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Abstract

Spike-timing-dependent plasticity (STDP) has been observed in many brain areas such as sensory cortices, where it is
hypothesized to structure synaptic connections between neurons. Previous studies have demonstrated how STDP can
capture spiking information at short timescales using specific input configurations, such as coincident spiking, spike
patterns and oscillatory spike trains. However, the corresponding computation in the case of arbitrary input signals is still
unclear. This paper provides an overarching picture of the algorithm inherent to STDP, tying together many previous results
for commonly used models of pairwise STDP. For a single neuron with plastic excitatory synapses, we show how STDP
performs a spectral analysis on the temporal cross-correlograms between its afferent spike trains. The postsynaptic
responses and STDP learning window determine kernel functions that specify how the neuron ‘‘sees’’ the input correlations.
We thus denote this unsupervised learning scheme as ‘kernel spectral component analysis’ (kSCA). In particular, the whole
input correlation structure must be considered since all plastic synapses compete with each other. We find that kSCA is
enhanced when weight-dependent STDP induces gradual synaptic competition. For a spiking neuron with a ‘‘linear’’
response and pairwise STDP alone, we find that kSCA resembles principal component analysis (PCA). However, plain STDP
does not isolate correlation sources in general, e.g., when they are mixed among the input spike trains. In other words, it
does not perform independent component analysis (ICA). Tuning the neuron to a single correlation source can be achieved
when STDP is paired with a homeostatic mechanism that reinforces the competition between synaptic inputs. Our results
suggest that neuronal networks equipped with STDP can process signals encoded in the transient spiking activity at the
timescales of tens of milliseconds for usual STDP.
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Introduction

Organization in neuronal networks is hypothesized to rely to a

large extent on synaptic plasticity based on their spiking activity.

The importance of spike timing for synaptic plasticity has been

observed in many brain areas for many types of neurons [1,2],

which was termed spike-timing-dependent plasticity (STDP). On

the modeling side, STDP was initially proposed to capture

information within spike trains at short timescales, as can be found

in the auditory pathway of barn owls [3]. For more than a decade,

STDP has been the subject of many theoretical studies to

understand how it can select synapses based on the properties of

pre- and postsynaptic spike trains. A number of studies have

focused on how STDP can perform input selectivity by favoring

input pools with higher firing rates [4,5], with synchronously firing

inputs [6], or both [7], detect spike patterns [8] and rate-

modulated patterns [9], and interact with oscillatory signals

[10,11]. The STDP dynamics can simultaneously generate

stability of the output firing rate and competition between

individual synaptic weights [6,12–15]. In order to strongly drive

the postsynaptic neurons, which we refer to as robust neuronal

specialization. [16]. When considering recurrently connected

neurons, the weight dynamics can lead to emerging functional

pathways [17–19] and specific spiking activity [20,21]. Recent

reviews provide an overview of the richness of STDP-based

learning dynamics [22,23].

The present paper aims to provide a general interpretation of

the synaptic dynamics at a functional level. In this way, we want to

characterize how spiking information is relevant to plasticity.

Previous publications [24,25] mentioned the possible relation

between STDP and Oja’s rate-based plasticity rule [26], which

performs principal component analysis (PCA). Previous work [27]

showed how STDP can capture slow time-varying information

within spike trains in a PCA-like manner, but this approach does

not actually make use of the temporal (approximate) antisymmetry

of the typical STDP learning window for excitatory synapses; see

also earlier work about storing correlations of neuronal firing rates

[28]. Along similar lines, STDP was used to perform independent

component analysis (ICA) for specific input signals typically used

to discriminate between PCA and ICA [7,29]. In particular,

STDP alone did not seem capable of performing ICA in those
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numerical studies: additional mechanisms such as synaptic scaling

were necessary. On the other hand, additive-like STDP has been

shown to be capable of selecting only one among two identical

input pools with independent correlations from each other, also

referred to as ‘symmetry breaking’ [13,17]. In addition to studies

of the synaptic dynamics, considerations on memory and synaptic

management (e.g., how potentiated weights are maintained) have

been used to relate STDP and optimality in unsupervised learning

[30,31]. To complement these efforts, the present paper proposes

an in-depth study of the learning dynamics and examines under

which conditions pairwise STDP can perform ICA. For this

purpose, we consider input spiking activity that mixes correlation

sources. We draw on our previously developed framework that

describes the weight dynamics [15,23] and extend the analysis to

the case of an arbitrary input correlation structure. This theory is

based on the Poisson neuron model [6] and focuses on pairwise

weight-dependent STDP for excitatory synapses. Mutual infor-

mation is used to evaluate how STDP modifies the neuronal

response to correlated inputs [32]. This allows us to relate the

outcome of STDP to either PCA and ICA [33]. Finally, we

examine the influence of the STDP and neuronal parameters on

the learning process. Our model captures fundamental properties

shared by more elaborate neuronal and STDP models. In this

way, it provides a minimal and tractable configuration to study the

computational power of STDP, bridging the gap between

physiological modeling and machine learning.

Results

Spectral decomposition is typically used to find the meaningful

components or main trends in a collection of input signals (or

data). In this way, one can represent or describe the inputs in a

summarized manner, i.e., in a space of lower dimension. This

paper focuses on the information conveyed by spike trains, which

will be formalized later. The function of neuronal processing is to

extract the dominant component(s) of the information that it

receives, and disregard the rest, such as noise. In the context of

learning, synaptic competition favors some weights at the expense

of others, which tunes the neuronal selectivity. As a first step to

introduce spectral decomposition, we consider Oja’s rule [26] that

enables a linear non-spiking neuron to learn the correlations

between its input firing rates. At each time step, the 100 input

firing rates are determined by two Gaussian profiles with distinct

means, variances and amplitudes (green and blue curves in

Fig. 1D), in addition to noise. The area under the curve indicates

the strength of input correlations; here the green dashed curve

‘‘dominates’’ the blue dashed-dotted curve. This results in

correlation among the input rates, as represented by the matrix

in Fig. 1A. The vector of weights w is modified by Oja’s rule:

_ww!y � (x{y � w), ð1Þ

where x is the input rates and y~x.w is the neuron output (.
indicates the scalar product of the two vectors). The weight

evolution is represented in Fig. 1B. The final weight distribution

reflects the principal component of the correlation matrix (red

solid curve in Fig. 1C). As shown in Fig. 1D, this does not

represent only the stronger correlation source (green dashed

curve), but also the weaker one (blue dashed-dotted curve). This

follows because the principal component mixes the two sources,

which overlap in Fig. 1A. In other words, Oja’s rule cannot isolate

the strongest source and thus cannot perform ICA, but only PCA.

We will examine later whether the same phenomenon occurs for

STDP. Note that the rate correlation matrix is always symmetric.

This differs from using PCA in the context of data analysis, such as

finding the direction that provides the dependence of highest

magnitude in a cloud of data points.

Spiking neuron configuration
In order to examine the computational capabilities of STDP, we

consider a single neuron whose N excitatory synapses are modified

by STDP, as shown in Fig. 2A. Our theory relies on the Poisson

neuron model, which fires spikes depending on a stochastic rate

intensity that relates to the soma potential. Each presynaptic spike

induces variation of the soma potential, or postsynaptic potential

(PSP), described by the normalized kernel function Ei, shifted by

the axonal and dendritic delays, dden
i and dax

i , respectively

(Fig. 2B). The size of the PSP is scaled by the synaptic weight wi.

Pairwise weight-dependent STDP model. We use a

phenomenological STDP model described by a learning window

W (wi;Dt) as in Fig. 2C. Importantly, LTP/LTD is not

determined by the relative timing of firing at the neuron somas,

but by the time difference at the synaptic site, meaning that Dt
incorporates the axonal and dendritic delays. This choice can be

related to more elaborate plasticity models based on the local

postsynaptic voltage on the dendrite [7,34].

We will examine common trends and particularities of the

weight specialization for several models of STDP.

N A ‘‘plain’’ STDP model postulates that all pairs of pre- and

postsynaptic spikes, and only them, contribute to the weight

modification, provided the time difference Dt is in the range of

the learning window W as illustrated in Fig. 2D.

N A second scheme assumes that, in addition to STDP-specific

weight updates, each pre- or postsynaptic spike also induces a

weight update via the corresponding contribution ain=out, as

illustrated in Fig. 2D. This will be referred to as ‘STDP+SSC’,

as opposed to ‘plain STDP’ (or ‘STDP’ alone when no

precision is needed). Although sometimes regarded as less

plausible from a biological point of view, single-spike

Author Summary

Tuning feature extraction of sensory stimuli is an impor-
tant function for synaptic plasticity models. A widely
studied example is the development of orientation
preference in the primary visual cortex, which can emerge
using moving bars in the visual field. A crucial point is the
decomposition of stimuli into basic information tokens,
e.g., selecting individual bars even though they are
presented in overlapping pairs (vertical and horizontal).
Among classical unsupervised learning models, indepen-
dent component analysis (ICA) is capable of isolating basic
tokens, whereas principal component analysis (PCA)
cannot. This paper focuses on spike-timing-dependent
plasticity (STDP), whose functional implications for neural
information processing have been intensively studied both
theoretically and experimentally in the last decade.
Following recent studies demonstrating that STDP can
perform ICA for specific cases, we show how STDP relates
to PCA or ICA, and in particular explains the conditions
under which it switches between them. Here information
at the neuronal level is assumed to be encoded in
temporal cross-correlograms of spike trains. We find that
a linear spiking neuron equipped with pairwise STDP
requires additional mechanisms, such as a homeostatic
regulation of its output firing, in order to separate mixed
correlation sources and thus perform ICA.

Spectral Analysis of Input Spike Trains by STDP
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contributions can regulate the neuronal output firing in a

homeostatic fashion [35,36]. In particular, we will examine the

role of aout
v0 that has been used to enhance the competition

between synaptic inputs [6].

