
Coding Conspecific Identity and Motion in the Electric
Sense
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Abstract

Interactions among animals can result in complex sensory signals containing a variety of socially relevant information,
including the number, identity, and relative motion of conspecifics. How the spatiotemporal properties of such evolving
naturalistic signals are encoded is a key question in sensory neuroscience. Here, we present results from experiments and
modeling that address this issue in the context of the electric sense, which combines the spatial aspects of vision and touch,
with the temporal aspects of audition. Wave-type electric fish, such as the brown ghost knifefish, Apteronotus leptorhynchus,
used in this study, are uniquely identified by the frequency of their electric organ discharge (EOD). Multiple beat frequencies
arise from the superposition of the EODs of each fish. We record the natural electrical signals near the skin of a ‘‘receiving’’
fish that are produced by stationary and freely swimming conspecifics. Using spectral analysis, we find that the primary
beats, and the secondary beats between them (‘‘beats of beats’’), can be greatly influenced by fish swimming; the resulting
motion produces low-frequency envelopes that broaden all the beat peaks and reshape the ‘‘noise floor’’. We assess the
consequences of this motion on sensory coding using a model electroreceptor. We show that the primary and secondary
beats are encoded in the afferent spike train, but that motion acts to degrade this encoding. We also simulate the response
of a realistic population of receptors, and find that it can encode the motion envelope well, primarily due to the receptors
with lower firing rates. We discuss the implications of our results for the identification of conspecifics through specific beat
frequencies and its possible hindrance by active swimming.
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Introduction

Sensory systems must effectively extract relevant information

from an animal’s environment. Their ability to encode natural

scenes and tease out salient sensory features relies on a range of

neural mechanisms, e.g. [1,2]. In social contexts, individuals

generate signals with characteristic temporal and spatial frequen-

cies, and time-varying amplitudes [3]. From these signals, an

individual can reconstruct the sensory ‘‘social’’ scene [4] by sorting

out the identities, locations and behaviours of its neighbors [5].

Narrowband signals with slow amplitude modulations, known

as envelopes, are a nonlinear signal feature of particular

importance for scene analysis in the auditory system [6–8], human

speech recognition [9,10], and coding of textures in visual cortex

[11]. Envelopes have also been studied in the electric sense [12–

15]. Weakly electric fish have a submicrosecond-precision neural

pacemaker, under behavioural control [16], that produces a weak

quasi-sinusoidal dipolar electric organ discharge (EOD). Each

animal has its own EOD frequency (EODf) [17]. For example, the

species studied here, Apteronotus leptorhynchus, has EODfs in the

700–1100 Hz range, with males generally having higher EODfs

than females (see Figure 1A for example EOD recordings). These

fish sense prey, navigation cues and other animals including

conspecifics by encoding amplitude modulations (AMs) of the

EOD carrier with the quasi-linear modulation of the mean firing

rates of cutaneous electroreceptor afferents [18–20].

Two fish in close proximity sense the sum of their electric fields

as a time-varying beating AM [17]; the beat frequency is a basic

component of electrocommunication [17] (see Figure 1B for

example compound EOD with beating AM). In groups of fish,

multiple beat frequencies result in ‘‘beats of beats’’ and slow

envelopes with narrowband AMs [14]. The spatial aspects of these

EOD interactions are less well-understood, though for stati’c fish,

the complex electric images of conspecifics have been recently

predicted under some conditions [21]. Sinusoidal and narrowband

random AMs (SAMs and RAMs, respectively) are typically

generated through electrodes to mimic social interactions under

experimental conditions (see Figure 1C), and have subsequently

led to much insight into the underlying electrosensory processing

(e.g. [12,13,15,17]). However, little is known about how move-

ment, resulting in relative changes in distance and orientation,

influences the processing of complex AMs in carrier-based senses,

such as auditory and electrosensory systems. Signals with SAMs

and narrowband RAMs do not have explicit low-frequency power

associated with motion. The more natural scenario involves EOD

AMs resulting from the motion of a small number of conspecifics
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[22], which spectrally contain a small discrete set of narrow peaks.

A thorough characterization of these natural dynamic signals is

necessary to better understand the neural mechanisms required for

effective electrosensory processing.

In this study, we first describe the naturalistic AMs and slow

envelopes resulting from the relative motion of interacting fish. We

contrast the properties of the EOD modulations for static and

swimming fish, providing a mathematical model for the associated

motion in terms of band-limited random AMs. We then determine

the consequences of motion on the neural encoding of number,

identity, and movement characteristics of socially interacting

conspecifics, by computing what information about the sensory

scene is represented in electroreceptor spike trains.

Results

Envelope analysis of experimental data
Since groups of Apteronotus in the wild rarely contain more than a

few individuals [14], we recorded the signals during interactions of

pairs (N = 8) and triplets (N = 4) of fish. The EODfs ranged from

700 to 922 Hz; the beat frequencies (Df ), equal to the differences

between the EODfs of the interacting fish, ranged from 19 to

144 Hz. In each experiment, only one of the fish, named the

‘‘receiving fish’’ and denoted ‘‘fish 1’’, was restrained. We denote

the neighbouring fish as ‘‘fish 2’’ and ‘‘fish 3’’. The compound

EOD signal due to all fish (including fish 1) was recorded through

two electrodes locally on one side of fish 1, very close to its head,

approximating the signal received by fish 1 near its receptive

surface. The other one or two fish swam around freely in the same

tank (see Figure 2A and Materials and Methods). The amplitude

modulation (AM) resulting from the proximity of neighbouring fish

is referred to hereafter as the first envelope, E1. The slow envelope

of E1 (modulation of the AM) is referred to as the second envelope,

E2.

Each individual fish senses its own EOD highly reliably. When a

pair of fish are in a ‘‘static’’ state where both are stationary, fish 1

receives a constant stimulus from fish 2 in addition to its own

EOD, resulting in a stable periodic E1 at the beat frequency Df
(see Figure 2B). In these conditions, E2, as the envelope of E1, is

nearly a constant. In contrast, when fish 2 is allowed to swim

freely, both E1 and E2 at fish 1 vary in time (Figure 2C,D). This is

a consequence of Coulomb’s law, albeit in a complex geometry:

shorter distances between the two fish, each of which acts as an

oscillating electric dipole, lead to stronger electric current flow

caused by the neighbouring fish; larger distances result in a weaker

or even undetectable input from the neighbour. Thus, the mean of

E2 reflects the average distance between two fish, while the

variance of E2 is associated with the pattern of swimming of fish 2

including its bending and turning.

The three-dimensional spectrogram in Figure 2E allows a

visualization of the time-varying amplitudes and frequencies of

each fish’s EOD as experienced by fish 1 for the same segment of

experimental data used in Figure 2D. The amplitude of the

spectral density (ASD) of fish 1 (around 827 Hz) is very stable in

time, but the ASD of fish 2 (around 764 Hz) varies in time as it

swims around in the tank, in a manner very similar to the E2 (c.f.

