest orientation to its own preferred orientation (the number of

neurons in such a column ranged from 1 to 14). For each pair of

columns, we then constructed a neurometric curve, which

measures the probability of correct response as a function of the

number of neurons, N.
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Given two subsets of N cells from each column, we simply went

over all trials with the orientation of the first column and then over

all trials with the orientation of the second. In each trial, the subset

that first fired the n’th spike after the onset signal from the onset

neurons was the n-tWTA. If the time of the n’th spike was the same

for both subsets we tested whether one of the subsets fired

additional spikes in the same bin and took the winner as the subset

that had more spikes. The average number of correct responses

using the n-tWTA gave an estimate of the probability of correct

response for these two subsets of cells. For a given N we averaged

this value over 1000 realizations of the subsets of neurons. The

decision time in a given trial was the time relative to the onset

signal and we calculated its mean and standard error of the mean

across all trials.

Discrimination among multiple alternatives
To investigate discrimination among multiple alternatives, the

neurons were divided according to their preferred orientation into

M groups of equal orientation width, Dh. For convenience, we set

one group to be centered at the stimulus orientation (e.g., if M = 18

and the stimulus orientation is 45u, the centers will be at 5u, 15u,
25u,…, 175u). On a given trial, the group that was first to fire n

spikes was the n-tWTA. If several groups fired the n’th spike at the

same time we chose among them in a random manner. The error

in the trial was the (signed) difference between the orientation of

the winning group and the stimulus orientation. The probability of

correct response was calculated as the average number of times in

which the correct group was the winner.

Supporting Information

Figure S1 Onset detection using an integrate-and-fire
neuron. In addition to the onset detection mechanism described

in the main text, we investigated an implementation of onset

detection in a more biologically plausible architecture, namely by

performing the coincidence detection using a leaky integrate-and-

fire neuron. The neuron integrates the spikes from the onset

neurons with equal synaptic weights until a threshold is reached.

For simplicity, the integration process was set such that each spike

increases the membrane potential by one unit. The voltage then

decays exponentially with a time constant of 20 ms. (A) Illustration

of the integration process by a leaky integrate-and-fire neuron.

The top trace shows a series of spikes from all onset neurons

relative to stimulus onset and the bottom trace show the

membrane potential of the integrate-fire-neuron (in arbitrary

units) as it integrates these spike. The accumulation of spikes

around 45–65 ms after stimulus onset causes the neuron to first

cross the specified threshold and an onset is detected. (B) Mean

onset time as a function of threshold. The mean is calculated over

all trials in one dataset. The gray stripe represents 6one standard

deviation. The horizontal line represents the mean onset time

using the running window approach which was used in the main

text (the time window was 20 ms and the threshold was set to 4

standard deviations above spontaneous firing, which corresponds

here to m = 6 spikes). The vertical line represents the required

threshold for the integrate-and-fire neuron (3.3) to achieve the

same mean onset time. (C) Distribution of the difference in onset

times between the two mechanisms across all trials. The threshold

for the integrate-and-fire neuron is the one which achieves the

same mean onset time as the running window method (3.3).

(TIF)

Figure S2 Latency tuning and orientation discrimina-
tion for static gratings. (A) First spike latency tuning curves for

one cell. Different colors denote different stimulus durations

(50 ms and 300 ms; see legend). (B) The corresponding neuro-

metric curves for the same cell. For each stimulus duration, the

solid curve corresponds to the first spike latency neurometric curve

and the dashed curve to the conventional rate neurometric curve.

(C)–(D) Same as (A)–(B) for a different cell. (E) Proportion of cells

above a given level of the mean latency, A, for the two stimulus

durations. (F) Proportion of cells above a given level of the

modulation tuning, B, for the two stimulus durations. (G)–(H)

Statistics of orientation discrimination. (G) Proportion of cells

above a given performance level for the 300 ms stimulus. The

dashed curves correspond to a 22.5u discrimination task and the

solid curves to a 90u discrimination task. Different curves

correspond to first spike latency (red), second spike latency (green),

third spike latency (blue) and firing rate from the entire response

(black). (H) Same as (G) for the 50 ms stimulus. The analyses were

performed using dataset 6 in Table 1 (98 tuned cells for the 300 ms

stimulus and 89 tuned cells for the 50 ms stimulus).

(TIF)

Figure S3 Pairwise correlations of response latencies
among neurons. (A) Trial to trial fluctuations of first spike

latencies for a pair of cells. For each neuron we calculated a

normalized measure of its first spike latency by subtracting the

mean latency and dividing by the standard deviation. These cells

had similar latency preferred orientations, 139u and 136u, and

their normalized first spike latencies are shown for the first 25 trials

in which the stimulus orientation was 135u. The first spike latency

of the two cells fluctuates from trial to trial around its mean.

