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Abstract

The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified
distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic
stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative
phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to
make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian
estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation
in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including
several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of
ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared
to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we
show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic
functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies,
find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web
server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to
integrate these approaches into their analysis pipelines. ProteinHistorian’s modular, extensible design facilitates the
integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32
eukaryotic genomes are freely available under the GNU public license at http://lighthouse.ucsf.edu/ProteinHistorian/.
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Introduction

The proteins present in a species arose at a range of

evolutionary times, and the context of a protein’s origin can

provide information about its cellular functions and interactions

[1,2]. Young proteins in a range of species differ from their older

counterparts in many functionally relevant traits. Young yeast

proteins have fewer interaction partners and are enriched for

different functions than older proteins [2,3]. Young proteins in

many clades experience weaker and more variable selective

pressures than older proteins [4–8] and have less complex

regulatory programs [9]. These findings suggest that knowledge

of a protein’s evolutionary origins is informative when studying its

cellular roles, adaptability, and regulation.

By assigning a phylogenetic ‘‘age’’ to each protein in a species

based on the distribution of evolutionarily related sequences across

other species, several recent studies identified enrichment for

proteins of specific ages in biologically relevant conditions. For

example, the proteins expressed during developmental stages that

exhibit morphological similarity across phyla were found to be

older than those expressed during stages that exhibit species-

specific morphologies [10]. Analyses of proteins associated with

diseases also found striking similarities between phylogenetic

patterns and previously observed phenotypic patterns [11,12].

Proteins associated with cancer exhibit enrichment for two origins:

during the emergence of multicellularity and at the last common

ancestor of all cellular life. The functional disruptions caused by

mutations to proteins in these two categories were found to reflect

their ages [11]. An early prototype of the ProteinHistorian tool was

used in a recent investigation of the evolutionary origins of the

sirtuins, a protein family that contains several histone deacetylases.

By computing ages for all seven human sirtuins and several of their

substrates, we successfully predicted a novel substrate for a

mitochondrial sirtuin [13]. This example suggests that protein age

patterns could be used more generally to predict protein-protein

interaction pairs.

In this article, we present ProteinHistorian —an integrated web

server, database, and set of command line tools for carrying out

eukaryotic protein age analyses in a simple, intuitive pipeline. Our

approach is similar to that commonly used for Gene Ontology

annotation enrichment analysis [14]—given an input protein set of

interest, its phylogenetic distribution is compared to that of a

relevant background set. Since different definitions of protein
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‘‘age’’ may be appropriate in different contexts, ProteinHistorian

offers several strategies for estimating ages from phylogenetic

patterns that make use of different ancestral family reconstruction

algorithms [15,16] and pre-existing databases of evolutionary

relationships [17–19]. These options allow advanced users to infer

ages that are best suited to their application. ProteinHistorian

currently estimates ages for eukaryotic proteins only, because of

the potential confounding effects of horizontal gene transfer on

inferring evolutionary trees in prokaryotes. In addition, it does not

produce explicit ancestral genome reconstructions.

To illustrate the use of ProteinHistorian, we describe the

computation of ages for all proteins in 32 eukaryotic species using

two ancestral family reconstruction algorithms and several

different evolutionary databases. We then contrast the age

distributions of several protein sets of interest. In the first analysis,

we demonstrate that proteins with high expression in human—

compared to chimpanzee and rhesus macaque expression

patterns—are significantly younger than those with human-

specific low expression. Next, we show how external annotation

databases can be used to test hypotheses about the origins of

protein functions. Taking functional annotations from the Gene

Ontology [20,21], we find that proteins with regulatory functions

are significantly younger than those with catalytic functions.

Finally, to demonstrate how additional quantitative attributes of

proteins can be integrated into ProteinHistorian analysis, we

compare protein age and length in 24 metazoa and fungi. These

tests confirm previous results and reveal a modest, though

consistent and significant, positive correlation between protein

age and length in nearly all species.