N We will consider weight dependence for STDP, namely how

the learning window function W (wi;Dt) depends on the

weight wi as in Fig. 2C, following experimental observations

[37]. Figure 2E represents four examples of weight depen-

dence: our ‘log-STDP’ in blue [16], the weight-independent ‘add-

STDP’ for additive STDP [6,12], ‘nlta-STDP’ proposed by

Gütig et al. [13], and ‘mlt-STDP’ for the multiplicative STDP

by van Rossum et al. [38] in which LTD scales linearly with

wi. For log-STDP and nlta-STDP, the weight dependence can

be adjusted via a parameter. For log-STDP (left panel), the

Figure 1. Example of PCA performed by Oja’s rate-based plasticity rule. (A) Theoretical cross-correlation matrix of 100 inputs induced by
two Gaussian distributions of rates. Darker pixels indicate higher correlations. The circles indicate where the correlation for each source drops below
10% of its maximum (see the Gaussian profiles in D). (B) Traces of the weights modified by Oja’s rule [26] in (1). At random times, the input rates x
follow either Gaussian rate profile corresponding to the green and blue curves in D; white noise is added at each timestep. (C) The asymptotic
distribution of the weights (red) is close to the principal component of the matrix in A (black solid curve), but distinct from the second component
(black dashed curve). (D) The final weight distribution (red) actually overlaps both Gaussian rate profiles in green dashed and blue dashed-dotted
lines that induce correlation in the inputs. The green and blue curves correspond to the small and large circles in A, respectively.
doi:10.1371/journal.pcbi.1002584.g001

Figure 2. Single neuron with STDP-plastic excitatory synapses. (A) Schematic representation of the neuron (top gray-filled circle) and the N
synapses (pairs of black-filled semicircles) that are stimulated by the input spike trains Si (bottom arrows). (B) Detail of synapse i, whose weight is wi ,
postsynaptic response kernel Ei , axonal and dendritic delays dden

i and dax
i , respectively. The arrows indicate that dax

i describes the propagation along

the axon to the synapse, while dden
i relates to both conduction of postsynaptic potential (PSP) toward soma and back-propagation of action potential

toward the synaptic site. (C) Example of temporally Hebbian weight-dependent learning window W (wi ;Dt) that determines the STDP contribution of
pairs of pre- and postsynaptic spikes. The curve corresponds to (22). Darker blue indicates a stronger value for wi , which leads to less potentiation and
more depression. (D) Schematic evolution of the weight wi for given pre- and postsynaptic spike trains Si and Sout. The size of each jump is indicated
by the nearby expression. Comparison between plain STDP for which only pairs contribute and STDP+SCC where single spikes also modify the weight

via the terms ain=out. Here only the pair of latest spikes falls into the temporal range of STDP and thus significantly contributes to STDP. (E) Scaling
functions of f+ that determine the weight dependence for LTP and LTD. In the left panel, the blue solid curve corresponds to log-STDP [16] with
w0~0:01, a~5 and b~50 in (23). The parameter a controls the saturation of the LTD curve: the dashed curve corresponds to a~20 and the dashed-
dotted curve to a~1. In the right panel, the red solid curves represent f+ for nlta-STDP [13] with c~0:1 and wmax~0:04 in (24); the black dashed-
dotted horizontal lines indicate the add-STDP that is weight independent; the green dashed line corresponds to a linearly dependent LTD for mlt-
STDP [38].
doi:10.1371/journal.pcbi.1002584.g002

Spectral Analysis of Input Spike Trains by STDP
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LTD curve scales almost linearly with respect to wi for small

values of aw0 in a similar manner to mlt-STDP, whereas it is

additive-like (weight-independent) STDP for large values of a
(in the range wi§w0). Likewise, nlta-STDP scales between the

other ‘multiplicative’ STDP proposed by Rubin et al. [39] for

c~1 and add-STDP for c~0; the red curve in Fig. 2E uses

c~0:1.

Variability is also incorporated in the weight updates through

the white noise g, although its effect will not be examined

specifically in the present work. Typical parameters used in

simulations are given in Table 1 and detailed expressions for W
are provided in Methods.

Learning dynamics. The present analysis is valid for any

pairwise STDP model that is sensitive to up-to-second order spike-

time correlations. In its present form, it cannot deal with, for

example, the ‘triplet’ STDP model [40] and the stochastic model

proposed by Appleby and Elliott [41]. The neuronal spiking

activity is described by the corresponding firing rates and spike-

time correlations. See Table 2 for an overview of the variables in

our system. The input rates and correlations are assumed to be

consistent over the learning epoch. Details of the analytical

calculations are provided in Methods. The evolution of the vector

of plastic weights w is then governed by the following differential

equation:

_ww!U w; nin; noutð ÞzwCx(w), ð2Þ

where the dependence over time t is omitted. The function U
lumps rate contributions to plasticity (including STDP) and

depends on the vector of input firing rates nin and neuronal

output firing rate nout, as well as the weights. The second term

describes STDP-specific spike-based effects. The STDP effect are

described by the matrix Cx(w)~Cx(w,t), which is assumed to be

independent of t and whose elements are:

C
x
ij(w; t)~

ðz?

{?
xi(wj ; t)Cij(t,t)dt, ð3Þ

namely the (anti)convolution of the input spike-time cross-

correlograms Cij(t) with the kernel functions xi(wj ; t), for each

pair of inputs i and j. A schematic example is illustrated in Fig. 3A.

For clarity purpose, we rewrite the time difference Dt as t
hereafter. In (3), each kernel xi combines the STDP learning

window at synapse j and the postsynaptic response kernels Ei:

xi(wj ; t) : ~½W (wj ; :) � Ei(:)�(t{2dden
i ), ð4Þ

where the convolution indicated by � concerns the variable t, as

illustrated in Fig. 3B. For weight-dependent STDP, the kernel is

modified via the scaling of both potentiation and depression for

W (wj ; :) in terms of wj (Fig. 2C). In addition, the postsynaptic

response crucially shapes xi [19,27], as shown in Fig. 3C. In the

case of a single neuron (as opposed to a recurrent network), the

dendritic delay dden
i plays a distinct role compared to the axonal

delay dax
i in that it shifts the kernel xi as a function of t to the right,

namely implying more potentiation for t~0.

Encoding the input correlation structure into the weight
structure

We stress that the novel contribution of the present work lies in

considering general input structures, i.e., when the matrix of cross-

correlograms C(t) is arbitrary. This extends our previous study

[15] of the case of homogeneous within-pool correlations and no

between-pool correlations, the matrix C
x

in (3) is diagonal (by

block). We focus on the situation where the average firing rates

across inputs do not vary significantly. This means that rate-based

plasticity rules cannot extract the spiking information conveyed by

these spike trains. In this case, pairwise spike-time correlations

mainly determine the weight specialization induced by STDP via

wCx(w), dominating rate effects lumped by U in (2). The key is the

spectral properties of C
x
, which will be analyzed as follows:

N evaluation of the equilibrium value for the mean weight w�av in

the uncorrelated case;

Table 1. Neuronal and learning parameters.

Quantity: variable name and value

time step 10{4 s

simulation duration 500 s

Input parameters

input firing rate n0~10 sp=s

input correlation strength cƒ0:4

PSP parameters

synaptic rise time constant tA~1 ms

synaptic decay time constant tB~5 ms

axonal delays dax
i ~4+1 ms

dendritic delays dden
i ~0 ms

STDP model

learning speed g~2|10{4

LTP time constant tz~17 ms

LTD time constant t{~34 ms

white noise standard deviation s~0:6

log-STDP in (23)

LTP scaling coefficient Az~1

LTP decay factor b~50

LTD scaling coefficient A{~0:5

LTD curvature factor a~5

reference weight w0~0:005

nlta-STDP in (24)

LTP scaling coefficient Az~1

LTD scaling coefficient A{~0:8

weight-dependence exponent c~0:1

weight upper bound wmax~0:04

add-STDP

LTP scaling coefficient Az~1

LTD scaling coefficient A{~0:55

weight upper bound wmax~0:04

mlt-STDP in (25)

LTP scaling coefficient Az~1

LTD scaling coefficient A{~100

single-spike plasticity terms (SCC)

presynaptic contribution ain~0:1

postsynaptic contribution aout~{0:05

Unless specified, the above parameters are used in numerical simulation.
doi:10.1371/journal.pcbi.1002584.t001
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N calculation of the matrix Cx(w�) that combines the input

correlation structure, the PSP and STDP parameters (w� is the

homogeneous weight vector for which wi~w�av for all i);

N analysis of the spectrum of Cx(w�) to find the dominant

eigenvalue(s) and the corresponding left-eigenvector(s);

N decomposition of the initial weight structure (e.g., homoge-

neous distribution) in the eigenspace to predict the specializa-

tion.

Equilibrium for the mean weight w�av. Partial stability of

the synaptic dynamics is necessary in order that not all weights

cluster at zero or tend to continuously grow. This also implies the

stabilization of the output firing rate. Here we require that the

STDP dynamics itself provides a stable fixed point for w�av. In

particular, this must be true for uncorrelated inputs, which relates

to equating to zero the term U(w; vin; nout) in (2).

For plain STDP with weight dependence, the corresponding

fixed point is determined by the STDP learning window alone,

which is the same for all weights wi here and is related to the

integral value

w*(w�i )~0: ð5Þ

Here the weight dependence alone can stabilize the mean synaptic

weights, which requires that w*(w) decreases when w increases

[13,38,42].

For STDP+SCC, a mean-field approximation of U(w; vin; nout)
over the pool of incoming synapses is often used to evaluate the

stability of the mean weight wav~
P

i wi=N, which gives

ainn0zaoutnoutzw*(wav)n0nout^0, where n0~
P

i ni=N is the

mean input firing rate. The equilibrium values for the mean

weight w�av and the neuronal firing rate n�out are then related by

n�out^{
ainn0

aoutzw*(w�av)n0
: ð6Þ

A stable fixed point for arbitrary input configuration is ensured by

ain
w0, aout

v0 and a negative derivative w*0(w)ƒ0 as a function

of w as well as w*(w�av)v0 at the weight equilibrium value [19].

This means that the right-hand side is a negative function of w�av.

Note that the additional condition ainzaout
w0 is required for

networks with plastic recurrent synapses [43]. The plasticity terms

ain=out can lead to a homeostatic constraint on the output firing

rate nout [35]. In the case of stability, the equilibrium values n�out

and w�av depend on the respective input firing rate ni. For weight-

dependent STDP+SCC, fixed points w�i also exist for individual

weights wi and correspond to (6) when replacing n0 by ni and wav

by w�i . The implications of these two different ways of stabilizing

wav will be discussed via numerical results later.

Spectrum of Cx(w�) and initial weight speciali-
zation. Following our previous study [16], we consider that

rate-based effects vanish and focus on the initial stage when

weights specialize due to the spike-time correlation term involving

C
x

in (2). This means that we approximate

_ww^gwC
x w�ð Þ: ð7Þ

The weight evolution can be evaluated using (7) provided spike-

time correlations are significantly strong compared to the ‘‘noise’’

in the learning dynamics. The rate terms in U are proportional to

the n0nout whereas the spike-based term grow with n0 only. This

implies stronger noise and more difficulty to potentiate weights

when nout is high at the baseline state, e.g., for large input firing

rates. Assuming homogeneous weights wi^w�av as initial condi-

tion, the weight dynamics is determined by the learning window

W (wi; :)^W (w�av; :). As a first step, we consider the case where

the matrix Cx(w�) is diagonalizable as a real matrix, namely

C
x~P{1DP with D a diagonal matrix and P the matrix for the

change of basis (all with real elements). The rows of P are the

orthogonal left-eigenvectors v
^

l corresponding to the eigenvalues

ll , 0ƒlƒN that are the diagonal elements of D. The weight

vector w can be decomposed in the basis of eigenvectors (or

spectral components)

w(t)~
X

l

al(t) v
^

l , ð8Þ

where al are the coordinates of w in the new basis. By convention,

we require all v
^

l to be normalized and that al(0)w0 at time t~0
for w~w�. Transposing (7) in the new basis, the evolution of al

can be approximated by _aal^gllal , which gives

w^g
X

l

al(0) exp ll tð Þ v^l : ð9Þ

The initial weight specialization is thus dominated by the al

related to the largest positive eigenvalues ll and can be predicted

by the corresponding eigenvectors v
^

l [19,25].

In general, we can use the property that the set of diagonalizable

matrices with complex elements is dense in the vector space of

square matrices [44, p 87]. This means that it is possible to

approximate Cx(w�)^P{1DP, in which case D and P may have

non-real elements. If the eigenvalue with the largest real part is a

real number, the same conclusion as above is expected to hold,

Table 2. Variables and parameters that describe the neuronal
learning system.

