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Abstract

Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major
challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict
a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing
goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for
enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with
ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover
rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an
identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be
more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in
genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for
catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT
is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular
flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to
predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly
improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a
physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.
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Introduction

Traditional metabolic modeling techniques involve the recon-

struction of kinetic models based on detailed knowledge on

enzyme kinetic parameters for all enzymes in a certain system [1].

These models are limited to small-scale systems due to lack of

sufficient data on kinetic constants and the highly complex nature

of these models. An alternative approach called Constraint-Based

Modeling (CBM) predicts certain steady-state cellular metabolic

phenotypes in microorganisms on a genome-scale by relying solely

on simple physical-chemical constraints, without requiring enzyme

kinetic data [2,3,4]. This approach identifies steady-state flux rates

(in units of mmol/(g[DW]*h) through a metabolic network,

satisfying stoichiometric mass-balance as well as reaction direc-

tionality constraints, such that nutrients taken up with a certain

measured rate (in units of mmol/g[DW]*h) are transformed into

biomass. The metabolic network includes a biomass production

reaction that consumes essential biomass metabolites, with its

stoichiometric coefficients representing the molar quantities

required for generating a unit mass of cells (in units of mmol/

g[DW]). This reaction’s flux activity represents the growth rate (in

units of 1/h). CBM is now commonly used for metabolic

engineering in microorganisms, predicting the effect of gene

knockouts on organism viability [2].

Flux Balance Analysis (FBA) is a commonly used CBM

approach that enables to predict biomass production yield (in

units of gram biomass/gram nutrient) based solely on reactions’

stoichiometry and directionality (i.e. without measurements of

nutrient uptake rates). Given information only on reactions’

stoichiometry and directionality, the prediction of biomass yield

works by searching for a feasible flux distribution with maximal

flux through the biomass production reaction, considering an

arbitrary upper bound on the uptake rate of the carbon nutrient.

The maximal biomass production rate predicted by FBA reflects

optimal yield metabolism and is equal to the assumed uptake rate

multiplied by maximal biomass yield. The prediction of actual

growth rate by FBA is theoretically possible when experimental

measurement of nutrient uptake rates is available and is used to

constrain the uptake flux in the model (or alternatively, by

multiplying FBA-predicted biomass yield with the measured

uptake rates). However, experimental studies have shown that

microorganisms exhibit non optimal-yield metabolism under

various conditions, for example, in the case of over-flow

metabolism where excess nutrient uptake is metabolized ineffi-
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ciently [5,6]. In fact, growth rate was found to be inversely

correlated with biomass yield in some microorganisms under

different growth environments (see Section 4 in Supp. Material of

[7]). Hence, growth rate prediction obtained by FBA (reflecting

optimal yield metabolism) are likely to be unrealistically high in

many cases. Predicting the correct growth rate even when nutrient

uptake rates are known is a challenging task. A more ambitious

conceptual challenge is the prediction of growth rate without

measurements of nutrient uptake rates under a variety of

environmental and genetic conditions.

FBA with Molecular Crowding (FBAwMC) is a recently

developed extension of FBA which was shown to enable the

prediction of growth rates of E.coli across a small set of growth

media (without given measurements of nutrients uptake rates), as

well as under conditions of over-flow metabolism [8,9]. This was

achieved by accounting for the enzyme concentrations required

for catalyzed metabolic flux (utilizing data on enzyme kinetic

constants), considering a physiological upper bound on the total

cellular volume used by metabolic enzymes. Other recent

modeling approaches aim to predict cellular metabolism by

integrating molecular crowding constraint with kinetic parameters:

(i) A recent study has utilized a variant FBAwMC to predict

inefficient metabolism in cancer cells, in accordance with the

Warburg effect [10]. (ii) A method by Zhuang et al [11] accounts

for a constraint relating to the competition for membrane space

between nutrient transporters and respiratory chain proteins was

shown to improve metabolic prediction, without requiring explicit

data on nutrient uptake rates. (iii) Goelzer et al [12] models

cellular metabolism by accounting for both solvent capacity

constraints and translation apparatus. Another method recently

shown to utilize enzyme turnover numbers to improve metabolic

flux prediction is Integrative Omics Metabolic Analysis (IOMA),

requiring further quantitative proteomic and metabolomics data as

input [13]. Another method that aims to predict cellular

metabolism without requiring nutrient uptake rates is E-flux

[14], which relies on high-throughput gene expression data (shown

to predict growth rates in a qualitative manner). Still, none of these

approaches were shown to successfully predict in a quantitative

manner the growth rate of microbes across conditions, without

utilizing a-priori data on nutrient uptake rates.