Figure 2D). It is worth noting that the occurrence of chirps can

also be indicated in E2. A chirp is a communication signal

commonly produced during social interactions, and is character-

ized by a *20 msec modulation of the EOD frequency [23]. For

example, the fast dip of E2 (‘‘�’’ in Figure 2D) indicates a chirp,

which is also seen as a cleft in the ASD (‘‘�’’ in Figure 2E) at a time

of 65.5 sec. Apart from these brief EODf shifts during a chirp, the

EODf did not change over the course of our recordings, and can

be assumed constant.

Mathematical model for the composite EOD signal
A. leptorhynchus generates a quasi-sinusoidal EOD, so the

superposition of EODs of multiple fish can be well-approximated

by a sum of sinusoidal waves at the EOD fundamental frequencies.

Since the ASD of the stationary fish 1 is highly reliable, the

amplitude of its EOD can be taken as one, without loss of

generality; on the other hand, the time-varying ASD from the free-

swimming fish 2 is better represented by a stochastic process.

Given constant EODfs, the composite EOD signal can be modeled

as

s(t)~ sin (2pf1t)z
Xns

n~2

(Anzsngn) sin (2pfntzwn) ð1Þ

where ns is the group size, fn is the EODf of the n-th fish (n~1 for

the stationary fish), and Anzsngn is the stochastic amplitude for

the n-th free-swimming fish, with a mean of An and standard

deviation (STD) sn. gn is a stochastic variable with zero mean and

unit variance, mimicking the amplitude variations due to

movement of the free-swimming fish, and is modeled here for

simplicity as an Ornstein-Uhlenbeck process (OUP, or lowpass-

filtered Gaussian white noise); the spectral power of an OUP is

concentrated in the low-frequency range like the movement itself

(see Materials and Methods). The phase difference wn does not affect

the spectral components of E1 and E2 and is set to zero; phase

may however play an important role in other computations, for

example those involved in the jamming avoidance response (JAR)

[17].

The OUP is characterized by an exponential autocorrelation

function, with a decay time constant that defines its correlation

time, c (see Materials and Methods). To estimate this correlation time,

we compared the autocorrelations of E2 obtained from the

experimental trials and the artificial signal s(t) above, for the case

of two fish. All autocorrelations of E2 extracted from the natural

Author Summary

Effectively processing information from a sensory scene is
essential for animal survival. Motion in a sensory scene
complicates this task by dynamically modifying signal
properties. To address this general issue, we focus on
weakly electric fish. Each fish produces a weak electrical
carrier signal with a characteristic frequency. Electrorecep-
tors on its skin encode the modulations of this carrier
caused by nearby objects and other animals, enabling this
fish to thrive in its nocturnal environment. Little is known
about how swimming movements influence natural
electrosensory scenes, specifically in the context of
detection and identification of, and communication with
conspecifics. Using recordings involving free-swimming
fish, we characterize the amplitude modulations of the
carrier signal arising from small groups of fish. The
differences between individual frequencies (beats) are
prominent features of these signals, with the number of
beats reflecting the number of neighbours. We also find
that the distance and motion of a free-swimming fish are
represented in a slow modulation of the beat at the
receiving fish. Modeling shows that these stimulus features
can be effectively encoded in the activity of the electro-
receptors, but that encoding quality of some features can
be degraded by motion, suggesting that active swimming
could hinder conspecific identification.

Coding Conspecific Identity and Motion
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electric signals recorded separately from pairs of fish exhibit a

decaying behaviour (coloured curves in Figure 3A). These

experimental curves can be fit very well by E2 of s(t) when

c~1 (dotted curve in Figure 3A). This agreement also confirms

that the OUP is an appropriate stochastic model for g2. Other

parameters A2, s2 and f2 have negligible influence on the

autocorrelation as expected from the properties of the OUP and

verified by numerical simulation (not shown).

The relative motion of the fish results in a time-varying contrast.

The mean and STD of ‘‘instantaneous’’contrast obtained from the

raw data (see Materials and Methods for detailed definition) are used

to estimate A2 and s2, respectively, of the simulation signal, s(t), in

the case of two fish. Both numerical simulation and theoretical

analysis for s(t) (see Equation (6) in Materials and Methods) show that

the mean and STD of the contrast of s(t) are approximately equal

to A2 and s2, respectively. This is illustrated in Figure 3B which

compares the mean contrast from both theory (filled circles) and

simulation (solid black line), along with the STD of the contrast

(theory: open circles; simulation: dashed black line). Also shown in

Figure 3B are the mean contrasts (+STD) calculated from the

recordings of different fish pairs; these values are used as estimates

of the corresponding A2 (and s2) in s(t). For the five-minute

Figure 1. Electric organ discharge (EOD) from weakly electric fish in different situations. (A) Experimental recordings of two isolated
individual fish. (B) An example compound EOD recording from two fish in close proximity. The interference of electric fields generated by each fish
evokes a time-varying beating amplitude modulation (AM) which is a first order envelope E1 (red trace), as well as a second order envelope E2 (here a
flat line, blue trace). (C) The EOD signal with a sinusoidal amplitude modulation (SAM, red trace) or a narrowband random amplitude modulation
(RAM, red trace) are common ways to experimentally mimic or computationally simulate electrosensory signals arising from social interactions.
doi:10.1371/journal.pcbi.1002564.g001

Coding Conspecific Identity and Motion
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recording with the highest mean contrast of 23:2% and relatively

high STD of 13:3% (the fish pair with red data point in Figure 3B),

fish 2 was fairly aggressive, making fast approaches sometimes

resulting in physical contact. In contrast, for the pair with the

lowest mean contrast of 1:6% and lowest STD of 0:4% (the fish

pair with dark green data point in Figure 3B), fish 2 stayed mainly

in the corner of the tank and rarely moved. A similar situation

occurred for the pair marked by the purple data point

Figure 2. Analysis of experimental recordings. (A) Experimental setup: the fish in the middle of the tank is restrained in a hammock; another
one or two fish swim freely. The compound electric organ discharge (EOD) signals due to all fish were recorded through two electrodes (red dots)
1 cm apart and very close to the skin of the head of the restrained ‘‘receiving’’ fish. The line joining the electrodes was perpendicular to the skin in
order to measure the normal component of the electric field. (B) Raw electric field (black) recorded from two static fish (both were held in hammocks),
and its corresponding first envelope E1 (red) and second envelope E2 (blue). Their EOD frequencies (EODf) are 827 and 763 Hz, respectively. (C) A
stretch of data of 1.2 sec long (black, only the positive part is shown) from one restrained fish (EODf at 827 Hz) with one other fish (763 Hz) freely
swimming, and the corresponding E1 (red) and E2 (blue). (D) E2 extracted from the recording in (C) over a 10 second duration. The dip around the
middle of this trial (marked by ‘‘*’’, same event as in (E)) indicates a chirp. (E) 3D spectrogram of the data in (D). The amplitude of the spectral density
(ASD) of the restrained fish is almost constant at 827 Hz, but the ASD of the freely swimming fish at 763 Hz varies with a very similar pattern as E2
shown in (D).
doi:10.1371/journal.pcbi.1002564.g002

Coding Conspecific Identity and Motion
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(6:2%+3%), but fish 2 in this trial was slightly more active. This

behaviour is also reflected in the autocorrelation times, which are

relatively long in these two trials (Figure 3A, dark green and purple

curves). The other five pairs of fish exhibited intermediate levels of

swimming and approach behaviours (Figure 3B), with mean

contrast ranging from 7% to 20% and STD varying from 3% to

10:2%. Thus, for the model, we chose the parameter range for A2

as 0.07 to 0.20, and for s2=A2 as 0.5 to 0.9.

