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Abstract

Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of
samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities.
In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each
condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly
these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by
marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-
of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of
the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that
the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is
small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the
primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence
measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a
substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating
information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data
sets, where the number of samples is too small to estimate higher-order correlations directly.
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Introduction

Neural coding examines the way that populations of neurons

represent and signal information. A central topic in population

coding is the impact of spike count correlations following repeated

presentation of the same stimulus (noise correlations). How

important are these dependencies for the information carried by

the neural population response? Is it important for a decoder to

take noise correlations into account? Typically, a distinction is

made between (easy to estimate) linear and (hard to estimate)

higher-order correlations. We define higher-order correlations as a

statistical moment of order greater than two that is not uniquely

determined by the first- and second-order statistics. According to

this definition, higher-order correlations go beyond the linear

correlation and can - but not necessarily have to - involve more

than two neurons. These higher-order correlations can exist

between pairs of neurons. They refer to all dependencies that are

not already characterized by the correlation coefficients.

The linear correlation coefficient is central to many studies

dealing with neural coding. Substantial correlations were found in

many cortical areas (see e.g. [1–3]) with a notable exception being

reported in [4]. Furthermore, characteristics of linear noise

correlations change with adaptation [1]. Theoretical studies have

revealed a strong impact of linear correlations on information

measures and optimal decoding [5–12]. However, these studies

have focused exclusively on linear correlations.

Higher-order correlations are notoriously difficult to estimate.

The number of samples required for reliable estimation increases

exponentially with the order of correlations [13]. Recently,

statistical tests were developed for detection of higher-order

correlations and cumulants [13,14]. These tests are based on the

compound Poisson process as an underlying model and may fail if

the model assumptions are not justified. Furthermore, the tests

were designed to detect higher-order dependencies and not to

evaluate their impact on a neural coding measure of interest.

In order to assess the impact of correlations on neural coding, a

performance measure must be evaluated which quantifies the

‘‘quality’’ of the neural code. Common measures include the

decoding error (e.g. the averaged error of an optimal estimator),

the Fisher information (for continuous variables), or the mutual

information [15]. Calculation of most of these measures, however,

requires full knowledge of the probability distribution of the data.

Probability distributions can be estimated without parametric

assumptions using histograms. The histograms can then be used to

estimate information theoretic quantities such as the mutual

information. However, estimators based on histograms are biased

if the sample size is small [16]. Bias correction techniques have

been developed for alleviating this problem [16–18]. Breaking
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down the mutual information into several blocks that can be

attributed to different statistics of the distribution can also help in

reducing the number of required samples [11,19,20]. Nevertheless,

the number of samples required for non-parametric estimators is

still on the order of hundreds.

A complementary approach to estimate probability distributions

involves model-based techniques with parametrized higher-order

correlations. The most common way to analyze the impact of

higher-order correlations is to fit a second-order model (which is

based on first- and second-order statistics) to the data and to make

a comparison to a higher-order model [21–29]. The distribution is

typically assumed to be stationary over time. The method is

restricted to situations in which it is possible to collect a sufficient

number of samples for all stimulus conditions. For retinal ganglion

cells, for instance, between 100 and 1000 samples can be collected

for each bin of the neural activity distribution [29].

Maximum entropy distributions form a family of parametric

models that allow to reliably quantify the impact of linear

correlations [17,30], because single neuron distributions (marginal

distributions) and the linear correlation coefficient can be

estimated reliably given a small number of samples. The model

distribution can then be used to determine above mentioned

measures quantifying the quality of the neural code. In principle,

maximum entropy methods allow for the inclusion of higher-order

correlations also [24]. However, these correlations have to be

estimated from the data in order to be included as proper

constraints requiring larger amounts of data. Ignoring these

higher-order correlations, on the other hand, could possibly lead

to biased results. Rich parametric families of distributions, such as

copulas, reduce the number of required samples as a trade-off for

parametric assumptions [23,31]. Nevertheless, the number of

samples that is required to reliably estimate the model parameters

is still on the order of hundreds. In summary, previously described

methods for detecting and evaluating the impact of higher-order

correlations exhibit a number of shortcomings. They either (1)

detect higher-order correlations without evaluating their impact

on a neural coding measure; (2) are based on strong parametric

assumptions; or (3) require a substantial number of samples to

construct models that explicitly take higher-order correlations into

account, which can be time-consuming and expensive to obtain.

In these situations, it would be important to develop methods that

assess, based on small sample sizes, whether higher-order

correlations may have an impact on the conclusion to be drawn

from a particular study or whether a collection of a large number

of samples would be indeed required. For instance, let us assume

that mutual information between an ensemble of stimuli and the

responses of a small population of simultaneously recorded

neurons is evaluated. It would then be desirable to design a test

based on a small number of samples to assess whether higher-order

correlations are present and they lead to conclusions substantially

different from the conclusions obtained using linear correlations

only.

Here, we introduce a statistical test to assess whether linear

correlations are sufficient for analyzing population spike counts

(null hypothesis). To this end, we construct a set of distributions

which includes all maximum entropy distributions with linear

correlations and a parametric family of marginals and test whether

the data is consistent with or rejects the null hypothesis for the

selected divergence measures.

This test is applied to all neuronal pairs for a given population.

Hence, the test is sensitive to higher-order correlations between

pairs only. The null hypothesis cannot be rejected if all

distributions for the pairwise elements are consistent with the

maximum entropy distribution. If, however, the null hypothesis is

rejected for some of the pairs we can conclude that higher-order

correlations are essential and need to be determined using a larger

number of samples.

The paper is organized as follows. The next section contains a

detailed description of the statistical test for maximum entropy

distributions and the recording procedures. In Section ‘‘Results’’

we verify the statistical test for maximum entropy distributions on

various dependency structures that were artificially generated. We

then describe the results of the application to recordings from cat

V1. The paper concludes with a discussion of the advantages and

limitations of the approach and of the findings in V1.

Materials and Methods

Ethics Statement
All experiments were performed under protocols approved by

MITs Animal Care and Use Committee.