In this paper, we present a method, MetabOlic Modeling with

ENzyme kineTics (MOMENT), for predicting metabolic fluxes

and growth rates by accounting for the maximal cellular capacity

for metabolic enzymes without the requirement of experimentally

determined uptake rates. Extending upon FBAwMC, MOMENT

accurately quantifies the enzyme concentrations required for

catalyzing each metabolic reaction based on known kinetic

constants, accounting for isozymes, protein complexes and multi-

functional enzymes. MOMENT is shown to predict growth rates

for E.coli under a diverse set of growth media that are significantly

correlated with experimental measuements, without requiring

measured nutrient uptake rates, significantly outperforming the

prediction accuracy of FBAwMC. Furthermore, MOMENT is

shown to markedly improve the prediction performance of various

metabolic phenotypes, including metabolic fluxes and expression

level of metabolic genes. We begin our analysis by exploring the

relation between enzyme kinetic parameters and measured

metabolic flux, showing a design principle in which enzymes

catalyzing high flux reactions across different media tend to be

more efficient in terms of having higher turnover numbers (hence

requiring lower concentration to achieve a certain flux rate). This

suggests that a a physiological constraint on total cellular enzyme

concentration, which underlies MOMENT, significantly affects

cellular metabolism and the evolution of enzyme kinetic param-

eters.

Results

The evolution of enzyme kinetic parameters optimizes
metabolic flux

An enzyme turnover number is defined as the maximal number

of molecules of substrate that the enzyme can convert to product

per catalytic site per unit of time. We extracted enzyme turnover

numbers for 251 reactions from BRENDA [15] and SABIO-RK

[16] databases. To infer genome-scale metabolic flux rates, we

utilized several dozen metabolic fluxes under various growth rates

in glucose minimal media (obtained from Ishii et al. [17] and

Schuetz et al. [18]), and integrated them with a genome-scale

metabolic network model of E.coli [19] to infer the most likely rates

through the entire network. Specifically, this was done based on

standard quadratic programming optimization by minimizing the

Euclidian distance between the predicted and the measured fluxes

to fit the predicted fluxes to measured ones [20]. Notably, this

analysis does not make usage of kinetic data as input. As an

alternative approach for inferring global flux distributions, we

employed Flux Balance Analysis, followed by Flux Variability

Analysis [21], to identify metabolic reactions whose flux can be

uniquely determined based on stoichiometric mass-balance

constraints and maximal biomass yield assumption (obtaining

overall similar results in the analysis described below for the flux

distributions obtained by the two approaches; Table S1; Figure

S1).

When comparing the enzyme kinetic parameters in E. coli and

measured flux rates, we found that enzymes catalyzing high flux

reactions have high turnover number, with statistically significant

Pearson correlations of 0.45 (p-value = 7.8e-5) and 0.46 (p-

value = 3.6e-5) between turnover rates and fluxes under conditions

of low and high growth rates, respectively (Figure 1; considering

base 10 log of both fluxes and turnover numbers). These

correlations suggest that higher selection pressure for enzymatic

efficiency (i.e. higher turnover rates) acts on enzymes carrying high

flux reactions. Notably, our results extend upon a recent finding

that central metabolic enzymes have higher turnover rates than

secondary metabolic enzymes [22], by considering actual flux rates

Author Summary

While current genome-scale metabolic modeling ap-
proaches enable us to successfully predict a variety of
metabolic phenotypes, identifying the factors that deter-
mine microbial growth rate and the prediction of growth
rates under various conditions is still an open challenge.
Here we present a metabolic network-based approach,
MetabOlic Modeling with ENzyme kineTics (MOMENT),
which predicts growth rates by integrating standard
stoichiometric modeling with prior data on enzyme
turnover rates and enzyme molecular weights, considering
a physiological bound on total enzymes’ concentration.
The method is based on a finding that enzymes catalyzing
high flux reactions tend to be more efficient in terms of
having higher turnover numbers. MOMENT predicts
growth rates of E. coli across a set of 24 different media
that are significantly correlated with experimental mea-
surements, while existing state-of-the art stoichiometric
modeling approaches fail to do so. These results suggest
that a bound on cellular enzyme concentrations is a key
factor that determines microbial growth rate.