We can now construct an artificial signal s(t) to simulate the

signal arising from a real interaction. For instance, Figure 3C

shows a realization of s(t) that mimics (statistically) the interaction

indicated by the blue fish pair in Figure 3B (A2 = 0.143 and

s2 = 0.08), along with its E1 and E2. We also checked the

similarity between the calculated E2 and the stochastic amplitude

A2zs2g2 (Figure 3D). The sum of amplitudes and E2 exhibit very

good agreement, which confirms again that motion of the fish

produces the second envelope E2. The same parameter values will

be used in our simulation work below for two fish, unless otherwise

stated.

Spectral properties of the composite EOD signal:
implications for electrosensory coding

To quantitatively compare the power spectral densities (PSD) of

the simulated signal, s(t), with the raw recordings, s(t) was

rescaled to make its total energy equal to that of the experimental

data. We consider 12 seconds for two different experimental trials,

one from a fish pair and another from a three-fish group

(EODfs = [827,763]Hz and [831,740,889]Hz, respectively). The

PSDs for the raw signal, as well as for E1 and E2, are plotted side-

by-side in Figure 4 (green curves), along with the PSDs for the

Figure 3. Characterization of the recorded social signal and comparison to the model signal described in Equation (1). (A) Averaged
auto-correlation of E2 calculated from five-minute recordings from 8 pairs of fish (each pair labeled by a different color), and from an artificial signal
s(t) in Equation (1) with ns = 2 (dotted line). The Ornstein-Uhlenbeck process (OUP) g2 is generated using c~1 (black dotted curve). (B) Mean contrasts
+ standard deviations (STD) of the raw data from the same 8 pairs using the same color scheme as in (A); numerical results calculated directly from
Equation (1) (black lines) and approximate theoretical results (circles, see Materials and Methods) showing how the mean contrast (solid black line and
solid circles) of the simulation signal s(t) and the mean + STD contrast with s2=A2 = 0.6 (dashed black lines and open circles) increase with A2 ; Inset:
STD/mean contrast for eight pairs of fish. Note that timeplots in Figure 2C, 2D and 2E, the green curve in Figure 3A and the green data point in
Figure 3B are from the same recording of a pair of fish, and it will be used as representative data in the later analysis and figures in the case of two
fish. (C) Based on the parameter values provided by this representative data, an example of the artificial signal s(t) (see Equation (1); black, only the
upper part shown here) is shown and its envelopes E1 (red) and E2 (blue) over 1.2 seconds. Its parameter values are f1 = 827 Hz, f2 = 763 Hz,
A2 = 0.143, s2 = 0.08, c = 1. (D) A comparison between E2 (blue) and the amplitude of the second sinusoidal wave: A2zs2g2 (orange) over
10 seconds.
doi:10.1371/journal.pcbi.1002564.g003
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corresponding simulated signals (swimming state with sn=0: black

solid curves and static state with sn = 0: black dashed curves). The

stationary fish 1’s EOD is significantly stronger than that of any

neighbour, and produces the largest peak in Figure 4A. Thus, the

dominant frequencies of E1 are located at the beat frequencies

Df1i~Df1{fi D, iw1, while other beats at Dfij~Dfi{fj D, i,jw1

contribute less. Similarly, differences between any two Df1i’s,

referred hereafter as secondary beats, are the prominent spectral

components of E2 in groups of three fish (or more). This is evident

in the spectral peak of E2 at 33 Hz (Df12–Df13 = 91-58) in

Figure 4C (right). This clearly describes quantitatively the

common notion that electric field modulations at the skin contain

spectral information about the number of neighbouring fish as well

as their identities (EODf).

Further, at low frequencies (0–20 Hz), the comparison between

swimming fish and ‘‘static’’ fish indicates that E1 contains power

related to motion (Figure 4B). This power is two or more orders of

magnitude less than the power at the beat frequencies. Neverthe-

less, this contrasts with the narrowband RAMs used in experi-

mental studies [12,15] to mimic the E1 resulting from the

interaction of many static conspecifics; these RAMs have no power

at these low frequencies. The E1 motion power (Figure 4B) can

also be larger than that of the secondary beats in E1.

Interestingly, the power associated with motion is clearly

highlighted by E2 (Figure 4C). This motion produces a decaying

spectral floor mainly in the range 0–20 Hz, but extending out

beyond 100 Hz over five orders of magnitude or so. The peaks

associated with the secondary beats ride on top of this floor, with

very low power for the chosen EOD parameters. Neural circuitry

specialized in extracting information from slow E2 envelopes

[7,11,12] could do so using the lower frequency structure; in this

context, the E2 floor would be considered a signal. Alternatively,

this E2 power could obscure other potentially significant envelope

signals in the same range, and this motion-induced spectral floor

would act as a noise floor. Finally, Figure 4 shows that there is very

good agreement, both qualitative and quantitative, between the

spectral features of the experimental and simulated signals,

providing further support for our model.

Electric fish recognize the EODf of conspecifics through the

beat frequencies [17]. Therefore, higher spectral peaks or

narrower peak width (PSD of E1) at beat frequencies should

improve the ability of fish 1 to encode the beat frequencies. To

Figure 4. Spectral analysis of sensory signals and their envelopes. Power spectral densities (PSD) of the signal recorded at the receiving fish
(A), and its envelopes E1 (B) and E2 (C) from 12-second recordings (green) and the simulated signal (black) for two fish (left column) and three fish
(right column). The simulated signal in the swimming state (s2=0, black solid curves) is scaled so that its total energy is equal to that of the raw data.
The same scaling factor (1=8000) is used to simulate the signal corresponding to the ‘‘static’’ mode (s2 = 0, black dashed curves). Note that the rising
power in the low frequency range (0–20 Hz) related to the motion disappears. In the case of two fish, the EODfs of the receiving fish and its
neighbour were f1 = 827 Hz and f2 = 763 Hz, respectively, causing a beat frequency of 64 Hz. For three fish, the EODfs of the receiving fish and its two
neighbours were f1 = 831 Hz, f2 = 740 Hz and f3 = 889 Hz, respectively, with beat frequencies of 91 Hz and 58 Hz. The secondary beat frequency (i.e.
the difference between two beat frequencies, Df12{Df13) are highlighted by E2. The parameters used for the simulated signal are A2 = 0.143,
s2 = 0.08 for the two fish case, and A2 = 0.03, A3 = 0.08, s2,3 = 0.5A2,3 for the three fish case; c = 1 in both cases.
doi:10.1371/journal.pcbi.1002564.g004
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investigate how inter-fish distance and motion can influence this