A Monte Carlo Maximum Entropy Test
Here we describe a novel test for bivariate spike count

distributions that determines whether the dependence structure

is sufficiently well characterized by the correlation coefficient. We

will first give an intuitive description of the test followed by a

rigorous mathematical description.

The test consists of two parts: (1) construction of a reference

distribution which is based on the single neuron spike count

distributions and the correlation coefficient and (2) a goodness-of-

fit test to calculate a p-value and eventually reject the reference

distribution.

The reference distribution formalizes the linear dependency

assumption. For this purpose, we apply a maximum entropy

model subject to a set of constraints. The constraints contain the

complete single neuron spike count distributions and the linear

correlation coefficient. Everything is therefore fixed by the

distribution constraints except for the higher-order correlations.

If this reference distribution can be statistically rejected then we

can conclude that higher-order correlations do matter.

The single neuron spike count distributions and the correlation

coefficient are not known a priori. Instead, they must be estimated

from the data. For simplicity, we assume that the single neuron

distributions are Poisson distributed. This leaves us with the

Author Summary

Populations of neurons signal information by their joint
activity. Dependencies between the activity of multiple
neurons are typically described by the linear correlation
coefficient. However, this description of the dependencies
is not complete. Dependencies beyond the linear correla-
tion coefficient, so-called higher-order correlations, are
often neglected because too many experimental samples
are required in order to estimate them reliably. Evaluating
the importance of higher-order correlations for the neural
representation has therefore been notoriously hard. We
devise a statistical test that can quantify evidence for
higher-order correlations without estimating higher-order
correlations directly. The test yields reliable results even
when the number of experimental samples is small. The
power of the method is demonstrated on data which were
recorded from a population of neurons in the primary
visual cortex of cat during an adaptation experiment. We
show that higher-order correlations can have a substantial
impact on the encoded stimulus information which,
moreover, is modulated by stimulus adaptation.

Maximum Entropy Test for Spike Count Correlations
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estimation of firing rates and the correlation coefficient. The test

should be applicable even when the number of samples is very

small. Therefore, any estimates of distribution parameters are not

reliable. Instead of relying on specific estimates of these

parameters, we maximize the p-value over these parameters and

then use the most conservative p-value.

Figure 1 shows a flow diagram of the test. A step-by-step

procedure is provided in Table 1. In step (1) the Poisson

parameters and the correlation coefficient are initialized with

their sample means that are obtained from the data set. The p-

value is then maximized by applying an optimization algorithm

like simulated annealing (step (2), cf. Section ‘‘Optimization of the

Nuisance Parameters’’ in Text S1). To this end, we estimate the p-

value based on the maximum entropy distribution subject to the

optimization parameters. First, we calculate a divergence S0

between the data and the maximum entropy distribution (step 2.2).

We then draw many samples from the maximum entropy

distribution and estimate an empirical distribution over diver-

gences (step 2.3). By comparing the divergence S0 to this empirical

distribution we can assess how likely it is that the maximum

entropy distribution generated the data. This gives us a p-value for

a particular set of Poisson rates and a correlation coefficient (step

2.4). The maximization over these parameters then yields the most

conservative p-value. In step (3) the second-order assumption is

rejected if the p-value is below the a significance level.

An implementation of the test including an application scenario

for MathWorks MATLAB and GNU Octave is available online at

a software directory of the Technische Universität Berlin (http://

www.ni.tu-berlin.de/menue/software/monte_carlo_maximum_en

tropy_test/).

Formal test description. We will first describe the maxi-

mum entropy reference distribution and then the goodness-of-fit

test based on a Monte Carlo procedure.

Consider a bivariate distribution P(x1,x2) over X1,X2 with

marginals

gP(x1)~
X
x2[

S X2ð Þ

P(x1,x2); hP(x2)~
X
x1[

S X1ð Þ

P(x1,x2), ð1Þ

where S(X ) denotes the support of the random variable X . The

linear correlation coefficient is given by

corrP(X )~
EP½X1X2�{EP½X1�EP½X2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarP½X1�VarP½X2�
p , ð2Þ

where mi~EP½Xi� denotes the expectation and s2
i ~VarP½Xi�

denotes the variance of Xi. The maximum entropy distribution

constrained by the marginals (Equation 1) of P and the correlation

coefficient (Equation 2) is the distribution Q that maximizes the

entropy H(Q)~{
P

x[S(X ) Q(x) log2 Q(x) subject to the con-

straints:

Vx1[S(X1) : gQ(x1)~gP(x1), ð3Þ

Vx2[S(X2) : hQ(x2)~hP(x2), ð4Þ

corrQ(X )~corrP(X ): ð5Þ

It was shown [32] that this distribution is uniquely given by

PME(x1,x2)~f1(x1)f2(x2)elx1x2 , ð6Þ

where f1,f2 and l are obtained by solving:

Vx1[S(X1) : f1(x1)
X
x2[

S X2ð Þ

f2(x2)elx1x2~gP(x1), ð7Þ

Vx2[S(X2) : f2(x2)
X
x1
S X1ð Þ

f1(x1)elx1x2~hP(x2), ð8Þ

{
m1m2

s1s2
z
X
x1[

S X1ð Þ

X
x2[

S X2ð Þ

x1x2

s1s2
f1(x1)f2(x2)elx1x2~corrP(X ): ð9Þ

In order to examine whether a given data set is consistent with

such a maximum entropy reference distribution we apply the

Figure 1. Flow diagram of the maximum entropy test.
doi:10.1371/journal.pcbi.1002539.g001
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multinomial distribution. Every bivariate discrete distribution with

finite support can be represented by a table containing the

probability distribution mass function. Let k denote the number of

boxes of this table with frequencies p1, . . . ,pk. For a given number

of draws N from this distribution the probability mass function of

these entire draws follows a multinomial distribution:

PN,p(x)~
N!

Pk
i~1 xi!