Growth Rate Prediction Using Kinetic Parameters
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instead of relying on rough categorization of enzymes to primary

and secondary metabolism.

Enzyme molecular weights were computed based on genomic

sequences, extracted from KEGG [23]. A statistically significant

Pearson correlation of 0.22 (p-value = 3.2e-5) was also found

between metabolic flux rates and enzyme molecular weights,

indicating higher flux rates for enzymes with high molecular

weights (Figure 1A). Interestingly, a simple linear regression model

that aims to explain metabolic flux rates based on both enzyme

turnover numbers and molecular weights provided a Pearson

correlation of 0.55 (p-value = 8.1e-7) with metabolic flux rates,

suggesting that each parameter contributes independently to

explaining flux rates (Figure 1A).

While enzyme kinetic parameters are scarcely used in genome-

scale metabolic modeling approaches, gene expression data is

commonly utilized as the basis for metabolic flux prediction

[24,25]. However, computing the correlation between the above

described flux rates and gene expression [26] measured also under

glucose minimal media, resulted in Pearson correlations of only

0.26 and 0.265 under low and high growth rates, respectively. The

latter correlations are markedly lower than those obtained

between flux rates and enzyme turnover numbers. This is a

remarkable result considering that both the gene expression and

metabolic fluxes were measured under the very same growth

media, while the kinetic parameters are constant characteristics of

the enzymes across different growth conditions. Adding the gene

expression data to the above described regression model provided

an insignificant contribution to metabolic flux predictions

(Figure 1A). Futher utilizing proteomic data for 67 enzyme-coding

genes in E. coli measured under the same growth media [26], we

did not find a significant correlation between protein concentra-

tions and the metabolic flux rates. These findings further highlight

the importance of utilizing enzyme kinetic data as a prime data

source for metabolic flux prediction.

Having shown that enzyme turnover numbers are significantly

correlated with measured flux rates under glucose minimal media,

we set to examine the correlation between enzyme turnover

numbers and flux rates under a diverse set of growth media.

Towards this end, we applied FBA to predict likely flux

distributions under a set of media (listed in the Methods), setting

the growth rate to experimental measurements and optimizing for

maximal yield. We find that the average Pearson correlation

between the enzyme turnover numbers and the predicted fluxes

across these media is 0.46 (Figure 2A). Next, we computed the

correlation between the mean flux rate per enzyme across the

growth media and enzyme turnover numbers, finding a Pearson

correlation of 0.52, which is higher than the correlations obtained

under any single medium. This result suggests that enzyme

turnover rates may potentially evolve to support efficient

metabolism across multiple media. To explore whether metabo-

lism is better tuned for a specific growth medium, we compared

the correlation between predicted fluxes and enzyme turnover

numbers achieved for aerobic versus anaerobic conditions

(Figure 2B). We found that the correlation between predicted

fluxes and enzyme turnover numbers is significantly higher in

aerobic conditions (paired Wilcoxon test p-value = 3e-15), suggest-

ing a potentially stronger selection pressure for efficient metabo-

lism under aerobic conditions. These results suggest that data on

enzyme kinetics and metabolic flux may provide valuable insight

into organisms’ natural environment, in line with previous

attempts to do so via other molecular data sources such as codon

usage and gene expression [27].

Utilizing enzyme kinetic parameters within genome-scale
metabolic modeling

The fact that enzyme turnover numbers and the molecular

weights of enzymes are significantly correlated with metabolic flux

rates suggests that the utilization of the latter data sources within

metabolic modeling approaches may provide improved prediction

accuracy of metabolic phenotypes (as also shown in [9,10,11,12]).