Description symbol
(vector/matrix
notation)

input firing rates ni(t) vin(t)

input spike-time cross-
covariances

Cij (t,t) C(t,t)

neuronal firing rate nout(t)

input-output spike-time
covariances

Fi(t,t) F(t,t)

synaptic weights wi(t) w(t)

PSP function Ei(t)

axonal delays dax
i

dendritic delays dden
i

kernel functions for
synapse j

xi(wj ,t)

lumped plasticity rate-
based effects

U(w; vin; nout)

STDP-specific plasticity
spike effects

C
x
ij (w; t) Cx(w; t)

integral value of STDP W
*

(w)

The variable t denotes the time, whereas t indicates the spike-time difference
(or time lag) used in correlations and covariances.
doi:10.1371/journal.pcbi.1002584.t002
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even though the eigenvectors may not be orthogonal. When a pair

of eigenvalues dominate the spectrum, l1 and its conjugate l{1.

The decomposition of the homogeneous vector w� on the plane of

the corresponding eigenvectors that gives 2<fa1(0)v
^

1lambda1g
leads to the dominant term 2<fa1(0)v

^

1 exp (l1t)g in the

equivalent to (9); < denotes the real part here. The initial growth

or decay of wi is given by the derivative:

_ww^g<fa1(0) v
^

1l1g:~gv1: ð10Þ

Note that this expression applies to the real case too, where v1! v
^

1

and the convention a1(0)w0 simply means that v
^

1 reflects the

signs of the elements of the derivative vector.

In most cases, the spectrum is dominated as described above

and we can use the expression (10), which will be referred to as the

‘strongest’ spectral component of C
x(w). Note that, in the case of a

non diagonalizable matrix, the Jordan form of Cx(w) could be

used to describe more precisely the weight evolution, for example.

We have also neglected the case al^0 for w�, for which the

decomposition of the before-learning weight specialization w(t~0)
may also play a role. Nevertheless, noise in the weight dynamics

will lead the system away from such unstable fixed points.

Asymptotic weight structure and stability. Now we focus

on the final weight distribution that emerges, following the initial

splitting. In particular, a stable asymptotic structure can be

obtained when the learning equation (2) has a (stable) fixed point,

as illustrated in Fig. 4A for the simple case of two weights w1 and

w2. Weight dependence can lead to the existence of at least a

realizable and stable fixed point. Two conditions ensure the

existence of a solution to the learning equation. First, the weight

dependence should be such that LTD vanishes for small weights

while LTP vanishes for large weights, as is the case for both log-

STDP and nlta-STDP for cw0. Second, the inputs should be

positively correlated. If this second assumption is lifted, the fixed

point may become unrealizable (e.g., w�i v0) or simply not exist as

in Fig. 4B. Nevertheless, we can also conclude the existence of a

stable fixed point in the range of small negative correlations. This

follows because of the continuity of the matrix coefficients in (2),

which determines the fixed points w�i , with respect to the matrix

elements of C
x
.

A general result about the relationship between the fixed point(s)

and Cx(w�) is a difficult problem because Cx(w) changes together

with w for a weight-dependent learning window W . This implies

that the eigenvector basis fvlg are modified together with w. With

the further assumption of a weak weight dependence and for a

single dominant eigenvector v1, the term wCx(w), which

determines the weight specialization, remains similar to v1. By

this, we mean that the elements of both vectors are sorted in the

same order. At the equilibrium, rate-based effects lumped in U
balance the spike-based effects that are qualitatively described by

v1. Under our assumptions, the vector elements of U are

decreasing functions of the weights wi. It follows that inputs

corresponding to larger elements of (10) end up at a higher level of

potentiation. However, when Cx has a strong antisymmetric

component due to negative matrix elements, it can exhibit

complex conjugate dominant eigenvalues with large imaginary

parts. The weight vector w may experience a rotation-like

evolution, in which case the final distribution differs qualitatively

from the initial splitting. Nevertheless, the weights with strongest

initial LTP are expected to be mostly potentiated eventually.

Further details are provided in Methods. Deviation from the

predictions can also occur when several eigenvalues with similar

real parts dominate the spectrum.

In the particular case of additive STDP, a specific issue arises

since the existence of a fixed point is not guaranteed. When C
x(:)

Figure 4. Existence of a fixed point for the weight dynamics. (A)
Curves of the zeros of (39) for N~2 weights in the case of positively
correlated inputs. The two curves have an intersection point, as the
equilibrium curve for w1 in red spans all w2[½0,0:2�, while that for w2 in
blue spans all w1[½0,0:2�. The arrows indicate the signs of the
derivatives _ww1 and _ww2 in each quadrant (red and blue, resp.). (B) Similar
to A with negative input correlations, for which the curves do not
intersect.
doi:10.1371/journal.pcbi.1002584.g004

Figure 3. Kernel function x. (A) Anticonvolution of a fictive correlogram Cij(t) (red curve) and a typical kernel function xi(
:,t) (blue curve). The

amount of LTP/LTD corresponds to the area under the curve of the product of the two functions. (B) Plot of a typical kernel xi(w0,t) as a function of t
(blue curve). It corresponds to (4) for log-STDP with the baseline parameters in Table 1, namely rise and decay time constants tA~1 and tB~5 ms in
(29), respectively, and a purely axonal delay dax

i ~5 ms. The related STDP learning window W (w0; t) is plotted in black dashed line and the mirrored
PSP response in pink solid line. The effect of the axonal delay shifts both the W and the PSP in the same direction, which cancels out. (C) Variants of
xi(w0,t) for longer PSP time constants, tA~2 and tB~10 ms (purple curve); and for a dendritic delay dden

i ~5 ms (green dashed-dotted curve). In

contrast to dax
i that does not play a role in (4), dden

i shifts xi to the right. The arrows indicate t~+10 ms.
doi:10.1371/journal.pcbi.1002584.g003
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has purely complex eigenvalues, the weight dynamics are expected

to exhibit an oscillatory behavior that may impair the emergence

of an asymptotic weight structure, as was pointed out by Sprekeler

et al. [27]. An example with add-STDP+SCC and eigenvalues

that have large imaginary parts is provided in Text S1.

As some weights grow larger, they compete to drive the neuronal

output firing [12]. This phenomenon is relatively weak for Poisson

neurons compared to integrate-and-fire neurons [16]. For

STDP+SCC, synaptic competition is enhanced when using

aout
v0. Following (6), the larger negative aout is, the lower the

output firing rate nout that is maintained by STDP at the equilibrium.

This also holds when inputs are correlated. These rate effects lead to a

form of sparse coding in which fewer weights are significantly

potentiated, while the remainder weights are kept small. Another

interpretation of the effect of aout relies on the fact that all weights are

homogeneously depressed after postsynaptic spiking. Then, only the

weights of inputs involved in triggering firing may not experience

depression provided STDP sufficiently potentiate them. This

concerns inputs related to a common correlation source and may

result in a winner-take-all situation. Moreover, this effect increases

with the output firing rate and may become dominant when STDP

generates strong LTP, leading to large weights.

In summary, for plain STDP, the final weight structure for plain

STDP is expected to reflect the initial splitting, which is

determined by the strong spectral component of C
x(w�) in (10),

at least for the most potentiated weights that win the competition.

The assumption of ‘‘sufficiently weak’’ weight dependence holds

for log-STDP with a&1 (sublinear saturation for wi§w0) and for

nlta-STDP with small values of 0vcƒ0:1 (for wi away from the

bounds). STDP+SCC may modify the final weight distribution

when the single-spike contributions have comparably strong effects

to STDP. In particular, competition between correlation sources is

expected to be enhanced when aout is sufficiently large negative. In

the following sections, we verify these predictions using numerical

simulation for various input configurations.

Input spike-time correlation structure
In order to illustrate the above analysis, we consider input

configurations that give to ‘‘rich’’ matrices of pairwise correlations

C. Model input spike trains commonly combine stereotypical

activity and random ‘‘background’’ spikes. Namely, to predict the

evolution of plastic synaptic weights, it is convenient that the

statistical properties of the inputs are invariant throughout the

learning epoch (e.g., the presentation of a single stimulus).

Mathematically, we require the input spike trains to be second-

order stationary. In this way, the input firing rates vin~vin(t) and

the spike-time correlograms C(t)~C(t,t) in (2) are well-defined

and practically independent of time t, even though the spike trains

themselves may depend on time. The formal definitions of vin and

C(t) in Methods combine a stochastic ensemble average and a

temporal average. This allows to deal with a broad class of inputs

that have been used to investigate the effect of STDP, such as spike

coordination [6,13,14,36] and time-varying input signals that

exhibit rate covariation [12,27,45], as well as elaborate configu-

rations proposed recently [46–48]. Most numerical results in the

present paper use the spike coordination that mixes input

correlation sources. In the last section of Results, rate covariation

will also be examined for the sake of generality.

Pools with mixed spike-time correlation. Inputs thus

generated model signals that convey information via precise timing

embedded in noisy spike trains. A simple example consists of

instantaneously correlated spike trains that correspond to input

neurons belonging to the same afferent pathway, which have been

widely used to study STDP dynamics [13,14,36]. Here we also

consider the situation where synapses can take part in conveying

distinct independent signals, as well as time lags between the relative

firing of inputs. To do so, spike trains are generated using a thinning of

homogeneous Poisson processes. Namely, independent homogeneous

Poisson processes are used as references Rk to determine correlated

events at a given rate nk
R that trigger for some designated inputs. For

input i, we denote nk
i §0 the number of spikes associated with each

correlated event fromRk. The probability of firing after a given latency

qk
i,p is

ffiffiffiffiffiffi
ck

i,p

q
with 1ƒpƒnk

i . Outside correlated events, inputs

randomly fire spikes such that they all have the same time-averaged

firing rate n0. This corresponds to an additional Poisson process with

rate n0{
P

k,p nk
R

ffiffiffiffiffiffi
ck

i,p

q
, summing over all independent references

indexed by k. As a result, for two inputs i and j related to a single

common reference Rk, the between-pool cross-covariance is given by

Cij(t)~
X
p,p’

nk
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ck

i,pck
j,p’

q
d(t{qk

i,pzqk
j,p’), ð11Þ

where d is the Dirac delta function. The correlogram comprises delta

peaks at the time difference between all pairs of spikes (indexed by p

and p’, respectively) coming from inputs i and j. The covariance

contributions in (11) from distinct references summate. This method of

generating input pattern activity is an alternative to that used in

previous studies [8,9], but it produces similar correlograms.

Extraction of the principal spectral component
This first application shows how STDP can perform PCA,

which is the classical spectral analysis for symmetric matrices. To

do so, we consider input pools that have multiple sources of

correlated activity, which gives within-pool and between-pool

correlations. In the example in Fig. 5A, inputs are partitioned into

m~4 pools of 50 inputs each that have the same firing rate

n0~10sp=s. Some pools share common references that trigger

coincident firing as described in (11): pools �11 and �22 (from left to right)

share a correlation referenceR1 with respective correlation strengths

�cc1
1~0:4 and �cc1

2~0:1 for the concerned inputs; pools �22 and �33 share

R2 with �cc2
2~�cc2

3~0:2; and pools �33 and �44 shareR3 with �cc3
3~�cc3

4~0:1.

The overline indicates pool variables. All references k correspond to

coincident firing (qk
i,1~0) and the rate of correlated events is nk

R~n0.