P
k

i~1
p

xi
i : ð10Þ

The number of draws, N , corresponds to the number of

observations in the data set. The maximum entropy distributions

constrained up to second-order constitute a subset V05V of the

set V of all multinomial distributions. Let q denote the frequencies

of the true distribution of the observed data. We then consider the

null hypothesis H0, that the observed data are drawn from a

distribution from V0:

H0 : q[V0: ð11Þ

If the null hypothesis can be rejected, then the marginals and

linear correlation coefficient are not sufficient to characterize the

underlying distribution of the data. This is formalized as the

alternative hypothesis:

H1 : q[V\V0: ð12Þ

In order to test the null hypothesis the distributions of the test

statistics are approximated by Monte Carlo sampling over

nuisance parameters. The nuisance parameters v are unknown

parameters such as the correlation coefficient or parameters of the

marginal distributions. The Monte Carlo goodness-of-fit test with

nuisance parameters follows [33]: for a given set of nuisance

parameters and resulting reference distribution (in our case the

maximum entropy distribution), Monte Carlo samples are drawn.

A single Monte Carlo sample consists of N samples

(x1,1,x2,1), . . . ,(x1,N ,x2,N ) from the reference distribution. A total

of NMC Monte Carlo samples M1(v), . . . ,MNMC
(v) are drawn.

Each Monte Carlo sample gives rise to an empirical distribution

PMi (v)(x1,x2)~
#fj[f1, . . . ,NgD(x1,x2)~(x1,j ,x2,j)g

N
, ð13Þ

where #A denotes the cardinality of the set A. In order to obtain a

distribution over test statistics for the reference distribution under

review, the divergence Si(v) between the original reference

distribution and each of the empirical distributions of the samples

Mi(v) is calculated. This distribution is compared to the

divergence S0(v) between the reference distribution and the

empirical distribution of the observed data. The location of S0(v)
within the empirical distribution of test statistics

S1(v), . . . ,SNMC
(v) yields a p-value:

p̂pNMC
(v)~#fi[f1, . . . ,NMCgDSi(v)§S0(v)g=NMC : ð14Þ

The spike count distribution is a discrete distribution and,

therefore, the distribution of test statistics is also discrete. The

formalism requires a properly randomized distribution to be

rigorous [33]. Hence, we need to take into account ties of the test

statistics. To accomplish this a simple procedure called tie

breaking can be applied [33]. Essentially, the procedure orders

test statistics randomly whenever they are the same.

Formally, for each test statistic Si an i.i.d. random variable

Ui is drawn from the uniform distribution on the interval

(0,1). The test statistics are then reordered according to

(Si,Ui)ƒ(Sj ,Uj)ufSivSj or (Si~Sj and UiƒUj)g.
The p-value has to be corrected for the finite number NMC of

Monte Carlo samples and is given by [33]:

~ppNMC
(v)~

NMC(#fi[f1, . . . ,NMCgDSi(v)§S0(v)g)z1

NMCz1
: ð15Þ

The p-value is then maximized over the nuisance parameters

(i.e., the correlation coefficient or parameters of the marginals) that

span the space of maximum entropy distributions V0:

p~ sup
v[V0

~ppNMC
(v): ð16Þ

The procedure results in a test in which the false rejection rate is

guaranteed to be below the a-level [33], thus allowing us to

examine evidence for higher-order correlations that is reflected in

the particular divergence measure of interest. Note that the power

of the test slightly increases with the number of Monte Carlo

samples. However, the power is primarily affected by the sample

size (cf. Section ‘‘Comparison to Likelihood Ratio Test’’).

In this paper we consider two divergence measures that are

based on common information measures: The entropy difference:

DH (P(1),P(2)) : ~DH(P(1),P(2))~DH(P(1)){H(P(2))D, ð17Þ

Table 1. Step procedure of the Monte Carlo Maximum Entropy Test.

(1) Initialize spike count rates l1,l2 and correlation coefficient r with their sample estimates from the data set x

(2) Maximize the p-value over l1,l2 and r using simulated annealing:

(2.1) Compute the maximum entropy distribution PME subject to Poisson marginals with rates l1 and l2 and correlation r

(2.2) Calculate the divergence S0 between the empirical distribution of the data set x and the maximum entropy distribution PME

(2.3) For i in 1, . . . ,NMC :

(2.3.1) Draw N samples from PME , where N is the number of samples in the data set x

(2.3.2) Calculate the divergence Si between the empirical distribution of the N drawn samples and the maximum entropy distribution PME

(2.4) Estimate the p-value based on the number of indices i for which SiwS0 ; if Si~S0 then toss a coin to decide whether to include the index

(3) Reject H0 if pva

doi:10.1371/journal.pcbi.1002539.t001
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and the mutual information difference:

DI (P(1),P(2)) : ~DI
P(1) (X ;H){I

P(2) (X ;H)D, ð18Þ

where IP(X ;H) is given by

IP(X ;H)~H
X

h[S(H)

P(X Dh)P(h)

 !
{
X

h[S(H)

H P(X Dh)ð Þ: ð19Þ

X and H are random variables with conditional distributions

P(X Dh) of a given realization h from H.

If the test rejects the second-order hypothesis then we can

conclude that significant differences exist in terms of the

information measure between the data and the predictions of

models neglecting higher-order correlations. For the mutual

information between stimuli and neural responses, for example,

this means that the mutual information estimates obtained for data

and models are significantly different. Hence our approach tests

for higher-order correlations which are relevant for a particular

analysis task. Consider the extreme example that only the

probability of both neurons being silent (no spikes of both

neurons) is of interest. Then one could apply a divergence measure

which takes only the probability of that spike count pair into

account. In contrast, other common approaches would just

quantify a general divergence of the distributions which might

not be of interest at all.

Additional divergence measures are discussed in the supporting

information (cf. Section ‘‘Alternative Divergence Measures’’ in

Text S1).

Recording Procedures
The experimental procedures have been described previously

[34]. Here, we briefly repeat the description for completeness. The

experiment was performed under protocols approved by MIT’s

Animal Care and Use Committee. The animal was anesthetized

and paralyzed. Neural responses were measured to drifting high-

contrast square-wave gratings of 16 directions. Each drifting

grating had a frequency of 1 Hz. In the control conditions the 16

drifting gratings were presented for 10 trials each for a total of 160

trials, 2.5 s each presentation. We selected the first 7 trials each to

match the number of trials of the second condition. In the

adaptation condition one grating of fixed orientation moving

randomly in two opposite directions was presented for a duration

of 2 min. Afterward, the drifting test gratings with 16 different

directions were presented randomly for 2.5 s each (7 trials per

grating), preceded by a 5 s ‘‘topping-up’’ presentation of the

adapting orientation. Multiple simultaneous extra-cellular record-

ings were made using tungsten microelectrodes at cortical depths

between 500 mm and 1500 mm in the primary visual cortex.