Towards this end, we developed a method called MetabOlic

Modeling with ENzyme kineTics (MOMENT), which utilizes the

kinetic parameters under the limitation of the total enzymatic pool

available. Given a growth condition of interest, MOMENT

predicts a flux distribution that satisfies stoichiometric mass-

balance and reaction directionality constraints, such that the total

mass of enzymes required to catalyze the predicted flux is bounded

by the total enzymatic mass, considering a similar constraint to

Figure 1. Enzyme turnover numbers and enzyme molecular weights are significantly correlated with metabolic flux rates. (A)
Correlations of enzyme turnover numbers, enzyme molecular weights, gene expression levels, and combinations of the latter via a linear regression
model with measured metabolic flux rates. Measured flux rates in E.coli under glucose minimal media in low and high growth rates were taken from
Ishii et al. [17], and Schuetz et al. data [18], respectively. Each bar represents a correlation between flux rates and a single or multiple data sources
(marked by ‘+’ signs). (B) Enzyme turnover numbers correlate with measured metabolic flux rates in E. coli (both in log10 scale). Linear regression line
in red.
doi:10.1371/journal.pcbi.1002575.g001

Growth Rate Prediction Using Kinetic Parameters
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that used by FBAwMC and by [12,21] (Methods). Enzyme

turnover numbers are used to compute an upper bound on

enzyme concentrations required to catalyze the corresponding flux

rates, and enzyme molecular weights to transform concentrations

to units of mass. However, unlike FBAwMC, MOMENT jointly

searches for a feasible flux distribution and for the corresponding

enzyme concentrations required, considering isozymes, enzymatic

complexes, and multi-functional enzymes. This is achieved by

making usage of detailed gene-to-reaction mapping that is

commonly represented in CBM models via Boolean equations

(Methods). For isozymes, the gene-to-reaction mapping denotes

that the expression of one of several genes is required to catalyze a

certain reaction, while for enzyme complexes, that the expression

of several genes is jointly required. Notably, the entire set of gene-

to-reaction mapping is formulated as part of the linear program-

ming in a recursive manner, without requiring a more complex

optimization such as mixed-integer linear programming that is

commonly used to model this mapping [28,29]. For reactions in E.

coli for which no enzyme turnover numbers were extracted from

the above described databases, mean turnover numbers from

other species were considered, yielding a total set of turnover

numbers for 513 enzymes. Reactions for which no turnover

number was available in any species were assigned with the

median turnover number across all reactions in E.coli, as in [10].

Using only enzyme turnover numbers measured for E.coli provided

lower prediction accuracy for MOMENT as well as for the other

computational approaches, still showing a marked advantage in

prediction accuracy to MOMENT (Table S2). An implementation

of MOMENT is available via http://www.cs.technion.ac.il/

,tomersh/tools/.

Predicting E. coli’s growth rate across growth media
To evaluate MOMENT’s ability to predict microbial growth

rates, we experimentally measured E. coli’s growth rates on 24

single carbon and energy source media (Methods, Table S3) and

compared the predicted and measured rates. The predictions were

obtained by applying MOMENT on the genome-scale metabolic

network model of E. coli iAF1260 [19]. We found that growth rate

predictions obtained by MOMENT were significantly correlated

with the measured ones, with a Pearson correlation of 0.468 (p-

value = 0.02; Figure 3 and 4), and a Spearman correlation of 0.473

(p-value = 0.0196). Notably, varying the threshold on the total

enzyme mass linearly scales the predicted growth rates (and hence,

by definition, does not change the above correlations between

predicted and measured growth rates; Text S1).

Protein mass was previously shown to account for 56%(g

enzymes/gDW) of cellular mass (based on experimental measure-

ments [30]). Assuming that the entire protein mass is allocated to

metabolic enzymes, we initially predicted a mean growth rate of

1.02 (1/h) across growth media, which is markedly higher than the

mean measured growth rate of 0.47 (1/h). Searching for a threshold

on the total enzymatic mass that minimizes the deviation between

measured and predicted growth rates (in terms of square differences)

resulted in a threshold of 27% (g enzymes/gDW) (suggesting that

only 48% of protein mass is taken by metabolic enzymes). Hence,

practically, in order to scale the predicted growth rates to the correct

Figure 2. Enzyme turnover rates show higher correlation with average flux across media and with flux under aerobic conditions. (A)
Histogram of Pearson correlations between enzyme turnover numbers and predicted flux rates under different single carbon and energy source
media (in blue). The Pearson correlation between enzyme turnover numbers and the averaged flux distribution across conditions (in green) is shown
to be markedly higher than those obtained under the different media. (B) Pearson correlations between enzyme turnover numbers and predicted
fluxes under a set of single carbon and energy source media under either aerobic versus anaerobic conditions. As shown, under most growth
conditions, the correlation between enzyme turnover numbers and fluxes is higher when fluxes are predicted under aerobic conditions.
doi:10.1371/journal.pcbi.1002575.g002