The matrix C(t) is composed of blocks and given by

�CC(t)~QTQn0d(t), ð12Þ

with Q~

ffiffiffiffiffi
�cc1

1

q ffiffiffiffiffi
�cc1

1

q
0 0

0
ffiffiffiffiffi
�cc2

2

q ffiffiffiffiffi
�cc2

3

q
0

0 0
ffiffiffiffiffi
�cc3

3

q ffiffiffiffiffi
�cc3

4

q

0
BBBB@

1
CCCCA:

Each row of Q corresponds to a single correlation source here.

We further assume that all synapses have identical kernels xi~x.

Combining (11) and (3), their covariance matrix C
x

reads

�CCx(w�av)~

ðz?

{?
x(w�av,t)�CC(t)dt

~n0x(w�av,0)

0:4 0:2 0 0

0:2 0:3 0:2 0

0 0:2 0:3 0:1

0 0 0:1 0:1

0
BBBBB@

1
CCCCCA:

ð13Þ
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The covariance matrix �CCx(w�av) in (13) is symmetric and thus

diagonalizable, so it has real eigenvalues and admits a basis of real

orthogonal eigenvectors. Here the largest real eigenvalue is

isolated in Fig. 5B. The theory thus predicts that the correspond-

ing spectral component (solid line in in Fig. 5C) dominates the

dynamics and is potentiated, whereas the remaining ones are

depressed. Numerical simulation using log-STDP agrees with this

prediction, as illustrated in Fig. 5E. By gradually potentiating the

correlated inputs, weight-dependent STDP results in a multimodal

weight distribution that can better separate the mean weights of

the pools. The final weight structure in Fig. 5F reflects the

dominant eigenvector. Despite the variability of individual weight

traces in Fig. 5D due to the noise in the weight update and rather

fast learning rate used here, the emerging weight structure remains

stable in the long run.

Spike transmission after learning
Following the specialization induced by STDP, the modified

weight distribution tunes the transient response to the input spikes.

To illustrate this, we examine how STDP modifies the neuronal

response to the three correlation sources Rk in the previous

configuration in Fig. 5. Practically, we evaluate the firing

probability during a given time interval of D ms consecutive to

a spike from input i, similar to a peristimulus time histogram

(PSTH). Before learning, the PSTHs for R1 (red), R2 (green) and

R2 (blue) are comparable in Fig. 6A, which follows becauseffiffiffiffiffi
�cc1

1

q
z

ffiffiffiffiffi
�cc1

3

q
~0:95,

ffiffiffiffiffi
�cc2

2

q
z

ffiffiffiffiffi
�cc2

3

q
~0:89 and

ffiffiffiffiffi
�cc3

3

q
z

ffiffiffiffiffi
�cc3

4

q
~0:63.

After learning, pools �11 and �22 that relate to R1 and R2 are much

more potentiated than pool �44 by STDP in Fig. 5F. Consequently,

even though pool �33 is potentiated and transmits correlated activity

from R3, the spike transmission after learning is clearly stronger

for R1 and R2 than R3 in Fig. 6B. The respective increases of the

areas under the PSTHs are summarized in Fig. 6C. The overall

increase in firing rate (from about 10 to 30 sp/s) is not supported

equally by all Rk.

To further quantify the change in spiking transmission, we

evaluate the mutual information MI based on the neuronal firing

probability, considering correlated events as the basis of informa-

tion. In this way, the increases in PSTHs are compared to the

background firing of the neuron, considered to be noise. In

contrast to previous studies that examined optimality with respect

to limited synaptic resources [30,31], we only examine how STDP

tunes the transmission of synchronous spike volleys. We define MI
with respect to the event ‘the neuron fires two spikes or more

within the period D’, denoted by F ; :F is its complementary.

Hereafter, we denote by Rk and :Rk the occurrence of a

correlated event and its complementary, respectively The mutual

information is defined as

MI~
X
x,r

Prfx,rg log2

Prfx,rg
PrfxgPrfrg

� �
, ð14Þ

with r[fRk,:Rkg and x[fF ,:Fg. The probabilities are defined

for the events occurring during a time interval D. We have

Figure 5. Principal component analysis for mixed correlation sources. (A) The postsynaptic neuron is excited by m~4 pools of 50 inputs
each with the global input correlation matrix Cx(w�) in (13). The thickness of the colored arrows represent the correlation strengths from each
reference to each input pool. The input synapses are modified by log-STDP with a~5. The simulation parameters are given in Table 1. (B) Spectrum
and (C) eigenvectors of Cx(w�). The eigenvalues sorted from the largest to the smallest one correspond to the solid, dashed, dashed-dotted and
dotted curves, respectively. (D) Evolution of the weights (gray traces) and the means over each pool (thick black curves) over 500 s. (E) Evolution of
the weights w in the basis of spectral components (eigenvectors in C). (F) Weight structure at the end of the learning epoch. Each weight is averaged
over the last 100 s. The purple curve represents the dominant spectral component (solid line in C).
doi:10.1371/journal.pcbi.1002584.g005
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PrfRkg~n0D and the realization of F can be evaluated using a

Poisson random variable with intensity l

Pr :F Drf g~ 1zl

exp lð Þ : ð15Þ

In the above expression, l can be evaluated via the baseline firing

rate for r~:Rk and the PSTHs in Fig. 6B for r~Rk. Namely, we

adapt (48) and (49) in Methods to obtain

l^
Dn�out for r~:Rk

Dn�out z
P

m Nm

ffiffiffiffiffi
�cck

m

p
�wwm for r~Rk

(
: ð16Þ

Using the simulation results for the mean �wwm and n�out we obtain

the predicted values (crosses) for MI in (14) in Fig. 6D. They are in

reasonable agreement with MI evaluated from the simulated spike

trains after dividing the 100 s duration in bins of lengths D. In a

clearer manner than with the ratio in Fig. 6C, MI shows that the

strong potentiation induced by STDP leads to the reliable

transmission (considering that Poisson neurons are noisy) of the

correlated events involved in the strong spectral component of C
x
,

namely R1 and R2, while that for R3 remains poor.

For the input firing rate n0~10 sp=s used here, STDP

potentiates the weights such that the postsynaptic neuron fires at

nout^30 sp=s after learning. Because the frequency of correlated

events for each source Rk is also 10 times per second, MI is not so

high in our model. Perfect detection for R1 corresponds to firing

three spikes for each corresponding correlated event and none ??

otherwise. In this case, PrfRk,Fg~ PrfFg~ PrfRkg~n0D,

Prf:Rk,:Fg~ Prf:Fg~ Prf:Rkg~1{n0D and PrfRk,:Fg~
Prf:Rk,Fg~0, yielding the maximum MI~{n0D log2

½n0D�{(1{n0D) log2½1{n0D�^0:81. In comparison, for n0~

5 sp=s and the baseline log-STDP with a~5 (results not shown),

the firing rate after training is roughly eightfold that before

learning. Then, MI^0:15 for R1 instead of about 0:07 in Fig. 6.

For the Poisson neuron especially, high firing rates lead to poor

MI because of the noisy output firing rate. Performance can be

much enhanced by using inhibition [9], but we will not pursue

optimal detection in the present paper.

From PCA to ICA: influence of STDP properties on input
selectivity

The high neuronal response to both correlation sources in

Fig. 6C arises because pools �11, �22 and �33 in Fig. 5F exhibit strong

weights, in a similar manner to the example with Oja’s rule in

Figure 6. Transmission of the correlated activity after learning by STDP. The results are averaged over 10 neurons and 100 s with the same
configuration as in Fig. 5. Comparison of the PSTHs of the response to each correlated event of Rk (A) before and (B) after learning for k~1 (red),
k~2 (green) and k~3 (blue). Note the change of scale for the y-axis; the curves in A are reproduced in B in dashed line. (C) Ratio of the learning-
related increase of mean firing rate (black) and PSTHs in B with respect to A (same colors). For each PSTH, only the area above its baseline is taken into
account. (D) Mutual information MI between a correlated event and the firing of two spikes, as defined in (14). For each reference, the left (right) bar
indicates MI before (after) learning. The crosses correspond to the theoretical prediction using (16) as explained in the text. (E) Example of neuron
selective to R1 with weight means for each pool set by hand to �ww1~0:03; �ww2~�ww4~0:015 and �ww3~0. The bars correspond to the simulated MI
similar to D. (F) Same as E with a neuron selective to R2 and �ww1~0:005; �ww2~�ww3~0:03 and �ww4~0.
doi:10.1371/journal.pcbi.1002584.g006

Spectral Analysis of Input Spike Trains by STDP

PLoS Computational Biology | www.ploscompbiol.org 9 July 2012 | Volume 8 | Issue 7 | e1002584



Figure 7. From PCA to ICA. The plots show the mutual information between each correlation source Rk and the neuronal output firing after
learning as in Fig. 6D–F. The neuron is stimulated by m~4 pools that mix three correlation sources as in Fig. 5. The two columns compare log-STDP
with different degrees of weight dependence: (1) a~5 and (2) a~20 that induces stronger competition via weaker LTD. Each row corresponds to a

different combination of single-spike contributions: (A) plain log-STDP meaning ain~aout~0 and log-STDP+SCC with (B) ain~0 and aout~{0:05; (C)

ain~0 and aout~{0:1; (D) ain~0:05 and aout~{0:1; (E) ain~0:1 and aout~{0:1. The scale on the y-axis is identical for all plots. The ratio of MI
between R1 and R2 is indicated by r.
doi:10.1371/journal.pcbi.1002584.g007
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Fig. 1D. However, it is possible to obtain a much better neuronal

selectivity to either R1 or R2, as illustrated in Fig. 6E–F for two

distributions set by hand. The corresponding mean weights were

chosen such that QwT favors the desired correlation source

compared to others under the constraint of positive weights; cf. Q

in (12) and T indicates the matrix transposition. We use mutual

information as a criterion to evaluate whether kSCA resembles

PCA or ICA [33]. Here the analysis of independent spectral

component for the postsynaptic neuron means a strong response to

only one correlation source in terms of MI .

To separate correlation sources as in Fig. 6E–F, stronger

competition between the synaptic inputs is necessary. When tuning

the weight dependence of log-STDP toward an additive-like

regime, input weights corresponding to the dominant spectral

component are more strongly potentiated. This increase results in

higher MI with a~20 in Fig. 7A2 for both R1 and R2, as

compared to a~5 in Fig. 7A1. However, the neuron still responds

strongly to R2 in addition to R1, as indicated by the ratio r
between the respective MI . So long as STDP causes the weights to

specialize in the direction of the dominant spectral component,

pool �22 is the most potentiated and the neuron does not isolate R1.

Even for log-STDP with a~100 or add-STDP (not shown), we

obtain rƒ1:6. This follows because of the positive input

correlations used here. We need a mechanism that causes inputs

excited by distinct correlation sources to compete more strongly to

drive the neuron. The synaptic competition induced by a negative

postsynaptic single-spike contribution aout
v0 satisfactorily in-

creases the ratio r in Fig. 7B–C compared to A (except for B1).