Responses from 11 cells were recorded whose orientation

preferences in the control condition covered the entire orientation

range. The signal was amplified and thresholded to obtain spike

trains.

Data Analysis
The spike trains were binned into non-overlapping time

intervals and the number of spikes was counted within these

intervals. The length of the intervals was varied between 10 ms

and 400 ms. Three recurrences of the same grating appeared in

each of the 2.5 s presentations. The sample pool of each model

and each test was based on the orientation of the grating stimulus

(trials with opposing directions of movement were combined), on

the time points within an iteration of the drifting grating and on

the two experimental conditions. This yielded a total of 42

repetitions each for the control and adaptation conditions, the 8

orientations and for each of the time intervals with stimulus

presentation. Samples from within an iteration were not mixed to

prevent confounding effects from varying rates. Therefore,

separate tests were used for every time step and every neuron

pair. The false discovery rate of the multiple testing rejections was

corrected using the Benjamini-Hochberg procedure [35] with a

significance level a~5%. This multiple testing procedure controls

the expected proportion of falsely rejected hypotheses in a multiple

inference setting. It was applied over all pairs, all time bins for a

given bin size and, in the case of entropy difference as the

divergence measure, over all stimulus orientations. The correction

was not applied over all bin sizes, because the potential absence of

higher-order correlations is treated as a separate hypothesis for

every bin size.

Results

Validation of the Test on Artificial Data
We devised a test that determines whether the dependence

structure of spike count distributions is sufficiently well character-

ized by the second-order statistics (cf. ‘‘Materials and Methods’’).

The test was applied to spike count samples drawn from three

different families of bivariate distributions: (1) a family of

maximum entropy distributions constrained by rates and linear

correlations only (ME), (2) a family of distributions with higher-

order correlations but vanishing linear correlations (M1), and (3) a

family of distributions with higher-order correlations in the

presence of limited linear correlations (M2). Marginals Pl were

always Poisson distributed, i.e.

Pl(x)~
lxe{l

x!
, ð20Þ

where l§0 is the mean and x[N is the spike count variable.

The maximum entropy distributions ME served as reference

distributions and were constructed according to Equations 6–9

and varying correlation coefficient. In order to investigate the

power of the test we constructed two distribution families M1 and

M2, which included higher-order correlations. These families are

based on so-called copulas, which allow us to construct multivar-

iate distributions with Poisson marginals and higher-order

correlations [23,36]. The families M1 and M2 consisted of two

components:

PM1=2(x1,x2)~(1{z)PME(x1,x2)zzPCO(x1,x2), ð21Þ

where z[½0,1� is a mixture parameter, x1,x2 are spike counts. The

two components were defined as a maximum entropy distribution

of the family ME (PME , cf. Equations 6–9 with Poisson marginals

as in Equation 20 and Figure 2 A, left, and 2 B, left) and a copula-

based distribution PCO (cf. Figure 2 A, right, for M1 and 2 B,

right, for M2) which was a mixture distribution by itself and which

showed significant higher-order correlations [23]:

PCO(x1,x2)~ FCO(x1,x2){FCO(x1{1,x2)

{FCO(x1,x2{1)zFCO(x1{1,x2{1):
ð22Þ

The cumulative distribution function (CDF) FCO is defined as

FCO(x1,x2)~CCO(FX1
(x1),FX2

(x2)), ð23Þ

Maximum Entropy Test for Spike Count Correlations
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where the CDF’s of the Poisson marginals are defined as

FXi
(x)~

Xtxs

k~0

lk
i

k!
e{li : ð24Þ

li is the rate parameter of element i. Equations 22 and 23 hold for

every copula-based distribution with discrete marginals. Linear

and higher-order correlations are specified by the applied copula.

The copula CCO of the model is defined as a Gaussian mixture

copula

Ch1,h2
(u,v)~

1

2
Ch1

(u,v)z
1

2
Ch2

(u,v): ð25Þ

The bivariate Gaussian copula family is defined as

Ch(u,v)~wh(w{1(u),w{1(v)), ð26Þ

where wh is the CDF of the bivariate zero-mean unit-variance

normal distribution with correlation coefficient h and w{1
is the

inverse of the CDF of the univariate zero-mean unit-variance

Gaussian distribution.

We chose the Gaussian copula model to construct PCO, because

it can be used to systematically introduce higher-order correlations

while keeping the marginal distributions unchanged. The marginal

Poisson distributions have one rate parameter each whereas the

Gaussian copula family has one parameter which affects the linear

correlation coefficient and higher-order correlations of the

bivariate model, but not the marginal distributions. The resulting

linear correlation coefficients can be positive or negative. We can

therefore apply a mixture of two Gaussian copulas with two

opposite correlation coefficients. This yields a model with an

overall linear correlation coefficient that is arbitrarily small. The

higher-order correlations, on the other hand, can still be strong.

These dependencies are visible as a cross in the probability mass

function (Figure 2 A, right).

In order to generate strong higher-order correlations we set

h1~0:9 and numerically adjusted h2 for each z to obtain a certain

linear correlation coefficient for PM1=2 (correlation coefficient 0 for

model M1 and 0.2 for model M2).

For family M1 the correlation coefficient of both PME and PCO

was set to 0 (no linear correlation) while for family M2 the

correlation coefficient was set to 0.2 (weak positive linear

correlation). Therefore, the linear correlation coefficient (and the

marginals) of families (M1) and (M2) were by construction

independent of the mixture parameter z. The mixture parameter

z, however, controlled the strength of the higher-order correla-

tions. For z~0, PM1 and PM2 corresponded to maximum entropy

distributions with linear correlations only, while zw0 led to

distributions PM1 and PM2 with higher-order correlations. A

mixture distribution can be interpreted as a model with multiple

common inputs which are active at different times. In the PCO

model there were two mixture elements with opposite correlation

coefficients corresponding to inputs that produce correlated or

anticorrelated responses. For z~0 these inputs were absent.