Design and Implementation

Capabilities
The ProteinHistorian web server and command line tools can

perform a variety of protein age enrichment analyses (Figure 1). In

the simplest case, a user inputs a set of proteins of interest in a

eukaryotic species. ProteinHistorian first computes the phylogenetic

ages of the proteins. The user can choose among several different

pre-computed age databases; see the next section for more

discussion of the computation and interpretation of protein age in

different contexts.

Next, the distribution of ages in the input set is compared to the

background of all proteins in the species. Statistically significant

differences between the overall distribution of ages, as well as

differences within each specific age group are identified.

ProteinHistorian also computes phylogenetic profiles [1]—patterns

of presence and absence of homologous proteins across species—

for all proteins.

This basic analysis can be extended in several ways. First, the

sets of proteins can be controlled to allow different types of

comparisons. Rather than comparing a single protein set to the

entire proteome, the user can input two protein sets to directly

compare their age distributions. One list can be a proper subset of

the other, which serves as a more specific background than the set

of all proteins, or the two lists can be disjoint subsets of the

proteome. We use the latter approach in our example comparison

of proteins with high and low human-specific expression. Second,

the ages of a set of proteins can be compared directly to other

quantitative protein characteristics, providing further insight into

potential relationships between protein function and origin. If the

user inputs quantitative measurements for a set of proteins (e.g.,

length, essentiality, evolutionary rate), ProteinHistorian computes the

correlation of this feature with age.

We provide for download estimated ages for all proteins from

the 32 eukaryotic species listed in Figure 2, including many model

organisms. However, since we anticipate that advanced users will

want to compute ages for proteins and species that may not have

been integrated into currently available databases of evolutionary

relationships, the command line version of ProteinHistorian provides

resources for extending the pre-computed databases. Users can

build new protein age databases from their own species trees and

protein families; they can also select subsets of species from existing

data sets for analysis. The flexibility provided by our open source

command line programs, which are described in more detail in the

Implementation section, enables advanced users to develop their

own analysis pipelines.

To our knowledge, ProteinHistorian is the only tool available for

protein age enrichment analysis and visualization. However, there

are other web servers that perform complementary phylogenetic

analyses based on existing protein family databases. For example,

the PhyloPat [22] server performs regular expression searches on

phylogenetic profiles. Similarly, PhyloPro [23] allows a user to

visualize the evolutionary trajectory of a set of proteins, such as a

metabolic pathway, across many eukaryotes. Other tools, such as

GLOOME [24], infer the evolutionary history of a protein family

using a range of phylogenetic models.

The estimation and interpretation of protein age
All analyses performed by ProteinHistorian rely on the assignment

of a phylogenetic age to each protein in a species. Given the

diverse contexts in which phylogenetic analysis can be applied,

there is not a single consistent definition of protein age or origin. In

this section, we describe the different ways ProteinHistorian

computes ages to help users select the best parameters for their

analyses and interpret their results. We provide several pre-

computed protein age sets for each species on the ProteinHistorian

web server in the hope that users will rarely have to compute their

own ages.

The protein ages computed by ProteinHistorian are based on

three inputs: a species tree, a protein family database, and an

ancestral family reconstruction algorithm. Ages are defined with

respect to the species tree; each protein is assigned to the branch in

the tree on which its family is estimated to have appeared. This

calculation is based on the ancestral history produced by running a

family reconstruction algorithm on the protein family. Thus, the

notion of ‘‘evolutionary relatedness’’ encapsulated in the family

database has a major effect on the meaning of the resulting age.

We now describe each of the inputs to the age estimation pipeline.