One drawback is that the larger negative aout is, the smaller the

mean equilibrium weight become, cf. (6). Consequently, even

though the ratio r increases, MI decreases and the transmission of

correlations is weakened. To compensate and obtain sufficiently

large weights after learning, one can use a positive presynaptic

single-spike contribution ain
w0. This gives both MI for R1 and

large ratios r in Fig. 7D2–E2, but not in Fig. 7D1–E1. We

conclude that, in order that the neuron performs ICA and robustly

selects R1, STDP itself should also be sufficiently competitive to

obtain robust selectivity, see Fig. 7B–E with a~20 compared to

a~5. By homogeneously weakening all weights after each output

spike in addition to strong STDP-based LTP, only the inputs that

most strongly drive the output firing remain significantly

potentiated. In other words, aout
v0 introduces a threshold-like

effect on the correlation to determine which inputs experience

LTP and LTD. In agreement with our prediction, this ‘‘dynamic’’

threshold becomes more effective for large output firing rates,

which only occurs when STDP leads to strong LTP (a~20). This

is reminiscent of BCM-like plasticity for firing rates [49]. Note that

we found in simulation (not shown) that using ain
w0 alone did not

lead to ICA; this only increases the mean input weights.

To further examine the effect of STDP parametrization and

assess the generality of our analysis, we examine common trends

and discrepancies in the weight specialization for different schemes

for weight dependence for plain STDP: log-STDP [16], nlta-

STDP [13], mlt-STDP [38] and add-STDP [12]; as well as the

influence of single-spike contributions with log-STDP+SCC, nlta-

STDP+SCC and add-STDP+SCC [6]. We consider the config-

uration represented in Fig. 8A where two sources of correlation

excite three pools among four. The third pool from the left is

stimulated by the same source as the second pool after a time lag of

20 ms. The corresponding spectrum of C
x

is given in Fig. 8C,

leading to two dominant spectral components with equal real part,

one for each correlation source. Due to the large imaginary parts

of the complex conjugate eigenvalues related to R2, the final

distribution in Fig. 8D does not reflect the green component in the

sense that pool �33 is not potentiated, but depressed. This follows

because its correlated stimulation comes late compared to pool �22.

Therefore, the weights from pool �33 become depressed when the

weights from pool �22 become large. The final weight evolution

differ from the initial splitting whereas both weight sets grew (not

shown), as expected by the theory. For log-STDP, the weight

dependence regulates the number of selected components. Both

red and green components are represented in in Fig. 8D, whereas

the green component dominates in Fig. 8E. Nlta-STDP can also

generate graded distribution as log-STDP does. The synaptic

competition in Fig. 8G is comparable to that in Fig. 8E. In

comparison, mlt-STDP induces weaker competition, although the

asymptotic weights reflect the spectral components in Fig. 8I. On

the other hand, add-STDP in Fig. 8J generates a bimodal

distribution of weights, which is a thresholded version of Fig. 8D,E

or G.

In the case of add-STDP+SCC, the neuronal selectivity is

controlled via the equilibrium mean weight w�av that is constrained

by the single-spike contributions ain=out in (6). The situation is

more complex for weight-dependent STDP+SCC, as the kernels

x(wi,t) is modified by as the weights evolve. Nevertheless, similar

effects were observed in simulations. For log-STDP+SCC (Fig. 8F)

and nlta-STDP+SCC (Fig. 8H), the qualitative profile of the final

weights is similar to that for plain STDP, with the additional

competition induced by aout
v0 that depresses pool �11 and favors �22, as

was described in Fig. 7. In the case of add-STDP+SCC, the instability

of the dynamics leads to more sensitivity to the single-spike

contributions. With ain~0:1 and aout~{0:1 in Fig. 8K, only the

weights from pool �22 are potentiated at the end of the learning epoch.

However, with ain~0:15 and aout~{0:02 in Fig. 8L, the

competition is weakened and all weights from pools �11 and �22 are

potentiated, in agreement with the theoretical prediction. Interestingly,

some weights from the uncorrelated pool �44 are mildly potentiated,

whereas those from the positively correlated pool �33 are more strongly

depressed toward zero because of the time lag associated to R2.

Influence of the postsynaptic response
Now we examine how the postsynaptic response affects the

weight competition. This turns out to be particularly important

when the correlograms have a temporal extension, that is, richer

than just narrowly correlated inputs with a peak at t~0. We

consider the configuration in Fig. 9A where inputs from the pool �11

tend to fire a time lag D~10 ms before those of pool �22. Namely,

correlation is generated following (11) using a reference R1 with

q1
i,1~0, q1

j,1~D, and �cc1
i,1~�cc1

j,1~�cc~0:1. Pool �33 has no correlation.

The matrix Cx in (3) averaged over pools is not symmetric:

�CCx(w�av)~�ccn0

x(w�av,0) x(w�av,D) 0

x(w�av,{D) x(w�av,0) 0

0 0 0

0
B@

1
CA: ð17Þ

Following (4), the PSPs and delays affect the kernel x (here

identical for all synapses), hence Cx(w�) and the resulting weight

selection. In Fig. 3C, the same STDP learning window is

combined with different PSP kernels and synaptic delays. We first

use the baseline parameters in Fig. 9B1: a rise constant tA~1 ms
and a decay constant tB~5 ms for the PSP kernel and purely

axonal delays dax
i ~5 ms. They correspond to the blue curve in

Fig. 3C. In this case, the matrix Cx(w0) may be rather

antisymmetric (outside its diagonal):
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Figure 8. Influence of the STDP parameters. (A) The neuron is stimulated by four pools. From left to right, pool �11 is stimulated by the correlation
source R1 with correlation strength �cc1

1~0:25 in (11). Pools �22 and �33 are related to the correlation source R2 with �cc2
2~�cc2

3~0:25; pool �33 tends to fire
�qq2

3{
�qq2

2~20 ms after pool �22. (B) Input cross-correlograms Cij(:,t) for first three pools described in A. The simulation time is 1000 s and the spike
counts have been rescaled by the time bin equal to 1 ms. The peak is predicted by (11). Note the shift of the peak for the cross correlograms between
inputs from pools �22 and �33. (C) Spectrum of the correlation matrix Cx corresponding to B. (D–L) Comparison of the final weight distribution for
different STDP models. The two strongest spectral components of the correlation structure in red and green thick lines; they are rescaled between the

minimum and maximum weights obtained in the simulation. For STDP+SCC in F, H and K, the single-spike contributions are ain~0:1 and aout~{0:1.
(D) log-STDP with Az~1, Az~0:5 and a~5; (E) log-STDP as in D with a~50; (F) log-STDP+SCC with the same parameters as D; (G) nlta-STDP with
Az~1, Az~0:8 and c~0:1; (H) nlta-STDP+SCC with the same parameters as G; (I) mlt-STDP with Az~1, Az~100 (J) add-STDP with Az~1,

Az~0:55; (K) add-STDP+SCC with the same parameters as J; (L) add-STDP+SCC2 with ain~0:15 and aout~{0:02.
doi:10.1371/journal.pcbi.1002584.g008
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�CCx(w0)*
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z z 0

0 0 0

0
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1
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cf. the values of the blue curve indicated by the arrows in Fig. 3C.

The eigenvalues are represented in Fig. 9B2. This indicates that

the (correlated) pool �22 fires ‘‘late’’ with respect to pool �11, from the

point of view of STDP. It follows that the second pool is depressed

while the first pool is potentiated, as illustrated in Fig. 9B3.

In contrast, a different weight selection occurs for the same

axonal delays, but longer PSP time constants in Fig. 9C:

tA~3 ms, tB~10 ms (the purple curve in Fig. 3C); as well as

dendritic delays dden
i ~5 ms with the same short PSP time

constants in Fig. 9D (green curve in Fig. 3C). In both cases, this

follows because �CCx(w0) has the following form:

�CCx(w0)*

z z 0

z z 0

0 0 0

0
B@

1
CA, ð19Þ

Figure 9. Influence of the PSP response on the kernel x and the resulting weight structure for log-STDP. (A) The neuron is stimulated by
m~3 input pools. The first two pools have the same reference for correlations with strength �cc~0:1 and pool �22 tends to fire D~10 ms after pool �11.
Pool �33 has no correlation. For all inputs, the firing rate is n0~5 sp=s. (B) Short PSP response with tA~1 ms and tB~5 ms, as well as purely axonal
delays dax

i ~5 ms. (C) Long PSP response with tA~3 ms and tB~10 ms, as well as purely axonal delays dax
i ~5 ms. (D) Short PSP response with

tA~1 ms and tB~5 ms, as well as purely dendritic delays dden
i ~5 ms. For each configuration, we present (1) a schematic diagram of the synaptic

parameters, (2) the eigenvalues of Cx(w�) and (3) the resulting weight specialization. As in Fig. 5, the purple curves represent the expression in (10).
The dotted horizontal line indicates w0, the equilibrium weight for log-STDP. Two eigenvalues are roughly equal to zero in D2.
doi:10.1371/journal.pcbi.1002584.g009
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which is ‘‘more’’ symmetric compared to Fig. 9B, and thus does

not depress the late pool. The change in xi affects the spectrum,

which results in the potentiation of both correlated pools �11 and �22,

as illustrated in Fig. 9C2 and D2. For the case of a delay of the

dendritic delay in Fig. 9D3, the late pool �22 is more strongly

potentiated than the early pool �11 as x(w�av,D) corresponds to the

peak of the kernel, cf. the right arrow and the green curve in

Fig. 3C. This illustrates that the effect of pool �11 on the output

firing felt at the synapse (i.e., after twice the dendritic delay

dden
i ~5 ms) coincides with the firing of pool �22, namely 10 ms after

pool �11.

Discussion

We have demonstrated how the STDP dynamics reflect the

spectral properties of temporal correlations conveyed by input

spike trains. The present analysis links the physiological properties

of STDP, such as its learning window and weight dependence, to

function in terms of spiking information. It sheds light on recent

numerical studies [7,29] that used STDP to separate correlation

sources, thus performing ICA. Such spectral decomposition

capabilities appear to be the inherent algorithm of STDP. We

find that, for a neuron with linear input-output response,

excitatory pairwise STDP alone performs PCA-like computations.

Weight-dependent STDP that induces both graded and robust

LTP generates a rich representation of the input correlation

structure. However, an additive-like weight dependence is not

sufficient for ICA in general. In order to achieve ICA, STDP

requires an additional homeostatic mechanism. Here we have used

LTD triggered by single output spikes that prevents all weights

from growing and results in enhanced competition between

correlation sources.

Input configuration and spectral components
For pairwise STDP, the weight dynamics can be predicted

provided the firing rates and pairwise cross-correlations are well

defined. The corresponding expressions (35) and (36) in Methods

highlight the separation of timescales between rate-based and

spike-based effects, which is determined by the learning window

function W . Spike-time correlations arise when coordinated firing

between neurons is consistently repeated over time, such as a

repeating spatiotemporal pattern embedded in random spiking

activity and peaked PSTHs in experimental data. In the

correlation structure induced by such pattern presentations, strong

spectral components correspond to dense and peaked clusters of

pattern spikes, in a similar fashion for both spike coordination and

rate covariation [9]. Our framework can account for a rich variety

of input configurations, in particular, stimuli that were used with

STDP for categorization and/or representation in previous studies

[8–10,50–52], as well as recently proposed elaborate input

configurations [46–48]. Time-varying signals can also generate

significant spike-time correlations and thus weight specialization

(Text S2 and Fig S2).

Kernel spectral component analysis (kSCA) of input spike-
time correlations

The present framework aims to provide a unified description of

the STDP dynamics for the many configurations that have been

used in previous studies. Following the observations by Gerstner

and Kistler [25, Ch,11], STDP potentiates and depresses weights

depending on the spectral components of C
x
. This matrix

embodies the STDP-specific effects and is determined by the

input correlation structure C and kernels x. The kernels are

determined by the STDP learning window and PSP responses, cf.