Increasing z corresponded to increasing the strengths of these

inputs.

Figure 2 C shows the results of the maximum entropy test for

higher-order correlations for several members of the M1 and M2

families of bivariate spike count distributions for the entropy

difference (Equation 17) as the divergence measure. All subfigures

show the percent rejections of the null hypothesis H0 (cf. previous

section) on a significance level a~5%, i.e. the rejections of the

hypothesis that higher-order correlations did not significantly

influence the estimated values for the entropy of the distributions

M1 and M2. The rejection rates were estimated over 100 trials.

Different lines represent different sample sizes (10, 50, 100 and

200) to which the test was applied.

Figure 2 C (left) shows the percent rejections of H0 for data

samples from maximum entropy distributions PME with different

linear, but no higher-order, correlations present. As expected, the

achieved Type I error (i.e. rejections despite absence of higher-

order correlations in the underlying distribution) was small and the

acceptance rate of H0 was close to the desired value of 95%. The

center and left subfigures in Figure 2 C show the percent rejections

of H0 for different strengths of higher-order correlations of samples

drawn from the M1- (r~0) and M2-distributions (r~0:2). The

larger the mixture parameter z the higher the percent rejection of

H0, i.e. percent rejections increases for increasing strength of the

higher-order correlations. Moreover, Type II errors (no rejections

despite presence of higher-order correlations in the underlying

distribution) decrease for increasing sample sizes. Therefore, the

test can successfully detect moderately strong higher-order

correlations in artificial data even when the sample size is on the

order of 50. Since the results for the M1- (Figure 2 C, center) and

M2-distributions (Figure 2 C, right) were similar, the test was

insensitive to the presence of linear correlations. Additional results

for a Poisson rate l~5 (corresponding to 50 Hz and 100 ms bins)

are shown in Figure S2 in Text S1 and resemble those of Figure 2

C.
Comparison to likelihood ratio test. We compared the

proposed Monte Carlo maximum entropy test to a standard

approach for statistical testing: the likelihood ratio test [37]. This

test evaluates whether a reduced model provides a fit that is as

good as a full model. In this case, the full model is the multinomial

distribution and the reduced model is the maximum entropy

distribution. Parameters are estimated by maximizing the likeli-

hood of the respective model. Let LME(wDx)~PME(x) denote the

likelihood of the maximum entropy distribution and

LMN (pDx)~PN,p(x) the likelihood function of the multinomial

distribution (cf. Equations 6 and 10). Then the likelihood ratio

statistic is given by

LR~2 log
LMN (p̂pDx)

LME(ŵwDx)

� �
, ð27Þ

where p̂p and ŵw are the maximum likelihood estimators of the

distribution parameters. For sufficiently large sample size, the LR

test statistic is x2 distributed with r degrees of freedom, where r
denotes the number of additional free parameters in the full model

compared to the maximum entropy model. Note that for limited

sample sizes the x2 distribution is not necessarily exact.

We compared the likelihood ratio test to the proposed Monte

Carlo test for varying sample sizes. Figure 3 A shows the

percentages of rejections of the maximum entropy hypothesis for

data that were sampled from a maximum entropy model (Type I

error). For both tests the percentages do not depend on the

number of samples. The percentages of rejections are generally

smaller for the likelihood ratio test. Both tests, however, have a

rejection rate below the significance level a~5%.

We also evaluated the power of the tests as a function of sample

size. We expected that the Monte Carlo test would perform better

for small sample sizes, because the x2 distribution is less accurate in

these cases. Figure 3 B shows the power with respect to the copula

mixture models (cf. Section ‘‘Validation of the Test on Artificial

Data’’) with a mixture parameter that was sampled uniformly. The

Maximum Entropy Test for Spike Count Correlations
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figure shows that the power of the proposed test is indeed much

greater when the sample size is small. The likelihood ratio test has

almost no rejections for sample sizes below 50, whereas the Monte

Carlo test rejects between 5% and 20% of the maximum entropy

hypotheses. But also for medium sample sizes the power of the

Monte Carlo test surpasses that of the likelihood ratio test.

Impact of autocorrelations. Neural spike trains typically

have autocorrelation structure which is known to affect estimates

of correlations [38]. We explored the impact of autocorrelations

on the proposed Monte Carlo maximum entropy test by

simulating gamma processes with varying refractory periods.

Interspike intervals were sampled from the gamma distribution

p(t; k,l)~
lk

C(k)
tk{1 exp ({lt), ð28Þ

where l is the rate of the process (set to 30 Hz) and C is the

gamma function. The exponential distribution is a special case of

the gamma distribution when k~1. In this case we obtain a

Poisson process, whereas for kw1 the gamma process has a

refractory period. We varied k between 1 and 2. The processes

become more regular when we increase k. Autocorrelations

therefore increase with increasing k.

In each trial we simulated two concurrent spike trains. The

goodness-of-fit of a Poisson process was assessed with a

Figure 2. Evaluation of the maximum entropy test on artificial data. (A) Probability mass functions of the maximum entropy distribution
PME (left) and the Gaussian copula based distribution PCO (right) of the mixture distribution PM1 with a linear correlation coefficient of r~0. The
Poisson marginals (l~3) are plotted along the axes. (B) Same as A but for the mixture distribution PM2 with a linear correlation coefficient of r~0:2.
(C) Percent rejections of the null hypothesis using the entropy difference as the divergence measure. Significance level was a~5%. Rejection rates
were estimated over 100 tests. Different lines correspond to different numbers of samples drawn from the candidate distribution: 10 (red dotted line),
50 (green dash-dotted line), 100 (blue dashed line), and 200 (black solid line). (Left) Results for the PME family for varying correlation coefficient r.
(Center) Results for distributions from the PM1 family (r~0) for varying mixture parameter z (cf. Figure 2 A). (Right) Same for PM2 (r~0:2, cf. Figure 2
B)). Poisson rate was l~3 for all candidate distributions (corresponding to 30 Hz and 100 ms bins). Simulated annealing [45] was applied to maximize
the p-value (cf. Text S1). Number NMC of Monte Carlo samples was 1000.
doi:10.1371/journal.pcbi.1002539.g002