Species trees. The species tree used in all analyses presented

here (Figure 2) is based on the NCBI taxonomy database [25], but

when necessary, it has been modified to reflect recent research,

e.g., the Ecdysozoa clade [26,27]. Divergence time estimates in

millions of years ago (mya) for each internal node in the species

tree are consensus estimates from the literature taken from the

TimeTree database [28]. TimeTree’s expert estimates are used

when available; otherwise the TimeTree weighted average of

divergence time estimates in the literature are used. It is important

to note that a protein could have appeared at any time along the

branch to which it is assigned, so the divergence time estimate

reported is a lower bound. In addition, though the topology of this

species tree is relatively non-controversial and the branch lengths

reflect current research, users should keep in mind that the

resulting age estimates are sensitive to the tree used. The

command line version of ProteinHistorian allows users to input their

own trees.

Protein family databases. Each protein family database

provides a partition of all proteins in all species represented in the

ProteinHistorian: Analysis of Protein Origin
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tree into evolutionarily related families. The particular database

selected defines the meaning of ‘‘relatedness’’ between two

proteins in the resulting set of ages. ProteinHistorian uses several

sets of protein family predictions from the Princeton Protein

Orthology Database (PPOD) [18]. PPOD provides family

predictions for all proteins in the 12 genomes of the GO Reference

Genome Project [29] made with MultiParanoid [30], OrthoMCL

[31], a Naive Ensemble (Nens) clustering-based consensus of the

MultiParanoid and OrthoMCL predictions, and PPOD’s own

Jaccard clustering-based approach. The input to these methods is

an all-versus-all BLAST sequence similarity matrix. MultiPar-

anoid, OrthoMCL, and Nens aim to create families of orthologous

proteins, while the Jaccard clustering produces larger families of

more distantly related protein sequences. OrthoMCL predictions

are also available for the 48 genomes (including 32 eukaryotes) in

version 7 of the PANTHER database [17]. Unless otherwise

noted, this family database is used in the example analyses

presented here.

Several recent analyses assigned ages to proteins based on the

phylogenetic distribution of the functional subdomains that they

contain [3,10]. To enable domain-based analysis in ProteinHistorian,

we analyzed the phylogenetic distribution of all Pfam domains [19]

across all species in the PANTHER database. We then used the

estimated domain ages to create two different age databases: one

in which each protein is assigned the age of its youngest Pfam

domain and one in which each protein is given the age of its oldest

domain. Proteins with no predicted domains are considered

specific to the species in which they occur. We also make the

estimated ages for protein domains available, so that users can

perform age analyses on individual domains rather than entire

proteins.

ProteinHistorian also includes several species-specific sets of

protein ages that have been used in previous studies. For baker’s

yeast, Saccharomyces cerevisiae, age estimates used in a recent study of

novel genes are available [2], as well as ages based on predicted

fungal orthogroups [32]. For human, phylostratigraphic estimates

of protein age [33] are included. As they become available, we will

incorporate additional age databases that are likely to be of wide

utility to ProteinHistorian users.

Ancestral history reconstruction algorithms. Two recon-

struction algorithms, Dollo parismony and Asymmetric Wagner

parsimony are currently available to infer the series of gains and

losses that best explains the observed phylogenetic distribution of

proteins in a family. Dollo parsimony is based on the assumption

that gaining a complex structure is much more rare than losing

one. Thus, it assumes that there was a single gain event for each

family, potentially followed by many losses in specific lineages. In

other words, under Dollo parsimony, a family’s origin is the most

recent common ancestor (MRCA) of all species in which it is

observed. In contrast, asymmetric Wagner parsimony allows

multiple gain and loss events as well as the ability to set weights on

the relative likelihood of these events. By default, ProteinHistorian

uses a relative gain penalty of 1. Since we focus on eukaryotic

species in which horizontal gene transfer is rare, this largely serves

to prevent false positives in the protein family databases from

biasing age distributions.

Given these inputs, each family’s evolutionary history is

reconstructed. Then, each protein is assigned as its age the branch

in the species tree on the path between its species (the leaf) and the

root in which its family first appeared according to the

reconstruction.

In general, the protein ages calculated by ProteinHistorian can be

interpreted as estimates of the time at which the ancestors of

proteins with recognizable homology first evolved; however, the

exact nature of that similarity will vary from database to database.