Figure 3. Growth rate prediction accuracy by MOMENT versus
other approaches. The prediction of E.coli growth rate under 24
different minimal media based on MOMENT, FBAwMC, and MOMENT
with random enzyme turnover rates (with the error bar representing
standard deviation over 1000 randomly shuffled turnover numbers). As
shown, only MOMENT (with the true turnover rates) achieves a
statistically significant Pearson correlation between predicted and
measured growth rates (p-values are shown on top of each bar).
doi:10.1371/journal.pcbi.1002575.g003

Growth Rate Prediction Using Kinetic Parameters
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range, prior knowledge on the total mass of metabolic enzymes

should be used. In this case, the identified fraction of proteins mass

devoted to metabolic enzymes in E. coli is further supported by

analyzing gene expression data [26], which show that the sum of

expression level of enzyme-coding genes is 35% of the total sum of

expression level of all genes.

While the growth rate predictions obtained by MOMENT are

significantly correlated with the measured ones, the standard

deviation of the predicted rates (across the different media) is

markedly lower than that of the measured growth rates (0.054 for

predicted rates versus 0.14 for measured rates). A potential

explanation for the differences between the standard deviations in

the observed and predicted growth rates could be that the fraction

of protein mass devoted to metabolic enzymes increases under

high growth rates. Notably, checking this hypothesis would require

high-throughput protein concentration data measured under

Figure 4. The prediction of growth rates by MOMENT. MOMENT predicted growth rates achieving a Pearson correlation of 0.47 (p-value = 0.02)
with the measured growth rates.
doi:10.1371/journal.pcbi.1002575.g004

Growth Rate Prediction Using Kinetic Parameters
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various growth rates, though this kind of data is currently

unavailable. Overall, utilizing additional experimental data on

the total enzyme concentration in a specific growth condition of

interest is expected to further improve MOMENT’s predictive

performance.

To evaluate the importance of the utilized enzyme turnover

numbers, we repeated MOMENT’s growth rate predictions with

randomly shuffled turnover numbers, which were found to provide

significantly lower prediction accuracy (Figure 3; p-value = 0.026,

representing the fraction of random samplings, which have led to a

higher correlation with the measured growth rates than that

achieved with the known turnover numbers).

To benchmark our new method, we tested the prediction

performance of the previously developed FBAwMC. Here,

FBAwMC was provided with the very same enzyme turnover

rates given to MOMENT, while performing a sampling procedure

for missing parameters as described in Beg et al did not improve

the predicted performance (data not shown). We found that the

growth rate prediction achieved by FBAwMC are not significantly

correlated with the measured ones (Figure 3; Figure S2; p-

value = 0.17), although a significant correlation between measured

and predicted growth rates was reported for a smaller set of 10

media by Beg et al. [8]. Notably, the scope of the 24 media

considered here is significantly wider as it includes also nucleotides

and amino-acids which were not considered in the set of 10 media

studied by Beg et al. When focusing on the growth rate

measurements for the limited set of 10 media made by Beg et

al, both FBAwMC and MOMENT achieve significant Pearson

correlations, though insignificant Spearman correlations (see

Table S4). A previous study by Wong et al. [31] suggests that

growth rate is proportional to the square root of growth yield. We

find that MOMENT’s predictions satisfy this relation, with a

significant correlation (Pearson R = 0.3953, p-value = 0.05; Spear-

man R = 0.5046, p-value = 0.01) between the predicted growth

rate and the square root of the predicted biomass yield.

Predicting metabolic flux, gene and enzyme expression
levels

To evaluate the performance of MOMENT in predicting

intracellular fluxes, we compared experimental flux measurements

for 28 reactions in E.coli measured under exponential growth

phase by Schuetz et al. [18] with the predicted fluxes. We found

that flux predictions obtained by MOMENT achieve a Pearson

correlation of 0.76 with the measured fluxes, significantly

outperforming FBAwMC and FBA, which achieve correlations

of 0.64 and 0.51, respectively. As a further control, we tested a

variant of FBA, which maximizes ATP yield per sum of flux

square, previously shown by Schuetz et al. to improve flux

prediction accuracy [18]. We found that predictions obtained by

the latter approach achieve a Pearson correlation of 0.68 with the

measured fluxes, which is still markedly lower than MOMENT’s

prediction accuracy (Figure 5A; Figure S3A; Table S5). Also here,

the utilization of the randomly sampled enzyme turnover numbers

led to worse predictions (Figure 5A; Table S5).