Figure 3. Effect of sample size on the Monte Carlo maximum entropy test results (solid black line) and on the maximum likelihood
ratio test results (dashed blue line) with Poisson rate l~3. The entropy difference was used as a divergence measure. Significance level was
a~5%. Rates were estimated over 100 trials. ( A) Percent rejections of the maximum entropy hypothesis. Data were sampled from maximum entropy
distributions with random correlation strengths. ( B) Percent rejections of the null hypothesis. Data were sampled from a copula-based mixture model
with uniformly random mixture parameter (cf. PM1 , Equation 21).
doi:10.1371/journal.pcbi.1002539.g003
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Kolmogorov-Smirnov test at a a~5% significance level (c.f.

Section ‘‘Poisson Goodness-of-fit Tests’’ in Text S1). Moreover, we

binned the spike trains into 100 ms intervals and calculated

simultaneous spike count pairs. We then applied our proposed

maximum entropy test to the spike count pairs. Figure 4 shows the

rejections rates for ( A) 50 samples (corresponding to spike trains of

length 5 s) and ( B) 100 samples (corresponding to spike trains of

length 10 s) over 100 trials. The rejection rates of both tests

increase with k. This reflects that the deviation from Poisson

processes increases. Furthermore, both tests have greater rejection

rates when applied to 100 samples ( B) than when applied to 50

samples ( A).

In almost every case, rejection rates of the maximum entropy

test are lower compared to the Kolmogorov-Smirnov test. This

shows that the Kolmogorov-Smirnov test is more sensitive to

autocorrelations of gamma processes and has more statistical

power than our proposed maximum entropy test. This comes as

no surprise, since the Kolmogorov-Smirnov test operates directly

on the spike trains whereas the maximum entropy test assesses the

spike counts without any information of spike timing.

Application to Data Recorded from Cat V1
The new maximum entropy test was applied to neural spike

trains recorded from the primary visual cortex of anesthetized cat

during visual stimulation [34]. The protocols of the neurophys-

iological experiments are depicted in Figure 5. Drifting gratings of

random orientations between 00 and 1800 (resolution 22:50) were

presented during two conditions. In the control condition, each

(test) orientation was presented for 2.5 s. In the adaptation

condition, an initial block (2 min) of one grating of fixed

orientation was followed by random presentations of the 8

orientations (2.5 s). Each of these (test) gratings was preceded by

a 5 s presentation of the adapted grating in order to maintain the

orientation effects. Simultaneous neural activity from 11 cells was

recorded by multiple electrodes in V1. The resulting spike trains

were binned and transformed to spike count sequences. We

thereby obtained a total of 42 repetitions for each condition,

orientation and non-overlapping spike train bin of varying length.

Application of the maximum entropy test requires a maximi-

zation of the p-values over the nuisance parameters (Equation 16)

which include the marginal distributions. Because a maximization

over all possible marginal distributions would have been unfea-

sible, we made a parametric assumption and described all

marginal distributions by Poisson distributions (Equation 20) with

rate parameters l as the only nuisance parameters. Note that

parameter values differed between neurons, conditions, orienta-

tions and spike train bins.

The stimulus grating was drifting with a frequency of 1 Hz. The

size of the spike count bins was varied between 10 ms and 400 ms.

The changing stimulus-driven rate might therefore violate the

Poisson assumption depending on the size of the bin. Several

statistical tests were applied to check whether our assumption

should be rejected (cf. Section ‘‘Poisson Goodness-of-fit Tests’’ in

Text S1). Indeed, neither a single neuron Monte Carlo goodness-

of-fit test for Poisson statistics nor a multivariate Monte Carlo

goodness-of-fit test for the product distribution (after removing all

dependencies) led to rejections of the Poisson hypothesis for any of

the bin sizes. Taken together, these findings do not provide any

evidence against our assumption of Poisson-distributed marginals.

Furthermore, we applied Kolmogorov-Smirnov tests based on

the discrete time rescaling theorem [39] quantifying the interspike

interval statistics (cf. ‘‘Poisson Goodness-of-fit Tests’’ in Text S1).

Although a discrete Poisson distribution of the spike counts does

not necessarily imply interspike interval statistics that follow a

Poisson spike generating process, the reverse always holds. For

rates estimated in 100 ms bins, the rejection rates of the Poisson

process hypothesis were below 5%. For greater bin sizes (200 ms,

400 ms), the rejection rates increased. For a detailed discussion,

see ‘‘Poisson Goodness-of-fit Tests’’ in Text S1.

We applied separate maximum entropy tests to all 55 neuronal

pairs and to all time bins (non-overlapping time intervals locked to

the start of a grating presentation at varying latencies, cf. Section

‘‘Data Analysis’’). Figure 6 A shows the results for the entropy

difference (Equation 17) as the divergence measure. The rejections

were corrected for multiple inferences and averaged over neuron

pairs, stimuli and time bins for given bin sizes (cf. Section ‘‘Data

Analysis’’). The fraction of rejected pairs increased with increasing

bin size until it reached a maximum at 200 ms. Therefore, as bin

size increases, more and more neuron pairs show significant

Figure 4. Effect of autocorrelations on the Monte Carlo maximum entropy test results (blue) and on the discrete Kolmogorov-
Smirnov test results (red). Interspike intervals of two concurrent spike trains were sampled from a gamma distribution with constant rate l~3
and gamma parameter k. Spike counts were calculated over subsequent 100 ms bins. The entropy difference was used as a divergence measure.
Significance level was a~5%. Rates were estimated over 100 trials. ( A) 50 spike count pairs were sampled for each test trial. ( B) 100 spike count pairs
were sampled for each test trial.
doi:10.1371/journal.pcbi.1002539.g004

Figure 5. Illustration of the control and adaptation protocols.
doi:10.1371/journal.pcbi.1002539.g005
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differences between the entropy estimated directly from the data

and the entropy estimated using models which neglect higher-

order correlations.