For example, relationships in the PPOD databases are based on

varying levels of detectable sequence similarity over the entire

protein, while the Pfam databases indicate the existence of

similarity over individual functional domains. Sequence similarity

across proteins from different species suggests a similar common

Figure 1. Data flow diagram representing the inputs and outputs for the ProteinHistorian analysis pipeline. Three python programs
(circles) perform the ProteinHistorian analyses. age_proteins.py analyzes cross-species protein family databases, such as those provided by PPOD or
our domain database, and a corresponding species tree to estimate ages for all the proteins (bold). The resulting age databases are available for
download and serve as the basis for all other analyses. Protein age distribution comparisons and enrichment tests, as in Figure 3, are performed by
age_enrichment_analysis.py. Correlations between protein ages and other features, as in Figure 4, are computed by age_feature_analysis.py. The
ProteinHistorian web server provides a user-friendly interface to many of the analyses performed by these programs.
doi:10.1371/journal.pcbi.1002567.g001
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function, but it does not necessarily imply that the ancestral

proteins’ functions were the same as those observed in current

species.

Since the family databases and reconstruction algorithms

provided in ProteinHistorian are based on different assumptions,

analyzing the same protein set based on different family partitions

may yield different results. For example, the use of Wagner

parsimony produces a younger protein distribution than Dollo

parsimony, since it allows multiple gain events to explain families

with patchy existence profiles (Supplementary Figure S1). Simi-

larly, using the Jaccard clustering families will on average produce

an older age distribution than either OrthoMCL or InParanoid

(Supplementary Figure S2), since it aims to detect more distant

evolutionary relationships. As expected, the oldest Pfam domain

age estimation strategy generates an older age distribution than the

youngest Pfam domain strategy (Supplementary Figure S3). These

patterns hold on average, but are not necessarily true for every

protein. For all the analyses presented here, the differences

between age estimation strategies shift the age distributions of

proteins of interest without dramatically changing their relative

orientation (e.g., Supplementary Figures S4 and S5); however, it is

possible that other analyses could be more sensitive to these

parameters.

Implementation
ProteinHistorian consists of three python programs and a web

server that provides an interface to many of their functions

(Figure 1). The analyses provided on the web server can be

extended and customized using the command line version of

ProteinHistorian. The age_proteins.py program takes as input a

species tree and a protein family database and uses an ancestral

family reconstruction algorithm to compute protein ages as

described above.

Given two sets of proteins of interest, age_enrichment_analy-

sis.py uses the two-sided Mann-Whitney U test to test for a

significant difference in the age distributions of the two sets.

Significant differences in the fraction of proteins of a specific age

from each set are detected using Fisher’s exact test (Figure 3).

When additional data about proteins are provided by the user,

age_feature_analysis.py computes Spearman’s rank correlation

coefficient between the ages and features and draws box plots

summarizing the distribution of the feature at each age (Figure 4).

The command line programs that perform all ProteinHistorian

analyses are written in python v2.6.5. The freely available SciPy

v0.7.0 [34], matplotlib v1.0.0 [35], and DendroPy v3.7.0 [36]

python modules are required for full functionality. The Count [16]

program is required for the use of asymmetric Wagner parsimony.

More information about obtaining these dependencies, instruc-

tions for installing ProteinHistorian, and a tutorial on performing age

analyses are given in the ProteinHistorian README.

The ProteinHistorian web server, which provides an interface to

many of the functions performed by these programs, runs on an

Ubuntu linux server running apache version 2.2. We used a

combination of HTML, Perl, JavaScript, and R [37] to create the

web interface, retrieve data from the user, send it to the command

line programs, and produce the results pages.

The raw protein family data and age estimates for each species

and database are all stored as tab-delimited text files. The species

trees are stored in the Newick format. All data files are available

for download on the web server.