encoding, we define the spectral resolution of beat frequencies in

E1 as the ratio between the height and width of the corresponding

spectral peaks (see Figure 4B). Ai and si, which relate respectively

to the inverse of the distance between two fish and the movement

variation of neighboring fish, are important factors for quantifying

E1. A group of two fish, the simplest and most common group for

A. leptorhynchus, with the same EODfs as in Figure 4 was taken as an

example. We computed the average height and width of the PSD

peaks centered at beat frequencies for different combinations of A2

and s2 and plotted the simulation results in Figure 5. The peak

width is measured at a power of 3|10{9 (slightly above the ‘‘noise

floor’’), because the increment of spectral peak width is more

sensitive to s2g2 at this value. Figure 5A clearly demonstrates that

when s2 is fixed at 0.1, a larger A2 results in an increased peak

height (solid line), while the peak width (dotted line) barely

changes. Therefore, shorter distances between two fish increase

the resolution of the beat frequency (see Figure 5C). Figure 5B

shows that, for fixed A2~0:2 and increasing s2, both width and

height increase [24], but at different rates. The result is that the

ratio of height to width decreases with increasing s2 (by about 50%
over the range tested, see Figure 5D), indicating that a larger swim

variance of fish 2 reduces the spectral resolution of the beat

frequency. A comparison of the rates of changes in Figure 5C and

5D indicates that the resolution of the beat frequency is more

sensitive to A2 than s2.

The influences of A2 and s2 on E1 can also be observed in the

time domain, via the behavior of successive periods of the E1

waveform. For the current example, the probability density

function (PDF) of the E1 period shows a peak at 15.6 msec (i.e.

beat period of 1=Df = 1/64 Hz) when A2 = 0.2 and s2~0
(Figure 6A; red line); a larger s2 introduces more jitter around

this beat period. On the other hand, a larger A2 reduces

fluctuations of the beat period (Figure 6B). We quantify these

effects using the coefficient of variation (CV), defined as STD

divided by the mean of the periods of the E1 waveform (Figure 6C).

Over the parameter range shown, increasing s2 leads to a larger

CV, whereas increasing A2 decreases CV. Interestingly, combi-

nations of A2 and s2 corresponding to the experimental trials

(plotted as filled circles in Figure 6C, colored as in Figs. 2 and 3)

show a systematic relationship, suggesting that the fish do not vary

distance and motion independently under the conditions tested

(whether or not this is a general feature of social interactions will

be determined in future studies). In summary, both types of

analysis suggest that increasing inter-fish distance (decreased A2)

and increased motion (increased s2) lead to a degradation in the

quality of the E1 signal with respect to the beat frequencies. In the

next section, we assess the impact of A2 and s2 at the level of

sensory encoding by considering the responses of model electro-

receptors (P-units) to these same signals.

Electroreceptor responses to neighbouring fish
P-unit electroreceptors are the first processing site in the

electrosensory pathway, encoding information contained in the

transdermal voltage fluctuations. Using artificial SAM and RAM-

type signals, P-units have been shown to encode the time-varying

raw electrical signal into instantaneous changes in their stochastic

firing rate [25,26]. These changes track (almost linearly) the AM

represented by E1 in those studies (except at higher stimulus

contrasts where nonlinear effects are involved [13,15,27]). The

leaky integrate-and-fire model with dynamical threshold (LIFDT,

see Material and Methods) has been shown to capture most essential

features of the spiking dynamics of P-unit afferents [13,28].

Therefore, to provide insight into electrosensory coding during

natural interactions, we describe the response of this P-unit model

to the composite EOD signals described in the previous section.

Figure 5. The mean amplitude and standard deviation of the EOD of the swimming fish influence the spectral characteristics of E1.
(A, B) The height (solid line), width (measured at 3|1029, dashed line) and (C, D) resolution (defined as the ratio of height to width) of the peak of
PE1 at the beat frequency, Df , with increasing A2 and fixed s2 = 0.1 (left column), or increasing s2 and fixed A2 = 0.2 (right column). Increasing A2

improves this resolution, whereas the increases in s2 decreases this resolution. Other parameters here are the same as those in the case of two fish in
Figure 3. 50 independent OU process realizations were used to produce theses averaged plots.
doi:10.1371/journal.pcbi.1002564.g005
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Figure 7A shows three example spike trains R(t) from the

model P-units with different P-values (see Material and Methods) in

response to the recording from Figure 2C (with E2, spectrogram

and PSD shown in Figure 2D, E and Figure 4A, respectively).

These spike trains clearly show that the instantaneous firing rate

increases with increasing E1. To investigate the envelope-output

transfer function of a P-unit, we use the simplest signal

A1 sin (2pf1t) (A1 is constant) as the input instead of s(t) in

Equation (1). According to Equation (6), the motion of fish 2 can

be seen as fluctuations in the envelope A1 mainly in the range of

½1{A2{s2,1zA2zs2�. Previous studies have shown that P-

units can exhibit firing rate saturation with time-varying E1

[15,29]. Here Figure 7B demonstrates that, within the range of

interest, the output firing rate is basically proportional to A1; P-

units with larger P-values simply encode the EOD fluctuations

into modulations of a higher baseline firing rate. Figure 7C

demonstrates the E2-output transfer function, where the spike

counts within 0.1 second increase with increasing E2 in the same

time window. This suggests that the motion of neighboring fish

varies the firing rate of P-units of fish 1.

Figure 6. The fluctuations in the period of E1 received by the stationary fish vary with the motion of the neighboring fish. Probability
density function (PDF) of the periods of E1 when A2~0:2 and s2 changes (A), or when s2~0:1 and A2 changes (B). The binwidth is 0.02 msec. A
larger A2 produces more periods at precisely 1=Df ; a higher s2 disperses the periods over a broader time interval. (C) The coefficient of variation (CV,
the ratio between STD and mean) of the periods of E1 increases with s2, but decreases with A2. Combinations of A2 and s2 corresponding to
experimental trials are marked by dots with the same color scheme as in Figure 2B.
doi:10.1371/journal.pcbi.1002564.g006
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This can be clearly demonstrated by looking at the time-varying

firing rate calculated from a heterogeneous population of P-units

in Figure 7D. Each electroreceptor has its characteristic P-value,

and across receptors, the P-values form a log-normal distribution

with a mean value at 0.26 (see [29] and Figure 7E). We calculated

the mean firing rate with a time window longer than 1=Df (e.g.