The smaller value for a bin size of 400 ms could already be a

consequence of the central limit theorem: For finite rates and in

the limit of large bin sizes the distribution of the spike counts

converges to a bivariate normal distribution which is an instance of

a second-order maximum entropy distribution.

Figure 6 B shows the results for the difference in mutual

information (Equation 18) as the divergence measure. The mutual

information is calculated between the orientations of the test-

gratings and the corresponding spike counts: P(1)(h)~P(2)(h)~ 1
8

were the flat distributions over gratings,

P(1)(X Dh)~PME(X ; l1(h),l2(h),r(h)) was the maximum entropy

reference distribution subject to Poisson rates l1 and l2 and a

correlation coefficient r for each of the eight stimulus values.

P(2)(X Dh) was the empirical distribution over the data set or Monte

Carlo sample.

The fraction of rejected pairs increased with bin size showing

that for many bin sizes there was significant evidence for higher-

order correlations that was reflected in the mutual information for

a substantial number of pairs. However, contrary to the results for

the entropy difference, the number of rejections was significantly

higher in the adapted condition than in the control condition for

bin sizes 80 ms, 100 ms and 200 ms (paired t-test, pv5%). For the

adaptation condition, there was much more evidence for higher-

order correlations that was reflected in the mutual information

than in the entropy. This indicates that for many bin sizes

divergences from the maximum entropy distribution were more

stimulus specific after adaptation even though they were smaller.

For the entropy difference as the divergence measure, rejection

rates do not vary with stimulus orientation. For both the entropy

difference and the mutual information difference, the data suggest

that rejection rates tend to increase towards the end of the trial

(data not shown).

Figure 7 A shows the overall firing rates of the individual

neurons in the control and the adaptation conditions. The data

suggest the existence of a high firing rate (§10 Hz) and a low

firing rate (v10 Hz) population. Figures 7 B, C show the results of

the maximum entropy test for the difference in the mutual

information as a divergence measure separately for both popula-

tions. The figures show that the rejected pairs were significantly

higher for the high firing rate population for bin sizes §80 ms in

both the control and the adaptation condition (paired t-test,

pv5%). Moreover, the rejection rates in this subpopulation were

significantly higher in the adaptation condition than in the control

condition for these bin sizes (paired t-test, pv5%), which did not

hold for the low firing rate population.

We explicitly estimated the mutual information between the

bivariate spike counts of neuronal pairs and the stimulus set using

(1) the best fitting second-order maximum entropy distribution,

which neglects higher-order correlations and (2) a non-parametric

method involving a bias correction for small sample sizes, where

higher-order correlations are included in principle (cf. Section

‘‘Subpopulation Structure of Recorded Neurons’’ in Text S1). The

relation between these estimates can roughly illustrate the order of

impact of higher-order correlations even though the number of

samples is insufficient to obtain unbiased mutual information

estimates. Results show that when higher-order correlations are

taken into account a bimodal distribution of mutual information

values emerges, with modes coinciding with the low firing rate (for

small mutual information values) and high firing rate (for high

mutual information values) population (cf. Figure S5 in Text S1).

Discussion

We devised a maximum entropy test that assesses higher-order

correlations in terms of an information theoretic analysis. The

biggest advantage of the method is the small number of samples

that is required. We demonstrate that the test can be useful even

when the number of samples is on the order of 50. Our approach

has the advantage of being able to test for higher-order

correlations, which are relevant for a particular analysis task,

rather than in terms of a general divergence measure, which might

not be of interest at all.

A divergence measure that is based on mutual information can

be applied to quantify evidence for higher-order correlations that

is reflected in mutual information. Suppose two stimuli h1 and h2

are present with conditional bivariate spike count distributions

P(X Dh1) and P(X Dh2). Let P(X Dh1) follow a maximum entropy

distribution and P(X Dh2) follow the mixture distribution of Section

‘‘Validation of the Test on Artificial Data’’ with the same

correlation coefficient. Then the mutual information is 0 for

z~0 and increases with z. The mutual information difference can

therefore quantify divergence in terms of a measure of interest.

The test that we presented is restricted to neuronal pairs.

Therefore, multivariate higher-order correlations that are not

detectable in bivariate distributions would be overseen. The

Figure 6. Results of the maximum entropy test for data recorded from area V1 of anesthetized cat. The evaluation was performed
separately for the control and adaptation conditions. ( A) Fraction of neuron pairs rejected by the Monte Carlo maximum entropy test with the
entropy difference as the divergence measure (a~5%) and for different bin sizes. ( B) Same as in A but using the mutual information difference.
Rejection rates were averaged over all neuron pairs and all time bins. Simulated annealing [45] was applied to maximize the p-value (cf. Text S1).
Number NMC of Monte Carlo samples was 1000. The false discovery rate of the rejections was corrected using the Benjamini-Hochberg procedure
[35].
doi:10.1371/journal.pcbi.1002539.g006
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maximum entropy hypothesis would be accepted in spite of such

correlations being present. The number of rejections, however,

could only increase but not decrease. In principle, a theoretical

generalization of the test to an arbitrary number of neurons is

straightforward. Practical computation time and memory require-

ments, however, increase exponentially with the number of

neurons. It is not clear whether higher-order correlations that

are not detectable in bivariate distributions are particularly

important for neural systems. From a generative viewpoint,

however, this condition would impose strong constraints on the

statistics of the neural responses: on the order of N2 constraints

would be necessary for a population of N neurons to keep the

neurons linearly uncorrelated while higher-order correlations

would need to be stimulus specific.

If the number of samples is on the order of 50 and higher-order

correlations are present then mutual information estimations are

unreliable. The test with the mutual information difference as the

divergence measure includes the calculation of mutual information

values. This is acceptable for several reasons: (1) The goal of the

method is not to yield an estimate of the mutual information, but

rather to quantify the divergence of the data compared to the

reference family of distributions. (2) Simple bias correction

techniques that depend on the number of samples (e.g. the

Miller-Madow bias corrections) are implicitly present in the test

because the divergence is the difference of the mutual information

and therefore, any additive biases vanish. (3) The test searches in

the parameter space of maximum entropy distributions and

calculates their mutual information values. Under the null

hypothesis this means that the true mutual information is among

those that we consider. Since we use the worst case p-value, the test

is reliable even if the number of samples is insufficient to estimate

mutual information.