(4). In a sense, the cross-correlograms in C are ‘‘seen’’ by the

neuron through the kernels x. This is especially important when

input correlograms have a temporal extension (Fig. 9) or when the

shape of the STDP learning window function W varies across

synapses. When using long timescales for PSPs with usual time

constants for the learning window W , the matrix C
x

tends to be

symmetric and the PCA performed by STDP can result in slow-

feature extraction [27]. Another point is that the input correlation

structure as a whole determines for the weight specialization. In

Fig. 8L for example, uncorrelated inputs are not as depressed by

STDP as some positively correlated inputs. The present study has

focused on Hebbian STDP for excitatory synapses (Fig. 2C), but

the same framework can be used for any arbitrary learning

window W , as well as the case of plastic inhibitory synapses [53].

A neuron can thus generate elaborate representations of the

stimulating inputs in its weight structure, which illustrates the

versatility of STDP.

Relationship to Oja’s rule. When the input configuration

corresponds to mixed instantaneous correlations, STDP alone can

perform PCA on the correlation strengths (Fig. 5). In this way,

STDP can be seen as an extension of Oja’s rule [24], as was

suggested by van Rossum et al. [26]. There are several important

differences, though:

N Oja’s rule relies on rate-based information, which implies a

symmetric cross-correlation matrix between inputs and thus

performs PCA (Fig. 1). STDP, however, is based on the spike-

time correlograms contained in C(:,t). The matrix C
x

is

determined by the kernels xi (Fig. 3) and may thus not be

symmetric, especially for the usual temporally Hebbian

learning window W . This implies richer weight specialization

via the interaction with the neuronal parameters (Fig. 9).

N When the eigenvalues have large imaginary parts (Fig. 8), the

final weight distribution may not reflect the initial weight

splitting. Nevertheless, the weights that win the synaptic

competition, in the sense of being eventually most strongly

potentiated, are satisfactorily predicted by (10).

N In addition to the first Hebbian term in (1), the second term in

Oja’s rule leads to a specific constraint that drives the weights

toward the principal spectral component. When STDP

performs PCA-like computations, adequate weight depen-

dence resulting in graded LTP results in a better representa-

tion of the principal component (Figs. 5 and 8).

N For STDP, the resulting neuronal selectivity is determined by

the weight dependence, as well as the additional homeostatic

mechanisms. This allows flexibility in tuning the learning

process. For example, STDP can also switch from PCA to

ICA, as will be discussed in more depth below. In contrast,

more than one spectral component of C
x

can be selected when

the competition is not too strong (Fig. 8D). On the other hand,

Oja’s rule requires several neurons to extract several spectral

components, as each neuron only selects a single component.

Influence of weight dependence. When STDP performs

PCA, a desirable outcome is a fine representation of the main

spectral component of the input covariance in the weight

structure. When the weight evolution is consistent with the initial

splitting, the final weight distribution reflects the principal

component in (10), as illustrated in Figs. 5F and 9. The key is a

graded potentiation of correlated inputs as induced by log-STDP

[13] or nlta-STDP [16]. This functional property of the

experimentally observed weight dependence complements previ-

ous conclusions about its role in regulating the synaptic

Spectral Analysis of Input Spike Trains by STDP
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competition and shaping the weight distribution [13,15,16,38,39].

To obtain effective weight specialization, STDP should be

parametrized in an additive-like regime. However, purely additive

STDP often leads to a bimodal distribution of synaptic weights,

which may not reflect the complexity of the input structure. In

addition, we have observed that add-STDP can lead to unstable

synaptic dynamics over an extended learning epoch. Figure S1C

provides an example of quasi-periodic evolution of the synaptic

weights when Cx has dominant eigenvalues with large imaginary

parts. Even a slight dose of weight dependence appears sufficient

to introduce stability in the weight dynamics in this case (Fig S1D),

which agrees with the existence of a fixed point predicted by our

analysis.

From PCA to ICA. An important conclusion of our results is

that kSCA performed by plain STDP relates to PCA, but differs

from ICA. For example, the dominant component of the input

correlations in Fig. 5 mixes the correlations from R1 and R2. So

long as STDP potentiates the weights in that ‘‘direction’’, the

trained neuron does not become selective to only one correlation

source. However, additional constraints on the weight dynamics

can disrupt this scheme. As shown in Fig. 7, when the additional

competition induced by aout
v0 [6] is sufficiently strong, the

neuron can become selective to a single correlation source by

tuning its positive synaptic weights. This results in a winner-take-

all situation for the strongest correlation source involved in the

dominant spectral component. This competitive effect comple-

ments the homeostatic regulation on the mean weight by the pre-

and postsynaptic single-spike contributions [35]. The neuronal

selectivity in Figs. 6 and 7 is measured using the mutual

information between input correlated events and output firing.

This provides a suitable criterion to discriminate between PCA

and ICA [33] and has been used to evaluate the performance of

STDP in extracting information within noisy spike trains [30–32].

There exist configurations where PCA and ICA coincide, for

example, when each spectral component (eigenvector) is associated

with a single correlation source (Fig. 8A). Then, the selection of one

eigenvector actually results in ICA. In such cases, pairwise STDP

in a competitive (additive-like) regime can lead to a symmetry

breaking, namely segregation between similar eigenvalue of Cx

[13,16,17]; see also Fig. 8E compared to D. Therefore, we have

used mixed correlation sources to investigate more carefully

whether kSCA resembles PCA or ICA (Fig. 5), in a similar manner

to Fig. 1 where the correlation sources overlap.

One issue with ICA in our model is that the performance

crucially depends on the values ain and aout. For distinct input

configurations, these values may have to be adjusted. Two

opposing effects are operating here. First, The competition due

to aout
v0 that brings ICA becomes stronger for increasing input

correlation strength if the neuronal firing rate becomes stronger.

Second, large negative values for aout prevent the weights from

being strongly potentiated, which leads to a low output firing rate.

Further work is necessary to understand this interplay in more

depth. An alternative to ain=out to regulate the mean weight is a

homeostatic weight scaling [38,54]. The precise nature of such a

scaling critically affects the neuronal selectivity. When combined

with rate-based Hebbian learning, subtractive normalization

enables symmetry breaking, whereas multiplicative normalization

leads to a form of PCA [55]. Previous studies that managed to

perform ICA using STDP used a homeostatic weight scaling that

normalizes the mean weight [29]. In an abstract learning model,

Xu et al. [56] have demonstrated how such weight normalization

constraints can cause the same update rule to switch between PCA

and other algorithms such as ‘k-means’, i.e., grouping input pools

at distinct levels of potentiation (cf. Fig. 8J–K with the first two

pools).

To achieve ICA with arbitrary input configurations with

automatic tuning, adaptative nonlinearities in the neuronal

response have been successfully used [29]. Such a nonlinear

neuronal response captures higher-than-second-order correlations

in a similar fashion to previous studies using rate-based learning

[57]. Intuitively, superlinear PSP responses boost the competition

between the weights, which prevents the output neuron from

strongly responding to independent correlation sources. Likewise,

STDP models relying on triplets of spikes can use such higher-

order statistics to separate correlation sources [58]. Last, we have

only considered positive weights here. The weights may be

eventually potentiated or depressed compared to the mean

equilibrium value for uncorrelated inputs (this difference is the

equivalent of positive/negative weights in PCA in machine

learning). Only significantly stronger weights transmit correlation

patterns efficiently, whereas weaker weights hardly drive the

postsynaptic neuron. Although ICA-like specialization can be

achieved under the constraint of positive weights (Fig. 6E–F),

inhibition can enhance the input selectivity when it strongly

suppresses the transmission of certain correlation patterns [59].

Extension to more elaborate STDP and neuron models
The present study has focused on STDP contributions up to the

second order (pairs of pre- and postsynaptic spikes) and the

learning dynamics that arise from the effect of pairwise spike-time

correlations. This means that higher-order correlations only play a

role via their collective second-order effects. In contrast, triplets or

bursts of spikes can significantly modulate the weight updates in

other models [40,60]. The model proposed by Appleby and Elliott

requires multispike interactions (i.e., higher-order correlations) for

synaptic competition to emerge [41]. More elaborate STDP

models also present advantages for spike computation and/or

reproducing experimental data [7,31,34,40,61,62]. In addition to the

effect of spike-time correlations considered here, some of these models

are sensitive to firing rates. Likewise, when spike pairs contributing to

STDP are restricted (whereas all pairs are included in our model), the

equilibrium mean weight depends on the input firing rates [4,5] and

the balance between spike and rate effects is affected. Our results are

expected to hold at least partially when pairwise effects dominate the

STDP dynamics. Extending our study is left for subsequent work, but

making use of higher-order correlations appears promising to

perform ICA [58]. Although our STDP update incorporates noise,

our analysis neglects it and assumes that the weight drift (i.e., mean

change or first stochastic moment) dominates the dynamics. In

extreme cases, a fast learning rate can compromise the stability of the

emerged weight structure [14].

The present analytical study is based on the ‘‘linear’’ Poisson

neuron, which allows a tractable analysis. Its stochastic firing

mechanism generates rather noisy and unreliable spike trains

compared to deterministic neuron model where the stochasticity

arises from the inputs, e.g., integrate-and-fire neurons. Similar

weight dynamics for both models have been demonstrated

previously for slow STDP learning [6,13]. As mentioned above, a

nonlinear firing response may be useful to perform ICA. In order to

go beyond the linear input-output regime for integrate-and-fire

neurons [63], it is necessary to study how the neuron model shapes

the input-output covariance; see (32) in Methods. In most neuron

models, larger excitatory weights induce stronger input-output

correlations for correlated inputs. This results in a positive-feedback

loop for learning, which is captured by the Poisson neuron model.

Dendritic integration of synaptic inputs are expected to bring

interesting nonlinearities to the kernel x defined in (4). Moreover,

Spectral Analysis of Input Spike Trains by STDP
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depending on regional competition between and within dendritic

branches [64,65], different components can be represented in

distinct areas of a single neuron. Including such refinements opens

promising ways to understand spike-based computations.

Implications for spiking information processing in
neuronal networks

Finally, our results support the idea that neurons equipped with

STDP can operate as self-adapting filters that process information

based on the transient firing response of neurons. The input-output

spike-time covariance (Fi in our model) is simply the average of the

transient response over all input statistics. STDP tunes these input-

output correlations based on the input cross-correlation structure

(C
x
). Extending previous results focusing on a single correlated

pathway [12], Fig. 6 illustrates the modification of the transmission

of coincidentally spiking activity using mutual information as a

measure of signal-to-noise. This view is consistent with the

hypothesis that the coordinated activity of cell assemblies can serve

as a basis for the neuronal code [66]. In a more general scheme,

spiking information should also consider the detailed shapes of the

correlograms, not just their integral value as here. Because of the

temporal dimension, coding using correlations appears richer than

rate-based coding, as was observed in experiments [67]. Propaga-

tion of coordinated transient spiking activity, which can be seen as a

generalization of PSTHs or spike patterns [9], appears suitable for

coding/decoding and naturally interacts with STDP. Depending on

the more or less peaked shapes of the corresponding correlograms,

the neurons may operate in either closer to a spike-based or a rate-

based regime; these two forms of neuronal coding in feedforward

networks are actually the two sides of the same coin [68]. Here

correlations involve multiple input spike trains and all neurons

belonging to the same assembly exhibit pairwise correlograms that

have ‘‘coordinated’’ shapes, in a similar manner to cliques in graphs.