0.1 second) using models of 200 P-units with such distributed P-

values. We also computed the time-varying firing rate of a single P-

unit with a P-value equal to 0.23 for comparison. By comparing

E2 with the firing rate curves obtained from the P-unit population

and single P-unit in Figure 7D, we can conclude that the

population encodes the motion of the neighboring fish better than

individual P-units with average to large P-values. Note however

that the single unit already encodes it quite well on its own, at least

over this frequency range. Also note that the raw input signals here

do not have direct power at the beat frequencies, and so the

extraction of the beat frequencies must involve a nonlinear

operation. This nonlinearity is implemented in our analysis by the

Hilbert transform (HT, see Materials and Methods), allowing us to

obtain the E1 of the raw signal (Figure 4B). However,

implementation by the P-unit model involves the spike threshold

(and possibly other) nonlinearities [12,13,15]. The P-unit plays a

role similar to that of the HT to extract E1 and eliminate the

EODfs. The power spectrum of P-unit spike train in Figure 8A

indicates peaks at beat frequencies (Df12,Df13) which are not

presented in the PSD of input signal but are in the PSD of E1.

Figure 7. The response of electroreceptors (P-units) to the motion stimuli. (A) Three examples of spike trains generated by the P-unit model
(P-value = 0.12, 0.26 and 0.4) in response to the sensory input of the recording plotted in Figure 2C with E1 (red) and E2 (blue). (B) With A1 sin (2p827t)
as input (A1 is constant), the firing rate of the P-unit increases with increasing A1 . The range of the envelope, A1 , is mainly ½1{A2{s2,1zA2zs2] as
indicated in equation (6) in Material and Methods. (C) Within a time window of 0.1 second, the number of spikes increases with increasing E2. These
data are extracted from recordings (as in Figure 2D) and simulations (as in Figure 3D). (D) Mean time-dependent firing rate (black trace) obtained
from 200 independent P-units, each with its own internal noise and baseline firing rate set by the parameter th (see panel E), exhibits a time-varying
curve similar to E2 (blue trace, as in Figure 2D) of the recording that was used as input to all 200 P-units. The colored trace is an example of the time-
varying firing rate of a single P-unit with a P-value of 0.23. (E) Varying th in the P-unit model (equation (7) in Material and Methods) according to the
density shown on the top generated a good approximation to the experimentally observed heterogeneity in P-values shown on the bottom (the
latter being well-fitted to a log-normal density in [29]). It also leads to a good agreement with the experimental observed envelop-coding ability of P-
units in [15] (see Figure S1).
doi:10.1371/journal.pcbi.1002564.g007
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Further, the peaks at Df12 in E1 are strongly correlated to the spike

train (see the cross spectral density PE1R between E1 and the P-

unit response in Figure 8B). However, PE2R reveals that these

peaks are much less correlated to E2 (Figure 8B).

The coherence was then used to estimate the linearity of the

encoding of E1 and E2 by the output R(t) of the P-unit model (see

Materials and Methods). For P-units with a P-value of 0.26, the E1-R

coherence, CE1R, has a peak at Df12 (Figure 8C), suggesting that P-

units can efficiently encode this beat frequency. However, the very

low E2-R coherence, CE2R, implies that most individual P-units do

not linearly represent information about slow envelopes associated

with natural motion (Figure 8C), except perhaps at the very low

frequencies where a slight rise is seen. However, the coding of

motion-related information can be improved for P-units with low

P-values (e.g. 0.12 marked by green dashed curve in Figure 8C).

Further, as numerous P-units participate in the processing of

sensory information, a population code could relay motion-related

information embedded in E2 to downstream electrosensory

Figure 8. The information extracted from spike trains of P-units. (A) Averaged PSD of the simulated P-unit response PR. (B) Cross-spectra
PE1R between E1 and the P-unit response, and cross-spectra PE2R between E2 and the P-unit response. (C) Coherence CE1R between E1 and the P-
unit response, and coherence CE2R between E2 and the P-unit response; we compare the coherence functions of P-units with different P-values over
0–20 Hz in the inset, showing that P-units with low P-values can better encode motion-related information than those with high P-values. Results are
shown for two fish (left column) and three fish (right column) and P-unit model with P-value of 0.26 (green and black curves), P-value of 0.12 (cyan
curves) and a population of 200 P-units with variable P-values as shown in Figure 7E (magenta curves). The recordings in Figure 3 were used as input
to the P-unit model (green, cyan, magenta traces); the same parameter values in Figure 3 were used for simulation input (black traces).
doi:10.1371/journal.pcbi.1002564.g008
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neurons (see insets of Figure 8C). For the case of three fish

(Figure 8, right panels), the same features hold qualitatively (even

the low frequency motion - not shown). In addition, the slower

secondary beat frequency is clearly revealed by the PE2R response

function (Figure 8B), as was seen for the raw signal in Figure 4C.

CE1R now has a large peak at both main beat frequencies, and a

very small peak at the secondary beat frequency. CE2R again

emphasizes the slower secondary beat.

We now describe the influence of A2 and s2 on E1-R coherence

at the beat frequency for two interacting fish. Similar to our

evaluation of the PSD peaks, we measure the height and width of

the coherence peaks to quantify coding quality. Figure 9A shows

that the maximum height of the CE1R peak at the beat frequency

increases with A2, and the width (measured at a coherence of 0.15,

slightly above ‘‘noise floor’’) slowly decreases with A2. This leads to

an increasing height-to-width ratio with A2, and thus could

improve the accuracy of beat frequency estimation in the

hindbrain (Figure 9C). Since A2 varies inversely with inter-fish

distance, this confirms that at the receptor level, shorter distances

between two fish enhance their ability to detect each other via the

beat. On the contrary, increasing s2 (akin to increasing the

strength of swimming variation) enlarges the CE1R peak width and

decreases the height (Figure 9B); consequently the height-to-width

ratio drops with s2, i.e. when swimming is more erratic or less

confined (Figure 9D). This implies that rapid changes in distance

between two fish could blur the sensing of the other through the

beat frequency. The same conclusion can be obtained using the

width measurements at half max (not shown). With multiple fish,

this blurring would have even more impact if beat frequencies

were close. Thus motion, through degradation of the P-unit

encoding of the beat frequencies, could be actively used as a form

of crypsis, decreasing identification by conspecifics.

Considering that most of the motion power is concentrated over

the frequency range of 0–20 Hz in E2 (also see [30,31]), the mean

peak coherence of CE2R over 0–20 Hz was plotted to examine the

information encoded from E2. In Figure 10A and B, the peak

height and width of CE2R increase with both A2 and s2 over 0–

20 Hz. Similarly, the mutual information rate over 0–20 Hz also

increases with both parameters (Figure 10C,D). These results show

that electroreceptors encode motion of conspecifics increasingly

well for smaller inter-fish distances and increased relative

movement. Thus, it appears that when a fish increases movements

towards a conspecific, there may be a trade-off between improved

encoding of motion (as a signal or a noise, as mentioned above)

and degraded identification, which are coded by E2 and E1,

respectively.