Results

The creation of ProteinHistorian was motivated by the potential

for phylogenetic analysis to inform the study of protein function

Figure 2. Species tree used with the PPOD PANTHER database analysis. Ages were computed for each protein in each leaf species in this
species tree. The internal (red) nodes give the taxon names used as potential protein ages in this analysis. Several bacteria and archaea were
considered outgroups in the analysis, but are not shown in this figure. The polytomy at the Eukaryota reflects current uncertainty about the early
history of the Eukaryotes [41]. This species tree is based on the NCBI Taxonomy database [25], but has been adapted to reflect recent research on the
Ecdysozoa clade [26,27]. Branch length estimates (in millions of years ago) were taken from the TimeTree database [28]; however, for ease of
visualization, the tree is not drawn to scale.
doi:10.1371/journal.pcbi.1002567.g002

Figure 3. Protein age distribution comparisons. (A) Proteins with
high expression on the human lineage (compared to non-human
primates) have an average origin of 705.6 mya and are significantly
younger than proteins with human-specific low expression (825.3 mya;
Mann-Whitney U test: U~6|105 ; p~0:0001). The most significant
difference between the distributions is in the fraction of proteins
created prior to the divergence of the Eukaryota (Fisher’s exact test; *:
pv0:05; **: pv0:01; ***: pv0:001). (B) Proteins with annotated
regulatory functions are significantly younger (average age:
726.3 mya) than proteins with catalytic functions (average age:
1150.6 mya; Mann-Whitney U test: U~7:7|106 ; p&0).
doi:10.1371/journal.pcbi.1002567.g003
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and disease. To illustrate the capabilities of ProteinHistorian, we now

describe three example analyses.

Proteins with human-specific high expression are
significantly younger than proteins with human-specific
low expression

A recent study used multi-species microarrays to quantify the

expression levels of over 18,000 orthologous genes between

human, chimpanzee, and rhesus macaque in liver, kidney, and

heart tissue [38]. They used a linear mixed-effects model and a

series of likelihood ratio tests to identify genes whose expression

patterns showed signs of lineage-specific directional selection.

These genes are of particular interest, because they are likely

involved in producing the phenotypic differences that distinguish

humans and our closest relatives.

We used ProteinHistorian to investigate whether there are

differences in the phylogenetic origins of proteins found to have

significantly higher expression patterns in human, compared to

chimpanzee and rhesus macaque, than those under directional

selection for lower expression. Comparing the overall age

distributions for these two sets of proteins (Figure 3A), we find

that proteins with unique high expression in human (in any of the

tissues) are significantly younger than those with unique low

expression (Mann-Whitney U test: U~6:0|105; p~0:0001). The

average age of proteins with human-specific high expression is

705.6 mya, while the average for the human-specific low

expression proteins is 825.3 mya. The difference between the

distributions is largest in the oldest groups of proteins, with

proteins created prior to the divergence of eukaryotes showing the

most dramatic enrichment for proteins with human-specific low

expression. This finding suggests that disrupting ancestral func-

tions and expressing younger proteins may have contributed to the

creation of human-specific traits. Further work is needed in order

to understand the functional and evolutionary significance of the

observed negative association between age and recent lineage-

specific expression in humans.

The protein ages used in this analysis and all others in the text

were estimated using Wagner parsimony on PPOD’s OrthoMCL

clustering of proteins in the PANTHER database. We observed

similar patterns with other age estimation strategies and databases

(Supplementary Figures S4 and S5). However, the particular age

groups showing the most dramatic differences varied, as is

expected given the different assumptions upon which the

databases are built. We also note that 46 proteins included on

the microarray as present in human, chimpanzee, and macaque

were not present in all three species in the PPOD-PANTHER-

OrthoMCL age database. We ignored these proteins in our

analysis, but including them does not change the conclusions.