To further evaluate the predictive performance of MOMENT,

we extracted data from [32] on gene expression changes in E.coli

under glucose minimal media, between low and high growth rate

conditions, the latter involving over-flow metabolism, and

compared it to predicted changes in enzyme concentrations.

Applying MOMENT to predict changes in protein concentrations

between these low and high growth rate conditions, we predicted

28 enzymes with a significant change in concentration (deviating

from the expected increase in enzyme levels due to the fold change

increase in growth rate). We found that changes in these enzyme

concentrations predicted by MOMENT between the low and high

growth rates achieve a Pearson correlation of 0.84 (p-value = 2.4e-

8) with the measured changes in gene expression (Figure 5B;

Figure S3B; Table S6), even though gene and protein expression

levels tend to be only moderately correlated [33]. Also here, the

performance of FBAwMC is significantly lower in this case

(Figure 5B; Table S6), with a Pearson correlation of 0.34 (p-

value = 2.9e-3).

Notably, naı̈ve FBA was not evaluated here as it cannot be

applied to predict differential metabolism across different growth

rates. As a further benchmark, we applied a recently developed

method called Parsimonious enzyme usage FBA (pFBA), to classify

genes in E. coli according to whether they are used in the optimal

growth solutions (as this classification was previously shown to

correlate with changes in gene expression following laboratory-

evolved E.coli straints that increased their growth rates) [34]. We

found only a weak correlation between this gene classification and

the changes in gene expresion between the low and high growth

rates conditions [32] (Pearson R = 0.092, p-value = 0.02; Spear-

man R = 0.074, p-value = 0.06).

Discussion

Computational prediction of microbial growth rates represents

a major challenge. Here, we present a novel computational

approach, MOMENT, that addresses this challenge by integrating

genome-scale metabolic modeling with enzyme kinetic parame-

ters. MOMENT is shown to predict growth rates for E. coli under

various growth media that are significantly correlatred with

experimental measurements, and to improve the prediction

accuracy of several metabolic phenotypes including intracellular

fluxes, and gene expression of enzyme-coding genes. The method

is based on an identified design principle of metabolism, in which

enzymes catalyzing high flux reactions across different media tend

to have higher turnover numbers.

While MOMENT enables genome-scale prediction of meta-

bolic phenotypes it is bound to make simplifying assumptions that

in some cases may lead to false predictions: (i) MOMENT requires

as input information on the fraction of total protein concentrations

that is devoted to metabolic enzymes. Since this information is

difficult to obtain for each modeled condition, here we assumed

that this fraction remains constant across a variety of growth

media, which is expected to bias the predictions. (ii) MOMENT

does not take into account several important factors that affect

growth rate such as the cost of protein synthesis by ribosomes and

local substrate turnover numbers, etc [35]. (iii) MOMENT

requires data on enzyme kinetic constants, which is still

unavailable for hundreds of enzymes in E. coli. Specifically, kinetic

data on various membrane transporters is missing from both

BRENDA [15] and SABIO-RK [16], which may lead to false

prediction regarding the cost of activating specific transporters and

regarding the effect of knocking out transporters. (iv) MOMENT

does not predict metabolite concentrations and hence does not

take into account thermodynamic considerations (regarding flux

directionality) or enzyme saturation considerations in computing

required enzyme levels (implicitly assuming that the majority of

enzymes in E. coli are fully saturated, following [36]). Future

studies may extend MOMENT to also predict metabolite

concentrations, satisfying the 2nd law of thermodynamics as done

in [37], while considering enzyme saturation effects via known

enzyme binding affinity constants (Km).

From an applicative standpoint, the improved metabolic

modeling performance achieved by MOMENT is expected to

significantly contribute to metabolic engineering applications and

Growth Rate Prediction Using Kinetic Parameters
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specifically to optimal strain design. Specifically, the additional

constraints employed by MOMENT on the requirement for

specific enzyme concentrations for catalyzing predicted metabolic

flux rates, can be integrated and potentially improve the accuracy

of computational metabolic engineering methods such as Opt-

Knock, RobustKnock, OptStrain, etc [38,39,40]. MOMENT’s

ability to correctly predict microbial growth rates supports the

underlying assumption that a physiological bound on cellular

enzyme mass is a key factor that determines growth rate.