Discussion

Our study describes the naturalistic signals generated by relative

motion among small groups of weakly electric fish. The analysis of

the raw signals and the simulated responses of primary electro-

receptor afferents show that these signals contain important cues

for the identification of individuals and their behaviour. This

information is available from the spectral properties of the first and

second envelopes (E1 and E2) of the composite electrical signal,

which relate to the beat frequencies (E1) and the secondary beats

and relative motion patterns (E2).

The phenomenological model for motion fitted our data very

well, and its parameters A2 and s2 are directly related to the

contrast mean and contrast STD of the experimental recordings

(Figure 3B). Further, our experiments revealed a proportional

relationship between the STD and mean of the contrast (and thus

between A2 and s2; see Figure 6). However, we can not infer that

this relationship is universal across all experimental and social

contexts. The possible context-dependence and behavioural

significance of the relationship will be explored in future studies.

In addition, the relationship between model parameters A2 and s2

Figure 9. A higher mean amplitude or lower standard deviation of the EOD of the swimming fish facilitates estimation of beat
frequency at the receptor level. (A) The height (solid line) of the peak of CE1R at the beat frequency, Df , and the width (dashed line) of this peak
at the coherence value of 0.15 increase and slightly decrease, respectively, with A2 (with fixed s2 = 0.1). However (B), the above height and width
slightly decrease and strongly increase, respectively, with s2 (with fixed A2 = 0.2). Therefore (C), the height-to-width ratio of this CE1R peak slightly
increases with A2 , while (D) it decreases rapidly with s2 . The curves in this figure and next figure are the average results over five artificial signals with
f1,2 = [827,737], [827,760], [827,792], [827,704], [740,807]Hz; 50 independent OU processes g2 were used to calculate the average for each artificial
signal.
doi:10.1371/journal.pcbi.1002564.g009
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and behavioural measures is not entirely clear. While the mean

contrast A2 is inversely related to the mean distance separating the

fish, it is also influenced by the complex interactions between fish

bodies [21]. We also note that s2 is related to motion (variations in

swimming). This relationship is complex and is influenced not only

by changes in inter-fish distance, but also by turning and bending.

A thorough characterization of the physical bases of A2 and s2 is

beyond the scope of this study and will be pursued in subsequent

work.

Our experimental and modeling work shows that movements of

neighbouring fish generate power in the first envelope E1 that is

small relative to the power in the beat (AM of the sum of EODs;

Figure 4B). But the movements produce relatively more power in

the second envelope E2 (envelope of the AM; Figure 4C),

especially below 10 Hz. Our model reveals that the peak

resolution for the beats in E1 increases slightly over a range of

amplitudes A2, i.e. of contrasts (Figure 9C), but decreases strongly

with motion stochasticity (Figure 9D). It also reveals that the

encoding of E2, while no longer representing beats, is proportional

to the mean amplitude of the neighbouring EOD (Figure 10A,C),

which is inversely proportional to inter-fish distance. The encoding

of E2 is also proportional to the variance of the motion

(Figure 10B,D). E2 also highlights the secondary beats between

the primary beats. As the electrosensory system can extract the

envelope post-synaptically to the electroreceptors [12], such

envelope information about motion and secondary beats can be

readily relayed to midbrain electrosensory regions. Our results

imply that this structure has access to both the beats, the secondary

beats and motion information, which can in principle feed the

directional selectivity circuitry [32].

Further, our analysis suggests that P-units effectively encode

beat frequencies, but single P-units with normal-to-large P-values

can not encode motion information well over a range of normal

contrasts (Figure 8C). This is consistent with previous modeling

[13] and experimental work [15] where E2 obtained from

narrowband RAMs could be represented by P-unit activity only

for large contrasts, and otherwise the transmission of E2 to higher-

order cells relies on a parallel pathway via interneurons [12].

Another experimental study reported a tracking between mean

firing rate of P-units and a low-frequency 0–4 Hz RAM [29];

taken together with our observation that P-unit mean firing rate

varies with E2 (Figure 7), this suggests that a population code

might instead be involved in encoding E2.

These fish can transform spatial information about the motion

of other fish into a temporal signal with a second envelope. The

amplitudes of the EODs reflect the distances of fish 1 to its

neighbours, and are clearly reflected in the height of the beat peaks

in E1, as well as the mean of E2. Therefore E2 may play an

important role in electrolocating conspecifics. It remains to be seen

whether E2 improves stimulus localization, as can occur for static

auditory sources [6].

The identity of conspecifics, given by their individual EODfs, is

well represented by beat peaks in E1, especially at short distances

(large Ai). However, for dynamic swimming (larger si), these peaks

broaden, and the sensory system may no longer be able to

differentiate different beats that are close in frequency. Animals

use various forms of camouflage and other behaviours to avoid

predators. Non-visual crypsis has been reported in auditory,

olfactory, and electrosensory systems in recent years [33]. Electric

fish have a high risk of being detected by electroreceptive

predators, and therefore may have to take extraordinary measures

to protect themselves. The pulse-type fish Brachyhypopomus may use

‘‘signal cloaking’’ by shifting the spectrum of its EOD pulse to a

less detectable high-frequency range [34]. Other species of electric

fish must use other strategies to avoid detection. Figure 9 predicts

that identification (via EODf) declines with increasing s2,

suggesting that fast motion (e.g. back-and-forth swimming, as well

as rapid bending, turning or spinning) could be another

implementation of non-visual crypsis. The well-described behav-

iours requiring EODf estimation (such as the jamming-avoidance

response, JAR [17]) make wave-type electric fish an attractive

model in which to test this intriguing hypothesis.

Figure 10. Increasing A2 or s2 enhances the motion-related information gained by the electroreceptors in the case of two fish. (A–B)
The maximum (solid line) of CE2R over the 0–20 Hz range and the width (dashed line, measured at 0.15) increase, with A2 (and fixed s2 = 0.1), as well
as with s2 (and fixed A2 = 0.2). Higher mutual information (MI) rate, M, could be obtained over 0–20 Hz with increasing A2 (C) and s2 (D). The
numerical method to obtain the height and width of CE2R is described in Figure 9.
doi:10.1371/journal.pcbi.1002564.g010
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Our study also points to a novel method of synthesizing more

natural mimics of other fish in the laboratory. The established

approach uses a SAM modulation of a restrained fish’s EOD, and

thus mimics a static conspecific. This actually leads to additional

frequency components of the EOD that are not present naturally.

The model signal presented here could be used to mimic

swimming conspecifics, applied either locally, or globally using

the usual configuration of two electrodes straddling the animal, or

with a method that better preserves ipsilateral and contralateral

contrasts and polarities [21].