Although a formal quantification has yet to be defined, the

information in C can intuitively be understood in terms of the

diversity and arrangement of cross-correlograms. The kernels xi

then define a ‘‘similarity measure’’ on matrices C: the respective

shapes of the correlograms and kernels determine the effective

strength of spectral components.

In a network, heterogeneity in the synaptic properties (PSP

response and delays) and STDP learning windows leads to distinct

kernels x among the synapses, so neurons can extract different

components from a common input correlation structure. This can

be used by (inhibitory) STDP to extract the frequency of rhythmic

neuronal activity [53], which has been observed in many brain

areas. Large inhomogeneities are expected to affect the weight

specialization for oscillatory signals [10,11,45,69]. They may also

play a role in encoding of slow signals at the shorter timescale of

STDP [70,71]. Likewise, partial input connectivity allows neurons

to see only part of the same global input structure, leading to

differentiated specialization that may represent many spectral

components. However, further developments are necessary to

extend this analysis to the case of recurrent connections, which

constrain the correlation structure [19], and incorporate possibly

plastic inhibitory connections. This theory aims to better

understand how neurons can process spiking information in a

distributed fashion [72]. Interesting applications have been

proposed recently [73,74]: STDP can preprocess temporal signals

within a recurrently connected network that act as a (huge)

reservoir of functions of the inputs, which enhances the

performance of the so-called liquid state machine [75]. Cessac et

al. also showed that STDP can change the network activity such

that observables (e.g., firing rates, spiking synchrony) obey Gibbs

distributions [76]. Together, these efforts will hopefully lead to

novel interpretations on how neurons can process spike trains.

Methods

After the presentation of the STDP models, the following

sections detail the derivation of the learning equation (2), which is

analyzed in Results. The spike-time covariances of presynaptic

spike trains, which is the crucial input information for the kSCA

algorithm, are formally defined in a later section. Conditions on

the existence of a stable fixed point for the weight dynamics are

then derived. Finally, the neuronal response to input correlations is

calculated in a simple case, which is used to evaluate theoretically

the change in mutual information in Results.

Phenomenological model of pairwise weight-dependent
STDP

Pairs of pre- and postsynaptic spikes, as well as single spikes,

completely determine the contributions to STDP. This choice has

limitations compared to more elaborate models that include, for

example, triplets or bursts of spikes in their analysis [40,69] or

models for which pairwise correlations do not generate competition

[41]. This choice allows us to focus on the next stochastic order after

firing rates (first order) while keeping the analysis tractable.

For a pair of pre- and post-spikes whose effects reach the ith

synaptic site at times t
pre
i and t

post
i , respectively, the weight wi is

modified by the following additive terms

Dwi~g

ain at time t
pre
i ,

aout at time t
post
i ,

1zfð ÞW wi; t
pre
i {t

post
i

� �
at time max t

pre
i ,t

post
i

� �
:

8><
>: ð20Þ

In general, we assume that the STDP-specific update

W (wi; t
pre
i {t

post
i ) depends on the current value of the weight wi

[13,38,39,42], in agreement with experimental evidence [37]. This

weight dependence alone can stabilize the weight distribution for

‘plain STDP’, i.e., without single spike contributions. However, in

the absence of weight dependence, single-spike contributions

ain=out are necessary to enforce partial stability on the weights,

namely homeostasis on their mean [6,35,36]. Note that both

mechanisms can also be successfully used together [15]. We will

refer to the case where ain=out
=0 as ‘STDP+SSC’, in contrast to

‘plain STDP’ (or ‘STDP’ alone when there is no possible

confusion) for ain~aout~0. The second case is often regarded

as more biologically plausible for excitatory STDP and will be the

focus on this work. Although their effect is not considered in detail,

the weight update in (20) involves a learning rate g, which

determines the speed of learning, and variability in the pair-

specific contribution, which is modeled by the white-noise random

variable f that has zero mean and variance s.

As mentioned above, the contribution specific to spike pairs

depends on the relative timing of pre- and postsynaptic spiking

activity felt at the synaptic site. For the synapse i described in

Fig. 2B, a pulse fired by the presynaptic neuron i at time tn
i and a

pulse fired by the postsynaptic neuron at time tm
out correspond to

t
pre
i ~tn

i zdax
i ,

t
post
i ~tm

outzdden
i :

ð21Þ

Typically for excitatory STDP, t
pre
i vt

post
i leads to potentiation

(LTP) and, conversely, tpre
wtpost to depression (LTD). Thus,
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W w; t
pre
i {tpost

� �
can be expressed as

fz(wi) exp
t
pre
i {tpost

tz

� �
if t

pre
i vtpost ,

{f{(wi) exp
t
pre
i {tpost

tz

� �
if t

pre
i wtpost :

ð22Þ

Here decaying exponentials are used for illustration purpose.

We compare several schemes for the weight dependence that is

defined by the scaling function f+:

N Our recently proposed ‘log-STDP’ model [16] has a sublinear

LTD (log-like saturating profile for f{) can produce to long-tail

(lognormal-like) distributions of synaptic weights. Here we use

fz(w)~Az exp {w=w0 bð Þ ;

f{(w)~A{

ln 1zaw=w0ð Þ
ln 1zað Þ ,

ð23Þ

where w0 is a reference weight, a controls the saturation degree

of LTD and b the (slow) decay of LTP when the weight w
increases.

N The ‘nlta-STDP’ model proposed by Gütig et al. [13]

corresponds to:

fz(wi)~Az 1{wi=wmaxð Þc ,

f{(wi)~A{ wi=wmaxð Þc ,
ð24Þ

where c scales from additive STDP with c~0 [6,12] to

multiplicative STDP with c~1 that has a linear dependence

for both LTP and LTD [39]. The ‘‘soft’’ bound wmax is

enforced on the weights. In numerical simulation, we will use

cƒ0:1 to obtain sufficiently strong competition between the

synaptic weights.

N The special case of (24) with c~0 is weight independent,

namely, additive STDP with f+(wi)~A+, will be referred to

as add-STDP.

N The ‘mlt-STDP’ model proposed by van Rossum et al. [13]

corresponds to:

fz(wi)~Az ,

f{(wi)~A{wi :
ð25Þ

Baseline parameters used in numerical simulations are recapit-

ulated in Table 1.

Capturing the weight dynamics
The analysis is constrained to a single neuron excited by

external inputs indexed by 1ƒiƒN. The spike trains of the

neuron and external input i are denoted by Sout(t) and Si(t),
respectively. We use a previously developed framework [6,36] to

analyze the effect of weight-dependent STDP on the input plastic

weights wi(t).

The tractability of the present analysis relies on the condition

that both the firing rates ni and covariances Cij are quasi-invariant

with respect to time t (but not for the time lag t). We assume that

learning occurs sufficiently slowly compared to the other neuronal

mechanisms (i.e., PSP time constants and delays) and that the

noise f is not too strong, such that the drift (or first stochastic

moment) of the weight dynamics essentially determines the

emerging structure [14,77]. Under this ‘‘adiabatic’’ assumption,

the weight evolution can be described by

_wwi(t)^g½U wi; ni(t); nout(t)½ �zFW
i (wi; t)� ,

U wi; ni(t); nout(t)ð Þ~

(wi)ni(t)nout(t) for STDP,

ain ni(t)zaout nout(t)z(wi)ni(t)nout(t) for STDPzSCC:

( ð26Þ

The weight update in (26) is the summation of two additive

contributions. First, the rate-based contributions embodied by U
involve the time-averaged firing rates ni and nout for input i and

the neuron, respectively, cf. (35). For weight-dependent STDP, it

involves the integral value of the learning window (as a function of

the current weight)

w*(wi) : ~

ð
W (wi; t)dt: ð27Þ

Second, the covariance coefficient FW
i incorporates the effect of

the STDP on the time-averaged spike-time covariance Fi between

the neuron and input i:

FW
i (wi; t) : ~

ðz?

{?
W (wi; tzdax

i {dden
i ) Fi(t,t)dt ,

Fi(t,t) : ~
1

T

ðt

t{T

SSout(t
0)Si(t

0zt)Tdt0{

1

T

ðt

t{T

SSout(t
0)Tdt0

1

T

ðt

t{T

SSi(t
00zt)Tdt00 :

ð28Þ

Note that the noise f does not play a role in the weight drift

evaluated here. In the Results section, we will show that the

predicted weight specialization is valid even for a medium level of

noise in STDP. In order to analyze the learning equation (26), we

need to evaluate the neuronal firing rate n and covariance

coefficients Fi in terms of the input parameters. For this purpose

we need to specify the neuronal firing mechanism.

Poisson neuron model
In the Poisson neuron model [6,13,14,19,36], the neuronal

spiking mechanism is approximated by an inhomogeneous Poisson

process driven by an intensity function rout(t) in order to generate

an output spike-time series Sout(t). A presynaptic spike from input

i induces a variation of rout(t) referred to as the postsynaptic

potential (PSP), which is determined by the synaptic weight wi, the

kernel function Ei, and the sum of the axonal and dendritic delays

dax
i zdden

i . We require
Ð
Ei(t)dt~1 and, in order to preserve

causality, Ei(t)~0 for tv0. For illustration purposes, we choose a

double exponential function for all Ei:

Ei(t)~

exp ({t=tA){ exp ({t=tB)

tA{tB
for t§0,

0 otherwise,

(
ð29Þ
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with rise and decay time constants tAvtB, respectively. The

‘‘soma potential’’ rout(t) sums the PSPs for all input spike times

tn
i

rout(t)~
X
i,n

wi(t)Ei t{tn
i {dax

i {dden
i

� �
: ð30Þ

Following (30), we obtain the consistency matrix equations for

the firing rates and spike-time correlations:

nout(t)~w(t)vin, ð31aÞ

FW (t)~w(t)Cx½w(t)�: ð31bÞ

Here w and F are N-row vectors and vin a N-column vector,

whose elements are wi, Fi and ni, respectively; bold capitals will be

used for row vectors and bold lower-case characters for column

vectors. The N|N matrices C
x

have elements that correspond to

pairs of inputs (i,j):

C
x
ij(w; t)~

ðz?

{?
xi(wj ; t)Cij(t,t)dt ð32Þ

is reproduced in (3). Note the respective roles of indices i and j.
The input covariance Cij(:,t) is assumed to be quasi-independent

of time t, so FW (t) in (32) only depends on t through the weights

wj(t), which slowly evolve due to STDP. The kernel functions xi in

(33) describe the interplay between STDP and the postsynaptic

response kernels Ei that affects the weight dynamics:

xi(wj ; t) : ~

ð
W (wj ; t{rzdax

i {dden
i )Ei(rzdax

i zdden
i )dr

~½W (wi; :) � Ei(:)�(t{2dden
i ) :

ð33Þ

The convolution indicated by � concerns the variable t. This

equation is reproduced in Results, cf. (4). This means that the

postsynaptic response crucially determines the effect of synaptic

plasticity [19,27]. In particular, the dendritic delay dden
i plays a

distinct role compared to the axonal delay dax
i in that it shifts the

kernel xi as a function of t to the right, namely implying more

potentiation for t~0. Because of the weight dependence, the

kernel is modified via the scaling of both potentiation and

depression for W (wj ; :) when the strength wj evolves, as illustrated

in Fig. 2C. The combination of (26) and (31) leads to (2), where the

dependence over time t is omitted.