Proteins with regulatory functions are significantly
younger than those with catalytic functions

ProteinHistorian can be used to investigate the evolutionary

history of pathways and to test hypotheses about the origin of

proteins that share common functions. To facilitate these analyses,

ProteinHistorian accepts protein lists in the Gene Ontology

Annotation File (GAF) format 2.0 [21] as input—in addition to

simple lists of protein names. For example, since differences in

gene regulation are responsible for many of the phenotypic

Figure 4. omparison of human protein age and length. The length of a human protein is significantly positively correlated with its age
(Spearman r~0:179; p&0). However, on average, the increase in age is not present in the most ancient age groups. Each blue box extends from the
lower to the upper quartile of protein lengths observed for each age. The median age (bold horizontal black line), mean age (red x), and the
minimum and maximum values observed within 1.5 times the interquartile range (whiskers) for each time point are also given. This pattern holds for
a range of species (Table 1) and age estimation strategies (Supplementary Figure S5).
doi:10.1371/journal.pcbi.1002567.g004
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differences between species [39], we speculated that proteins with

regulatory activities might be younger than proteins with other

essential biochemical functions, such as catalysis. We tested this

hypothesis by retrieving all human proteins with manual GO

annotations to the ‘‘biological regulation’’ (GO:0065007) or

‘‘catalytic activity’’ (GO:0003824) categories using QuickGO

[40] on January 7, 2012 and comparing their ages.

Regulatory proteins are significantly younger than catalytic

proteins (Mann-Whitney U test: U~7:7|106; p&0; Figure 3B).

Proteins in the catalytic activity category have an average age of

1150.6, while the regulatory proteins have an average age of

726.3 mya. Many catalytic proteins are ancient; over 25% are

estimated to have been present in the last common ancestor of all

eukaryotes. Significant differences between the fraction of proteins

from the two sets are observed for the majority of the age groups.

We observed similar patterns when we compared more fine-scale

functional annotations within these categories, such as nucleic acid

binding transcription factor activity and particular catalytic

processes. To analyze more specific functional units, we used the

Pfam domain age database to compare the age distribution of

individual domains. We downloaded all domains that had

‘‘catalytic’’ or ‘‘regulat�’’, where � is a wildcard, in their

description and compared their age distributions. The regulatory

domains were also significantly younger than catalytic domains

(Supplementary Figure S6; average age 1926.4 versus 3135.5 mya;

Mann-Whitney U test: U~3:8|104; p&0).

Old proteins are significantly longer than young proteins
In addition to performing protein age enrichment analysis,

ProteinHistorian can correlate ages with other protein attributes. To

illustrate this function, we compared protein age and length across

the fungal and metazoan genomes present in the PPOD-

PANTHER-OrthoMCL database. We limited our analysis to

these species, because the other eukaryotic species did not have

sufficient depth in the tree (Figure 2) to allow the estimation of

high resolution ages.

Proteins with homologs across a diverse set of species have been

anecdotally reported to be longer than proteins without evolu-

tionarily distant homologs. This relationship has been observed in

yeast, human, fly, and Aspergillus fungus [2,6], but it has not been

studied in depth. Our results confirm these previous observations

and demonstrate the generality of this pattern. For example, the

length of a human protein is significantly correlated (Spearman

r~0:18; p&0) with its age (Figure 4).

A positive, though often relatively small in magnitude,

correlation between protein age and length is present in all of

the 24 species considered; the correlation is significant for 22 of the

24 species. (Table 1). The two exceptions are Ashbya gossypii, a

filamentous fungus, which shows a very slight positive correlation

(Spearman r~0:02; p~0:29) and Schizosaccharomyces pombe, fission

yeast, which also shows a slight positive correlation (Spearman

r~0:03; p~0:065). The strongest correlations are observed in

mouse (0.32) and human (0.18). The magnitude of the correlation

between age and length is often quite different between closely

related species. For example, proteins in chimp (0.08) and rat

(0.10) have lower correlations than human and mouse. We suspect

that the comparatively strong correlation in human and mouse is

due to these species having more extensively characterized

proteomes than the other species considered. The predicted

protein sets for most species are based, in part, on the existence of

homologous proteins in other species, and so the less well

annotated proteomes may be missing many lineage-specific

proteins.