The results demonstrated in this study involved one artificially

restrained fish. The more natural situation is of course that in

which all fish are free to swim. The question then arises as to what

influence self-motion has on the results of our analysis. This means

that the amplitude A1 in our model would not be fixed but would

vary with self-motion, and the P-units would encode the associated

potential excursions. This is known from e.g. tail movements

[35,36]. While a full analysis of this problem must rely on actual

measurements and involve field simulations, we can speculate that

self-movement will likely have an impact on any identification and

crypsis strategy. We note however that some body movements

(such as tail bending) are known to be cancelled by plasticity at the

pyramidal cell level [36]. This may mitigate self-motion signals,

and emphasize beats and motion signals due to the relative motion

of other conspecifics.

The proximity of the fish in our experiments resulted in chirping

behaviour, and the features of E1 and E2 that triggered such

communication will be explored elsewhere. This nonetheless raises

the possibility that certain patterns of E1 and E2 lead to changes in

the EODfs of the interacting fish over longer time courses, as they

may avoid certain low frequencies that interfere with e.g. prey

stimuli [14,37]. Likewise the fish may engage in the JAR, which

are predictable in static SAM-type mimics of three interacting fish

in a related species [38]. The interplay of jamming, chirping and

movement can be used in experiments to understand more

properties of the primary afferents, which exhibit non-trivial

responses to AMs and their slow envelopes. It would also be

interesting to eventually relate these findings to those on

hydrodynamic cues for the lateral line detection system [39].

Future work should also consider the phase variations of E1 and

E2 across fish 1 as neighbours move, and on which the JAR relies.

Our study highlights important information available for the

analysis of such complex social sensory scenes.

Materials and Methods

Ethics statement
All experimental protocols were approved by the University of

Ottawa Animal Care Committee (BL-229).

Experiments
A. leptorhynchus were obtained from a tropcial fish supplier and

housed in 115 L flow-though community tanks maintained at 26–

290C with a conductivity of 200–250 mS. Fish were kept on a

12h:12h light:dark cycle, and fed frozen bloodworms 3 days per

week. Five fish were chosen randomly for our analyses and isolated

in 20 L tanks. Recordings were performed in an experimental tank

measuring 60|30|15cm in length-width-depth. During the

trials, the restrained fish (fish 1) was placed in a hand-sewn tulle

hammock, closed along the top with a strip of Velcro and

suspended in the middle of the experimental tank. The top of the

hammock was positioned about 1 cm below the water surface.

Fish 1 was unable to turn or swim, and tended to remain quite still

while in the hammock. Depending on the trial, one (two fish

experiment) or two (three-fish experiment) other fish were added

to the tank, and allowed to swim freely around the centrally

positioned fish 1.

To record the natural inputs resulting from interacting

conspecifics, a pair of Teflon-coated silver recording electrodes

(diameter: 0.38 mm; WPI, Inc., Sarasota, FL, USA) were

positioned adjacent to the head of fish 1 just anterior to the

operculum. The exposed electrode tips were 1 cm apart, and

oriented perpendicular to the axis of the restrained fish (Figure 2A)

to measure the component of the electric field normal to the skin.

A grounded Teflon-coated electrode (insulated to the tip) was

attached to one corner of the test tank. The electrical signals were

amplified using an AM Systems model 1700 (Carlsborg, WA,

USA) differential amplifier (100| amplification, low-frequency

cut-off of 10 Hz, high frequency cut-off of 5 kHz) and sampled at

100 kHz using a dSpace Inc (Wicom, MI, USA) 1011 data

acquisition board and dSpace Control Desk software. During the

dark stage of the daily cycle, a randomly chosen fish was isolated,

and its EOD was recorded in isolation. A second, free-swimming

fish was added to the experimental tank, and a five-minute

recording began. After five minutes, the free-swimming fish was

removed and returned to its home tank. The water heater was

removed during the 5-minute interactions and replaced afterwards

to maintain temperature at 26–270C. Recordings from eight pairs

and four triads of interacting fish were obtained, without

controlling for sex. Fish were identified based upon their

anatomical differences and EODfs.

All data analyses and numerical simulations were carried out in

MATLAB (The MathWorks, Inc., Natick, MA, USA).

Envelope extraction
The envelope of a real-valued oscillatory process x(t) is defined

by R(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(t)2zx̂x(t)2

q
where x̂x(t) is in quadrature with x(t). x̂x(t)

is commonly obtained using the Hilbert transform (HT) [40]

defined by

x̂x(t)~
1

p
P

ð?
{?

x(t)

t{t
dt~

1

pt
� x(t) ð2Þ

with P denotes the Cauchy principal value and * denotes

convolution. Thus one can create an analytic signal

z(t)~x(t)zix̂x(t)~R(t)eiw(t), and obtain an instantaneous ampli-

tude R(t) and instantaneous phase w(t)~ tan{1 x(t)=x̂x(t) of the

raw signal. R(t) and w(t) have a clear physical meaning when the

amplitude evolves on a slow time scale compared to the fast phase

[40]. R(t) and w(t) extracted from an EOD recording that consists

of multiple harmonic frequency components of the EOD share a

remnant spectral peak at the EODf. A low pass filter (LPF) was

used following the HT operation to eliminate the EODf and

obtain the correct first envelope E1. Its cut-off frequency was set to

200 Hz. A HT was implemented to extract the second slower E2

envelope segments from E1 over every 0.1-second time window;

these segments were assembled end to end to produce E2. E1 and

E2 obtained above were also compared with the direct envelope

extraction (i.e. connecting the successive peak points of EOD

cycles or E1 oscillatory curves [41]). The PSD profiles and time

series of E1 and E2 calculated from both ways are very similar.

Ornstein-Uhlenbeck Process (OUP) for motion
The OUP, g(t), a simple form of lowpass-filtered Gaussian

white noise, is used here to model the stochastic EOD amplitude

caused by a free-swimming fish at fish 1. It is the solution of

Coding Conspecific Identity and Motion

PLoS Computational Biology | www.ploscompbiol.org 13 July 2012 | Volume 8 | Issue 7 | e1002564



c
dg

dt
~{gz

ffiffiffiffiffi
2c

p
j(t) ð3Þ

where j(t) = dW (t)=dt is Gaussian white noise of zero mean and

autocorrelation Sj(t1)j(t2)T = d(t1{t2), and d is the Dirac delta

function. Brackets denote average over the Gaussian ensemble. W (t)
is Brownian motion, whose increments dW are taken from a zero-

mean Gaussian density with a variance of
ffiffiffiffi
dt
p

. The OUP has zero

mean and is exponentially correlated: Sg(t)T = 0 and Sg(t1)g(t2)T =

exp({Dt1{t2D=c); it has unit variance. The correlation time is c; the

larger it is, the slower the exponential decay of the autocorrelation,

and the slower and smoother the fluctuations in time are.