Methods

Growth rate determination
Strains and medium. The wild-type Escherichia coli K-12

strain BW25113 was used for all experiments. Cells were

cultivated in M9-minimal medium with different carbon source

added. The carbon sources were added so that the amount of

reducible carbon equaled the amount present in a concentration of

2 g/L glucose. M9 minimal medium was prepared in the following

way: To 700 mL of autoclaved, purified water, 200 mL of 56base

salt solution (211 mM Na2HPO4, 110 mM KH2PO4, 42.8 mM

NaCl, 56.7 mM (NH4)2SO4, autoclaved), 10 mL of trace elements

(0.63 mM ZnSO4, 0.7 mM CuCl2, 0.71 mM MnSO4, 0.76 mM

CoCl2, autoclaved), 1 mL 0.1 M CaCl2 solution (autoclaved),

1 mL 1 M MgSO4 solution (autoclaved), 2 mL of 5006 thiamine

solution (1.4 mM, filter sterilized) and 0.6 mL 0.1 M FeCl3
solution (filter sterilized) were added. The resulting solution was

filled up to 1 liter with water. Carbon source were added to the

medium from stock solutions adjusted to pH 7. All media were

filtrated prior to use (Steritop-GP 500 mL, Millipore). All

chemicals used were obtained from Sigma-Aldrich if not indicated

otherwise.

Cultivation. The growth rates were determined using an

automated cultivation device (Tecan Infinite 200 Pro plate reader).

Cells were grown to a steady state in the respective growth

medium in shake flasks, then washed twice in minimal medium.

4 mL of the washed cells were inoculated into a well on a 96-well

plate (black, Greiner) with 196 mL of medium. The plate was

covered with a transparent plastic cover and sealed with parafilm.

Cultivation was done at the maximal linear shaking speed

(160 min-1, 1 mm displacement) and the following settings for

optical density (OD) measurement (Interval time 5 min, shaking

4:42, reading (no shaking) 18 s; number of flashes 1; wavelength

600 nm, bandwidth 9 nm). The cells were grown to stationary

phase or for at least 50 hours to ensure observation of steady state

growth. The measured OD-values were corrected for the non-

linearity of the device using an empirical function derived from

samples with known OD-values (measured by spectrometry) from

10 to 0.001.

Extraction of enzyme kinetic parameters
Enzyme turnover rates were extracted from BRENDA [15] and

SABIO-RK [16]. based on Enzyme Commission (EC) numbers

and reactant names in the E.coli metabolic model by Feist et al.

[19] (Table S7). Measured turnover rates for mutated enzymes

were filtered out. When multiple turnover numbers were available

for a certain enzyme, the median value was chosen.

MetabOlic Modeling with ENzyme kineTics (MOMENT)
Similar to FBA, MOMENT searches for a feasible flux

distribution vector v (mmol/gDW/h) with maximal growth rate

(i.e. flux through the biomass production reaction), satisfying mass-

balance and reaction directionality constraints based on the

following linear constraints:

(i) Sv~0,

(ii) vlbƒvƒvub,

Where S denotes a stiochiometric matrix S (NxM) composed of

N metabolites and M reactions (Sij corresponds to the stoichio-

metric coefficient of metabolite i in reaction j) and vlb and vub

represent known lower and upper bounds, respectively, on flux

rates. Here, vlb is set to either 2inf for reversible reactions or 0 for

irreversible reactions, and vub is set to +inf for all reactions. In

addition to searching for a flux distribution, MOMENT searches

for a vector of enzyme concentrations, denoted g (mmol/gDW),

such that each flux rate in v has a sufficiently high enzyme

concentration to catalyze it. To associate flux rates with enzyme

concentrations, we utilize the Boolean gene-to-reaction mapping

that is included in the E.coli model of Feist et al. [19], as follows:

1. For a reaction j catalyzed by single enzyme i, we use the

equation:

vjƒkcatj
:gi

Figure 5. Metabolic flux and gene expression level predictions via MOMENT versus other approaches. (A) The prediction of flux rates in
E.coli under glucose minimal media based on MOMENT in comparison to FBAwMC, FBA, and MOMENT with random enzyme turnover rates (error bar
representing standard deviation over randomly shuffled turnover numbers). (B) The prediction of differential gene expression levels in E.coli under
glucose minimal media, between low and high growth rate conditions (with the high growth rate condition involving overflow metabolism). p values
are shown above each bar.
doi:10.1371/journal.pcbi.1002575.g005
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2. For a reaction j catalyzed by two isozymes a OR b, we use the

equation:

vjƒkcatj
:(gazgb)

3. For a reaction j catalyzed by an enzyme complex consisting of

gene products a AND b, we use the equation:

vjƒkcatj
:min(ga,gb)

This can be formulated in a linear equation by defining an

auxiliary variable ga&b that is constrained to be smaller than both

ga and gb.