We cannot make sure that the spike counts are actually Poisson

distributed even though we applied several statistical tests to

ascertain that this assumption is not unreasonable. We explored

the impact of deviations from the Poisson distribution by applying

the maximum entropy test to gamma processes. Naturally, the test

rejects the maximum entropy distribution with Poisson marginals

if the deviations of the gamma process from the Poisson process

are too strong. However, we also compared the rejection rates of

the maximum entropy test to the rejection rates of the

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test turned

out to be more sensitive to these deviations than the proposed

maximum entropy test. This suggests that the V1 rejection rates of

the Kolmogorov-Smirnov test should be much greater if the

Poisson assumption was the reason for the strong rejection rates of

the maximum entropy test. In general, one could assume more

flexible marginals if the Poisson hypothesis must be rejected. We

propose the negative binomial and the binomial distribution as

alternatives in the supporting information (cf. Section ‘‘Alternative

Marginal Distributions’’ in Text S1).

It might come as a surprise that the application of the Poisson

goodness-of-fit tests to the V1 data yielded so little Poisson

rejections, given that spike trains are non-stationary and typically

have strong autocorrelations. We emphasize that we applied

separate tests for every bin: spike counts from subsequent bins of a

single trial were not modeled by a single distribution but by

separate distributions. We make no assumptions about the relation

of these subsequent models. The test, therefore, cannot detect any

higher-order correlations that have a time lag beyond the length of

the bin. Moreover, we assume that spike counts of a given bin can

be described by a single stationary distribution across trials. In

principle, additional tests could be applied to bin pairs with a fixed

lag in order to detect higher-order correlations that have a time lag

beyond the length of the bin.

Spike counts are calculated within subsequent bins of a given

length. It is well known that higher-order correlations are of no

relevance if the bin size is very small. In this case the marginals are

essentially binary: either there was a spike present in the bin or

not. The bivariate distribution table of these spike counts is

characterized by only three probabilities (the table has four values

but the last one is fixed by the constraint that the probabilities sum

to one). Thus the correlation coefficient is sufficient to characterize

the dependency structure for very small bin sizes. For larger bin

sizes higher-order correlations can be important, however, we

assume that the bin size is already fixed before the test is applied.

The goal of our analysis is not to find a parameter regime where

higher-order correlations are necessary. Instead, there was a

separate hypothesis inference for each bin size. As such, we

applied a multiple inference procedure to analyze the data that

were recorded from V1. Multiple inference procedures do not

need a multiple testing correction [40]. Instead, we applied a

multiple testing correction over all pairs and all time bins for a

given bin size but not over all bin sizes. If the goal of the analysis

would have been to identify a particular bin size for which higher-

order correlations do matter or if the test is applied in an

exploratory study over multiple bin sizes to determine whether

more data should be collected, then the multiple testing correction

should as well be applied over all bin sizes.

Previously, it was shown that orientation adaptation in cat V1

neurons results in shifts of the preferred orientation [34] and in

changes of the distribution of linear correlations between neuronal

pairs [1]. In our ‘‘proof of principle’’ example we investigated

whether higher-order correlations change and whether they have a

Figure 7. Subpopulation analysis of the data that are presented in Figure 6 C. ( A) Overall firing rates of the 11 neurons in the data set from
Figure 6 for the control and adaptation conditions. The rates were averaged over all stimuli. ( B) Fraction of neuronal pairs rejected by the maximum
entropy test with the mutual information difference as the divergence measure (a~5%) for the high firing rate (§10 Hz, cf. A) population of
neurons. ( C) Same as in B but for the low firing rate population (v10 Hz). Rejection rates were averaged over all neuron pairs and all time bins.
Simulated annealing [45] was applied to maximize the p-value (cf. Text S1). Number NMC of Monte Carlo samples was 1000. The false discovery rate
of the rejections was corrected using the Benjamini-Hochberg procedure [35].
doi:10.1371/journal.pcbi.1002539.g007

Maximum Entropy Test for Spike Count Correlations

PLoS Computational Biology | www.ploscompbiol.org 10 June 2012 | Volume 8 | Issue 6 | e1002539



significant impact on information theoretic quantities. Taken

together, the results of our analysis provide evidence for condition-

dependent influences of higher-order correlations on the estima-

tion of entropy and mutual information for many spike count bin

sizes. Furthermore, our analysis suggests the existence of different

subpopulations of neurons with a different higher-order correla-

tion structure.

The purpose of the test is to show whether higher-order

correlations must be taken into account when a particular kind of

analysis is planned for an experimental data set and not to provide

in depth insight into the structure of these associations. The

advantage of the test lies in the small numbers of samples it needs

to detect the presence of analysis-relevant higher-order correla-

tions, hence it can be applied to a smaller exploratory study. If the

maximum entropy hypothesis is rejected, one learns two things: (1)

One should not perform the planned analysis on the given data

and (2) one should redo the experiment and increase the number

of data, such that higher-order associations can be reliably

estimated. In the supporting information, we briefly describe

generalized linear models (GLMs) as one particular option for

modeling higher-order associations (cf. Section ‘‘Modeling Higher-

order Correlations’’ in Text S1). For a more detailed description of

GLMs we refer the reader to previous studies [41–44].

The new test provides a convenient way to investigate the

sufficiency of second-order dependency models, and is especially

useful when the number of samples per condition is small - a

typical situation in electrophysiology. The application of the test to

data recorded in primary visual cortex provides a proof of

principle for the usefulness of our method.

Supporting Information

Text S1 Supporting text providing a detailed description of the

optimization procedure, of Poisson goodness-of-fit tests, of

alternative marginal distributions and divergence measures. It

also provides a discussion of modeling higher-order correlations

and of the subpopulation structure of the recorded neurons.

(PDF)
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