Fitting a linear model to the human data suggests that proteins

have increased in length by roughly 0.28 amino acids per million

years on average since the origin of eukaryotes. We did not include

the two most ancient groups—proteins with origins before the

eukaryotes—in this analysis because they often did not maintain

the increase in length. Several possibilities could explain the lack of

a continuation of this pattern among the oldest proteins. Ancient

proteins might be less subject the evolutionary processes driving

increases in length, perhaps in part because many of them perform

essential functions necessary for life. It is also possible that these

older proteins have reached a natural limit on the length that

proteins can maintain under normal circumstances.

Availability and Future Directions

The ProteinHistorian tools enable biologists and bioinformaticians

to perform powerful phylogenetic analyses on protein sets of

interest across the eukaryotic tree of life. Using ProteinHistorian we

found intriguing differences in the origins of proteins with

increased versus decreased expression in humans; we tested a

hypothesis about the age of regulatory proteins; and we

Table 1. Correlation of protein age and length across 24
fungi and metazoa.

Species Spearman r p-value
Number of
Proteins

Schizosaccharomyces pombe 0.03 0.065 4987

Aspergillus nidulans 0.09 3.5e-17 9540

Neurospora crassa 0.12 1.5e-32 9820

Ashbya gossypii 0.02 0.29 4721

Saccharomyces cerevisiae 0.06 7.8e-06 5875

Caenorhabditis briggsae 0.06 4.7e-16 16330

Caenorhabditis elegans 0.14 4.5e-93 19986

Anopheles gambiae 0.12 9.5e-42 12456

Drosophila melanogaster 0.12 5.6e-48 13443

Strongylocentrotus purpuratus 0.14 3.1e-120 28605

Ciona intestinalis 0.15 4.6e-77 14179

Danio rerio 0.09 1e-40 21321

Takifugu rubripes 0.05 1.8e-10 18522

Xenopus tropicalis 0.07 2.7e-18 18022

Gallus gallus 0.07 3.9e-19 18228

Ornithorhynchus anatinus 0.10 1.3e-44 17950

Monodelphis domestica 0.06 4e-15 19470

Canis familiaris 0.10 6.1e-42 19304

Bos taurus 0.08 1.3e-34 21053

Mus musculus 0.32 &0 26184

Rattus norvegicus 0.10 3e-56 27757

Macaca mulatta 0.07 2.7e-22 21904

Pan troglodytes 0.08 2.1e-31 19828

Homo sapiens 0.18 1.8e-142 19910

Nearly all species show a significant, though often small, positive Spearman
correlation between protein age and length. The two exceptions are
Schizosaccharomyces pombe and Ashbya gossypii, for which the slight positive
correlations are not significant. Human (Figure 4) and mouse show the
strongest correlations overall.
doi:10.1371/journal.pcbi.1002567.t001
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demonstrated a very general positive correlation between protein

age and length in fungi and metazoa.

The ProteinHistorian web server, source code, and data are freely

available under the GNU public license. Because ProteinHistorian is

easily extensible, we expect the tool to grow and develop as new

data and algorithms become available. We hope to extend it to

include analysis of prokaryotes by using ancestral reconstruction

algorithms that can handle frequent horizontal gene transfer [16].

The ProteinHistorian framework could also be adapted to analyze

the evolutionary origins of functional elements other than proteins.

Supporting Information

Dataset S1 ProteinHistorian source code and examples.
This archive contains the python source code for the command

line version of ProteinHistorian. Installation instructions and several

example analyses are given in the README file.

(ZIP)

Figure S1 Dollo parsimony produces older protein age
estimates than Wagner parsimony. Each set of age estimates

is based on a species tree, ancestral family reconstruction algorithm,

and a protein family database. Different choices for each of these inputs

will produce age distributions with different properties. For example,

the Dollo parsimony ancestral reconstruction algorithm produces older

ages for human proteins on average (average age: 1154.5 mya) than

Wagner parsimony (average age: 681.4 mya; Mann-Whitney U test:

U~1:4|108; p&0). Dollo parsimony assumes that each protein

family was only gained once, thus false positives in the family database

and instances of horizontal gene transfer can inflate protein ages. In

contrast, Wagner parsimony allows multiple gains in its reconstruction,

and as a result, produces younger ages on average.