To account for more complex gene-to-reaction mappings,

where multiple alternative enzyme complexes can catalyze a

certain reaction, we applied the above rules recursively by adding

auxiliary variables for AND and OR operators. For enzymes

whose turnover number is unknown, we use the me median

turnover number across all reactions in E. coli (see Results).

The enzymes solvent capacity constraint is formulated as;

X
gi
:MWiƒC

gprotein

gDW

� �

where, MWi denotes the molecular weight of protein coded by

gene i, and C denotes the total weight of proteins, which was

assumed to be 56% out of the E. coli dry weight mass [30].

Notably, the latter constraint resembles the molecular crowding

constraint employed by [9,12,21], though here, the gene-to-

reactions mapping is taken into account.

Maximum ATP per sum of flux square
To maximize ATP yield per sum of flux square, vATPP

v2
i

, as

performed by Schuetz et al. [18], requies non-convex optimiza-

tion.To overcome that, we utilized the same approach suggested

by Schuetz at el. [18], and solved a series of quadratic

programming optimization problems of the form:

vATP

vglucose

{e
X

v2
i

where e represents a trade-off between ATP maximization and

minimization of flux norm. Specifically, we iterate over 10000

values of e between 0.5 to 1.5 to identify the optimal flux

distribution that maximizes ATP yield per flux unit.

Supporting Information

Figure S1 (A) Histogram of Pearson correlations between

enzyme turnover numbers and predicted flux rates, uniquely

determined by Flux Variability Analysis (FVA), under different

single carbon and energy source media in blue (average Pearson

correlation is 0.49; p-value = 0.002). The Pearson correlation

between enzyme turnover numbers and the averaged flux

distribution across conditions in green (Pearson correlation of

0.55; p-value = 0.0001) is shown to be higher than those obtained

under the different media. (B) Pearson correlations between

enzyme turnover numbers and predicted fluxes whose flux rate is

uniquely determined by FVA, under a set of single carbon and

energy source media under either aerobic versus anaerobic

conditions. As shown, under most growth conditions, the

correlation between enzyme turnover numbers and fluxes is

higher when fluxes are predicted under aerobic conditions(paired

Wilcoxon test p-value = 2.3e-14).

(TIF)

Figure S2 The prediction of growth rates by FBAwMC.

FBAwMC predicted growth rates achieving a Pearson correlation

of 0.29(p-value = 0.17) with the measured growth rates.

(TIF)

Figure S3 Metabolic flux and gene expression level predictions

via MOMENT. (A) The prediction of flux rates in E.coli under

glucose minimal media based on MOMENT. Linear regression

line in red. (B) MOMENT prediction of differential gene

expression levels in E.coli under glucose minimal media, between

low and high growth rate conditions (with the high growth rate

condition involving overflow metabolism). Linear regression line in

red.

(TIF)

Table S1 Correlations of enzyme turnover numbers, enzyme

molecular weights, gene expression levels, and combinations of the

latter via a linear regression model with metabolic flux rates.

(XLSX)

Table S2 The contribution of kinetics parameters to the

prediction of metabolic flux in E. coli under glucose minimal

media and differential gene expression.

(XLSX)

Table S3 Measured and predicted growth rates.

(XLSX)

Table S4 The prediction accuracy of growth rate predictions

made by MOMENT versus FBAwMC.

(XLSX)

Table S5 Metabolic flux predictions in E. coli under glucose

minimal media.

(XLSX)

Table S6 Prediction of differential gene expression levels in E.

coli under glucose minimal media.

(XLSX)

Table S7 Turnover numbers.

(XLSX)

Text S1 FVA formulation for MOMENT and the relation

between growth rate and the total enzyame mass.

(DOC)
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