However, typically, when one cell fires sooner than its mean

latency the other does as well, and similarly when the response is

delayed, resulting in a positive correlation coefficient of 0.45. (B)

Distribution of first spike latency correlation coefficients. For each

pair of cells with latency tuning (B.15 ms) a correlation coefficient

is calculated separately for each stimulus orientation. The mean of

this distribution is 0.07 and its standard deviation is 0.04. (C)

Dependence of correlations on the difference in preferred

orientations (POs). The cell pairs were divided into six groups

according to the difference between their preferred orientations,

DPO. Each point represents the mean correlation coefficient for all

pairs of neurons at a given range of DPO and the error bars

represent the corresponding standard errors. The solid line

represents the linear regression and its slope is 2102462N1025

(deg-1). These results indicate that there is a very weak

dependence of the first spike latency correlation on the difference

between the latency preferred orientations of the cells.

(TIF)

Figure S4 Effect of pairwise correlations on tWTA
accuracy. Correlations in the trial to trial fluctuations of spike

latencies can affect the utility of pooling information from groups

of cells. To quantify the effect of correlations we compared the

discrimination performance using the original simultaneous data

to the performance using shuffled data with no correlations. In the

shuffled data, the responses of different cells on a given trial were

taken from different trials in the original data. The onset signal

from the onset neurons was also shuffled among trials. For each

shuffled version of the data we found the corresponding

neurometric curve, and then averaged the result from 50 shuffles.

(A–C) Probability of correct discrimination (Pc) as a function of

population size (N) for two populations that differ in preferred

orientation by 45u (A), 67.5u (B) and 80u (C) (same pairs of

populations as in Figure 7). (D) Probability of correct discrimina-

tion in a model of two columns (see Text S1). (E–H) The effect of

shuffling the responses of neurons in different trials. The curves

show the difference in Pc between the original and the shuffled
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data (Pc(original)-Pc(shuffled)) for each pair of columns on the left.

Although the performance is typically better in the original

correlated data, the overall size of the effect is relatively small, on

the order of 1%. For small populations, the correlations increase

tWTA accuracy. However, as the population size increases, this

difference decays to zero. The simplified model (H) captures the

behavior of the data (see Text S1).

(TIF)

Figure S5 Effect of different definitions of response
latency. Gawne et al. [26] recorded responses to oriented bars in

V1 of behaving monkeys and reported that the effect of stimulus

orientation on response latency is relatively weak. The difference

with our results can be attributed to different definitions of

response latency. Gawne et al. defined response latency to be the

time at which the PSTH reaches its half peak (in cases where the

peak was less than twice the spontaneous activity, latency was left

undefined). We used the cumulative distribution function of first

spike times and defined the first spike latency tuning curve as a

level curve of this distribution. (A–C) First-spike latency tuning

curves as computed by first spike (cumulative) distribution level

curves (red) and the corresponding latency tuning curves for the

same cells using the time at which the PSTH reaches half of its

peak (black). (Lower and upper error bars for the halfmax

definition were calculated using the times at which the PSTH

reaches half the peak of the PSTH minus and plus its standard

error of the mean). B denotes the modulation amplitude using our

latency definition and B9 using the half max definition. For the

cells in (A) and (B), the latency tuning curve using the half max

definition (black) is relatively flat, whereas the first spike latency

tuning curve using our definition (red) shows a strong modulation.

For the cell in (C) both definitions show pronounced tuning. (D)

Scatter plot of the modulation amplitudes, B and B9, for each cell.

Notably, the tuning amplitudes using the halfmax definition are

relatively small, whereas our definition results in many cells with

significant modulation.

(TIF)

Figure S6 Effect of stimulus phase on spike latency
tuning. The panels on the left side (A,C,E,G) depict results from a

dataset in which all stimuli of the same orientation had identical

initial phases; the panels on the right side (B,D,F,H) depict results

from a dataset in which the initial phases were random. The two

datasets were recorded in the same animal using the same

electrode array. (A–B) PSTHs of two single cells. The stimuli were

near the preferred orientation of the cells and the PSTH was

constructed from 300 repetitions. For fixed initial phase, the

PSTH is characterized by a periodic modulation whereas for

random phases there is no such modulation. (C–D) First spike

latency tuning curves of the neurons in (A) and (B). (E–F)

Distribution of latency tuning modulation amplitude, B, in the two

datasets. The substantial tuning of the response latency in the

random phase dataset cannot be attributed to the stimulus initial

phase. The inset in (F) shows the two cumulative distribution

functions (black for the fixed phase dataset and blue for the

random phase dataset). The similarity of the two distributions

indicates that there is no significant difference between the

orientation tuning levels of first spike latencies in the two datasets.

(G–H) Mean neurometric curves using the first spike latency (red),

second spike latency (green), third spike latency (blue) and the

firing rate (black). Error bars represent the standard deviation and

are shown only for the rate and the first spike latency neurometric

curves. The fact that performance is similar indicates that our

results reflect the tuning of the first spike latency to stimulus

orientation and not the initial phase of the stimulus.

(TIF)

Text S1 A simple model for studying the effect of
pairwise correlations on tWTA accuracy.
(DOC)
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