Autocorrelation
The autocorrelation function r(t) quantifies the average linear

correlation between successive points in a time series x(t), as a

function of the temporal lag t between these points:

r(t)~
Ef½x(t){�xx(t)�½x(tzt){�xx(t)�g

Ef½x(t){�xx(t))�2g
ð4Þ

where �xx(t) is the mean of x(t) and E denotes the expected value.

For the envelopes, E2, r was calculated from a 5-minute

uninterrupted recording for one pair of fish by dividing the record

into 15-second segments. The autocorrelations over each segment

were averaged and plotted as one coloured curve in Figure 3A.

Mean and STD of contrast
An EOD carrier with frequency f1 and a random amplitude

modulation (RAM) is denoted as SRAM~½1zmf(t)� sin (2pf1t)
where f is a random process. Contrast is defined as (STD of

AM)=(mean of AM) = m=1 = m, i.e. it is the coefficient of variation

(CV) of the AM. An EOD carrier with sinusoidal amplitude

modulation (SAM) is denoted as SSAM~½1zM cos (2pvt)�
sin (2pf1t). Its contrast is (STD of AM)=(mean AM) = M/1 = M.

According to the HT defined above or the method in [42], the

AM (or E1) of our model signal s(t) in Equation (1) with N = 2 can

be expressed as

R(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(A2zs2g2)2z2(A2zs2g2) cos½2pDf12t{w2�

q
:

It can also be rewritten as

R(t)~(1zA2zs2g2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2(A2zs2g2)fcos½2pDf12t{w2�{1g
(1zA2zs2g2)2

s
:

We can use the Taylor expansion with

DX D~D
2(A2zs2g2)fcos½2pDf12t{w2�{1g

(1zA2zs2g2)2
Dv1 to get an approx-

imation for the AM:

R(t)&1{
3(A2zs2g2)2

4(1zA2zs2g2)3
z

½A2zs2g2z
(A2zs2g2)2

(1zA2zs2g2)3
� cos½2pDf12t{w2�,

ð5Þ

where higher order terms with frequencies at harmonics of Df12

are neglected, a procedure similar to LPF used in the numerical

approach described in the section ‘‘Envelope extraction’’. Because

A2v0:2 and s2v0:9A2 (as seen in Figure 3B),

(A2zs2g2)2=(1zA2zs2g2)3 is a small perturbation and can be

approximated by 0. Thus we have

R(t)&1z(A2zs2g2) cos½2pDf12t{w2�: ð6Þ

The AM of s(t) thus combines the RAM and SAM. If we regard

this AM as a special version of a SAM, its contrast is

approximately equal to A2zs2g2 because higher order terms

are neglected. A2zs2g2 contains fluctuations introduced by g2(t),
therefore we have a mean contrast &A2 and STD &s2. For the

contrast calculation of the experimental data, we extracted the

AM, then collected all its highest and lowest points of AM

and calculated an ‘‘instantaneous’’ contrast = ½(Hi{Li)=2�=
½(HizLi)=2�~(Hi{Li)=(HizLi), i.e. the half-difference be-

tween a highest point Hi and the lowest point closest on its right

Li, divided by the average of Hi and Li. Mean contrast and STD

derived from Equation (6) are consistent with this definition by

taking Hi~1z(A2zs2g2) and Li~1{(A2zs2g2). The mean

and STD of these instantaneous contrasts for each pair of fish are

plotted in Figure 3B.

P-unit model
The linear integrate-and-fire model with dynamic threshold

(LIFDT) used to simulate P-unit afferents is written as

tv
dv

dt
~{vzcI(t)H½I(t)�z j(t)

th
dh

dt
~h0{h

if v~h, then v~0 and h~hzDh:

ð7Þ

v represents the transmembrane potential measured from its

resting level; h is a dynamical threshold incremented by a fixed

amount Dh every time P-unit fires; I(t) is the input to P-units, here

the experimental recording or the simulation signal s(t) used as the

input. H is the Heaviside function that accounts for the fact that

many receptors rectify a periodic forcing [43]. j(t) mimics

intrinsic noise, where e is the noise intensity and j(t) is Gaussian

white noise with zero mean (different from that used to generate

the OUP). Parameter values are tv~1=f1, c~32:5, h0~0:03,

Dh~0:05, e~0:0004, and the time step is 0.01 ms. A P-unit fires

when v~h after which the voltage is reset to zero. The firing times

ti generate a binary spike train R(t)~
P

i d(t{ti).

The P-value is the characteristic parameter of a given receptor

[29,44–46]. It is calculated as the baseline firing rate (i.e. with the

EOD of fish 1 alone and no AM) of P-type afferents, divided by

the EODf. Because P-values follow a log-normal distribution and

ranges from 0.1 to 0.6 with a mean value at 0.26 [29], we vary th

to obtain different P-values as shown in the densities of Figure 7E.

Coherence
This statistic is used to measure the linear relationship between

the frequency components of two signals, X (t) and Y (t). It can be

seen as a signal-to-noise ratio, and reflects a lower bound on the

mutual information (see below) between input and output. It is

defined as

CXY (f )~
DPXY (f )D2

PX (f )PY (f )
ð8Þ
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where PX (f ), PY (f ) are, respectively, the auto-spectral densities of

X (t) and Y (t), and PXY (f ) is the cross-spectral density of X (t) and

Y (t). As PXY (f ) is the Fourier transform of the cross-correlation

between X (t) and Y (t), coherence can be regarded as a

correlation coefficient in the frequency domain, ranging at each

frequency between 0 (no linear correlation) and 1 (perfect linear

correlation).

Mutual information (MI)
Mutual information (MI) quantifies the mutual dependence of

the two random variables. It has been widely used in computa-

tional neuroscience to analyze spiking neural systems, for example,

characterizing the amount of information that the output spike

trains carry about input signals. In the frequency domain, if the

stimulus possesses Gaussian statistics, the estimate of MI rate can

be expressed explicitly via the coherence function [43,47,48]

M(f )~{

ðfC

fL

log2 (1{CXY (f ))df ð9Þ

where fL and fC indicate the lower and upper cutoff frequencies of

the stimulus, respectively.

Supporting Information

Figure S1 Coherence functions obtained from P-units
with different P-values in response to narrowband RAM.

A compound signal with a narrow-band RAM,

I(t)~RAM � sin (2p827t), has been used to simulate the sensory

signal generated in a group of fish (see [12]). Here a 70–120 Hz

RAM was used to stimulate the P-unit models with different P-

values (tuned by th in Equation (7)). (A) The resulting maximum of

coherence function between RAM and the P-unit’s response,

CE1R, over 70–120 Hz increases with increasing P-values, while

(B) the coherence function between envelope of RAM and the

response, CE2R, drops with increasing P-values. The result in (B)

agrees with the experimental observation in [15].

(TIF)

Text S1 Matlab code to generate simulation signal, s(t),
in Equation (1).

(PDF)
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