(PDF)

Figure S2 Jaccard Clustering produces older protein
age estimates than OrthoMCL. The PPOD protein family

database based on Jaccard clustering produces older ages for human

proteins on average (average age: 1289.1 mya) than the

OrthoMCL-based database (average age: 817.9 mya; Mann-

Whitney U test: U~1:4|108; p&0). Jaccard clustering attempts

to capture more distant evolutionary relationships than OrthoMCL,

and this result suggests that it is successful. The family reconstruc-

tion for this analysis was performed with Dollo parsimony, but

results are similar for Wagner parsimony (data not shown). Note

that the species set used in this comparison is the 12 GO reference

genomes, since there is not a Jaccard clustering family database

available from PPOD for the full set of species in PANTHER.

(PDF)

Figure S3 Comparison of the age distributions resulting
from the oldest Pfam domain and youngest Pfam
domain age estimation strategies. As expected, assigning

human proteins the age of their oldest Pfam domain produces

older ages on average (average age: 2433.7 mya) than assigning

them the age of their youngest domain (average age: 1881.8 mya;

Mann-Whitney U test: U~2:1|109; p&0).

(PDF)

Figure S4 Example comparisons of age distributions for
protein sets of interest. The comparisons of the age

distributions of different protein sets of interest presented in the

text (Figure 3) are similar when ancestral family reconstruction is

performed using Dollo parsimony instead of Wagner parsimony. (A)

Proteins with high expression on the human lineage (compared to

non-human primates) have an average origin of 1215.4 mya and

are significantly younger than proteins with human-specific low

expression (1440.2 mya; Mann-Whitney U test: U~5:7|105;

p~1:3|10{7). The distributions have significant differences in the

fraction of proteins created around the divergence of Mammalia,

Euteleostomi, Eukaryota, and all cellular life (Fisher’s exact test; *:

pv0:05; **: pv0:01; ***: pv0:001). (B) Proteins with annotated

regulatory functions are significantly younger (average age:

1150.7 mya) than proteins with catalytic functions (average age:

2025.7 mya; Mann-Whitney U test: U~6:6|106; p&0).

(PDF)

Figure S5 Correlation between human protein age and
length. The length of a human protein is significantly positively

correlated with its age (Spearman r~0:165; p&0) when using

Dollo parsimony instead of Wagner parsimony. However, as in the

Wagner analysis, the increase in age does not continue across the

most ancient age groups. Each blue box extends from the lower to the

upper quartile of protein lengths observed for each age. The median

age (bold horizontal black line), mean age (red x), and the minimum

and maximum values observed within 1.5 times the interquartile

range (whiskers) for each time point are also given. This result holds

across a range of species (Supplementary Table S1).

(PDF)

Figure S6 Comparison of Pfam catalytic and regulatory
domain age distributions. Pfam domains with catalytic

activities are significantly older on average (average age:

3135.5 mya) than regulatory domains (average age: 1926.4 mya;

Mann-Whitney U test: U~3:8|104; p&0). The domain groups

were defined by searching for ‘‘catalytic’’ and ‘‘regulat’’ in the

descriptions of all Pfam domains. Since all observed domains, not

just those found in a single species, were considered in this analysis,

the x-axis lists all possible taxa of origin.

(PDF)

Table S1 Correlation of protein age and length across
24 fungi and metazoa. Using Dollo parsimony on the PPOD-

PANTHER OrthoMCL database, the correlations between age

and length are very similar to those reported in the main text

(Table 1). Nearly all species show a significant, though often small,

positive Spearman correlation between protein age and length.

The one exception is Ashbya gossypii. Human (Figure 9) and mouse

show the strongest correlations overall.

(PDF)
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