Description of input spiking structure
The following expressions allow us to deal with general inputs

while at the same time satisfying the requirement for mathematical

tractability. We denote by Si(t) the spike train (Dirac comb) of

input i. The corresponding time-averaged firing rate is defined as

ni(t) : ~
1

T

ðt

t{T

SSi(t’)Tdt’, ð34Þ

and, for a pair of inputs i and j, the spike-time cross-covariance Cij

is given by

Cij(t,t) : ~
1

T

ðt

t{T

SSi(t
0)Sj(t

0zt)Tdt0{

1

T

ðt

t{T

SSi(t
0)Tdt0

1

T

ðt

t{T

SSj(t
00zt)Tdt00:

ð35Þ

A double averaging is used in the above definitions:

N an ensemble average over the randomness (because the input

spike trains will be generated using stochastic processes)

denoted by the angular brackets S � � � T and

N a smoothing over a period of duration T , chosen to be larger

than the timescale of neuronal mechanisms, but smaller than

the learning rate of STDP.

The separation of timescales implies that only correlations

convey fast spiking information, whereas firing rates imply low-

pass filtering. The covariance Cij in (36) slightly differs from our

previous framework [15,36]. It is actually the sum of two

contributions: the stochastic covariance between the spike trains

averaged over T , which relates to ‘spike coordination’:

1

T

ðt

t{T

SSi(t’)Sj(t’zt)T{SSi(t’)TSSj(t’zt)T
	 


dt’ ð36Þ

and the temporal covariance of the underlying rate functions,

which we refer to as ‘rate covariation’:

1

T

ðt

t{T

SSi(t
0)TSSj(t

0zt)Tdt0{

1

T

ðt

t{T

SSi(t
0)Tdt0

1

T

ðt

t{T

SSj(t
00zt)Tdt00:

ð37Þ

For inputs generated using doubly stochastic processes [25], a

double ensemble average has been used in a similar fashion to the

combination of ensemble average and temporal integration here.

With our convention, the graphical interpretation of correlogram

Cij(:,t) is that peaks for positive values of t (right side) indicate that

input i tends to fire earlier than j. For oscillatory inputs, if the

closest peak to t~0 is on the right side, i is phase-advanced

compared to j.

Conditions ensuring the existence of a stable fixed point
for weight-dependent STDP

Here we examine the conditions under which there exists at

least one fixed point such that (2) for plain STDP vanishes for all

coordinates i, namely

_wwi~g½w*(wi)ni(
X

j

wjnj)z
X

j

wj

ðz?

{?
W (wi; t)CE

ji(t)dt�, ð38Þ

where CE
ji denotes the convolution of the correlation with the PSP

kernels Ej , reorganizing (33). We make a couple of assumptions here:

N The weight dependence is such that the LTD side of W (w; t)
vanishes when w?0, whereas the LTP side vanishes for

w?z?. In particular, this implies that w*(w) in (27) is a

decreasing function of w and has a zero w0w0 where LTD

balances LTP. This property is satisfied by both log-STDP and

nlta-STDP.
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N The inputs have positive correlations, meaning that CE
ij(t)§0

for all pairs i and j.

We define for sake of simpler notation the following functions

such that (39) reads _wwi(t)!k(wi,fwjg)z
P

j=i yj(wi,fwjg) with

k(wi,fwjg) : ~(wi)ni

X
j

wjnj

 !
zwi

ðz?

{?
W (wi; t)CE

ii(t)dt

yj(wi,fwjg) : ~wj

ðz?

{?
W (wi; t)CE

ji(t)dt ,

ð39Þ

where fwjg denotes the whole set of weights.

For each given i, the sign of the first term in k(wi,fwjg) is given

by (wi) alone and does not depend on fwjg:

wi 0 w0 ?

w*(wi) + : 0 : 7
, ð40Þ

where the circled signs indicate positive and negative values. The

second term is zero for wi~0 and for a sufficiently large wi, it

becomes negative (or barely positive) with the assumptions that

LTP vanishes and Cij(t)§0. For all j=i, the sign of yj(wi,fwjg) is

given by
Ðz?
{? W (wi; t)CE

ji(t)dt and wj scales its modulus linearly:

wj 0 ?

gj(wi,fwjg) or
0 8 +

0 : 7

: ð41Þ

Taken together, we have for an arbitrary small d

f (0,fwjg)w0 ,

gj(0,fwjg)§{d for all j=i ;
ð42Þ

and there exists a set of constants Li such that

f (wi,fwjg)v0,

gj(wi,fwjg)ƒd

�
for wi§Li: ð43Þ

These are sufficient conditions to prove that the expressions in (39)

taken for all i have at least a global fixed point.

We first examine the illustrative case of N~2 weights. For any

fixed w2, the expression of _wwi in (39) satisfies the two properties of

being positive on the axis w1~0 and becomes negative for large

w1, following (43) and (44). Consequently, for all w2, there is at

least one zero of _ww1 as a function of w1, and this zero is strictly

positive and smaller than the upper bounds Li. Moreover, the

expression in (39) for i~1 is continuous with respect to both w1

and w2, so the zeros form a continuous curve. Reciprocally, by

inverting the indices, there is a similar zero for _ww2. Because of

continuity, there is at least one intersection point for the sets of the

zeros as in Fig. 4A, which nullifies _wwi for i~1 and 2.

In the general case of N§2 weights, the same properties in (43)

and (44) ensure that, for each given i, (39) is positive on the

hyperplane fwi~0g and negative on fwi~Lig. It follows that

there is at least one zero for each wj , j=i. Thus, the continuous

surface that contains the zeros of (39) for a given i contains a

manifold of dimension N{1. In the N-dimensional hypercube

0ƒwjƒLj , all such manifolds for 1ƒiƒN have at least one

intersection point, since the ‘‘constraint’’ for being on the i-th
manifold only concerns wi. On the non-empty intersection set, all

derivatives _wwi vanish, meaning it consists of the fixed point(s) for

the weight dynamics.

The structure of these manifolds is actually simple and allows us

to determined to the global stability of the fixed point(s). For each

i, the corresponding manifold separates the hypercube 0ƒwjƒLj

into two subspaces. On the side containing fwi~0g, we have

_wwiw0, whereas on the other side fwi~Lig, _wwiv0. Each manifold

is thus a global attractor for the coordinate wi, which guarantees

global stability of their intersection set. The arrows in Fig. 4

illustrate the derivatives of w1 and w2, which drive w to its fixed

point there.

Now, for negative correlations, (43) or (44) may not hold

anymore and the zero of (39) may become negative or even not

exist for some values of wj . There is then no guarantee of a

realizable global fixed-point, as illustrated in Fig. 4B. The analysis

in this case will not be pursued here.

A similar demonstration applies for STDP+SCC when

U(wi; ni; nout) is positive for wi~0 and decreases with wi. This is

the case when cw0, for which LTP and LTD vanish at the upper

and lower bounds enforced on the weights, respectively, in

addition to ain
w0. With the further condition aout

v0 that ensures

a fixed-point for the mean weight, the equivalent to k decreases

when the output firing rate nout~
P

j wjnj increases. Putting it all

together, the existence of a fixed point is ensured for output firing

rate that are not too high (and positive correlations).

Relationship between the final weight distribution and
the initial weight splitting

In the early period of the weight evolution, we can approximate

the weight vector as proportional to the dominant eigenvector(s).

Firstly, we consider the case of a single dominant eigenvalue,

namely w!v1. The spike-based term of (2) can be rewritten

wC
x(w)^wC

x(w�)zw C
x(w){C

x(w�)½ �: ð44Þ

Decomposing w~v1 exp (l1t)v1zv\ for some initial factor v1w0

and Ev\E%v1 exp (l1t), the first term of the rhs wCx(w�) is

dominated by its component v1l1 exp (l1t)v1. This follows because

l1 is the largest eigenvalue. Now we further assume that the weight

dependence is ‘‘weak’’ with respect to w. By this, we require the

second term of the rhs above to be dominated by the first term.

Together, this means that the vector elements of wC
x(w) are

ordered as those of v1. The fixed point of the dynamics in (2) can

be approximated by

U(w; vin; nout)zwCx(w)^0: ð45Þ

We assumed earlier that the weight dependence is such that the i-

th component of U is a decreasing of wi. The implicit relationship

in (46) indicates that the fixed point of w is given by the reciprocal

function to {U applied on wC
x(w), which has its vector elements

sorted in the same order as v1 as we just explained. In other words,

v1 is expected to reflect the final weight distribution under the

mentioned assumptions for a single dominant eigenvalue.

In the case of two complex conjugate dominant eigenvectors, a

large imaginary part for l1 implies a strong rotation-like evolution

even at the early stage: w^2<fa1(0)v
^

1 exp (l1t)g. In this case, the

equilibrium weight distribution may significantly differ from the

initial splitting in the direction of v1. As a illustrative example, we

consider two weights w~(w1,w2) with
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C
x(w�)~

a b

c a

� �
: ð46Þ

This expression corresponds to the cases of time-lagged

correlated inputs in Figs. 8 and 9. When aw0, bv0 and cw0,

C
x

has complex conjugate eigenvalues a+i
ffiffiffiffiffiffiffiffiffiffi
{bc
p

. Larger

absolute values for b and c imply large imaginary parts. The

spike-based effects on w give _ww^(aw1zcw2,bw1zaw2). Starting

from the homogeneous condition w1~w2, it follows from bv0
that w1 increases faster w2. If w1 becomes so large that

_ww2~bw1zw2v0, STDP results in LTP for w1 and LTD for w2

at the end of the learning epoch. This means that, despite an initial

growth in the case azbw0 (which is predicted by the

eigenvectors), w2 is eventually depressed. In the general case, we

also expect that some weights may become depressed because

others experience stronger LTP due to STDP. In any case, the

most strongly potentiated weights at the initial splitting should

eventually be the winners of the synaptic competition.

Response to correlated inputs after learning
Here we examine the spike transmission after learning, which is

used to quantify mutual information in Results. To fix ideas, we

present simple calculations for a neuron excited by a correlated

pool of N1 inputs with homogeneous weight w1 and correlation

strength c1. The firing probability during a given time interval of

D ms consecutive to a spike from input i, similar to a peristimulus

time histogram (PSTH), can be seen as a measure of spike-based

information transmission. It amounts to
Ð t0zD

t0
PrfSout(t’)

DSi(t0)gdt’, which relates to the correlation term of Fi, namely

SSout(t)Si(tzt)T, evaluated for t[½{D,0� and rescaled by the

spike rate of Si. For an isolated spike at time t0, i.e., outside a

correlated event such as that related to a reference R1 in (11), the

above integral can be approximated by

ðt0zD

t0

n�outzw1E1(t’{t0)
	 


dt’~Dn�outzw1

ðD

0

E1(t’)dt’
� �

: ð47Þ

Likewise, for a spike involved in a correlated event, the average

increase of firing probability is scaled up by the mean number of

coincidentally firing inputs:

ðt0zD

t0

n�outzN1

ffiffiffiffiffi
c1

p
w1E1(t’{t0)

	 

dt’^Dn�outzN1

ffiffiffiffiffi
c1

p
w1

ðD

0

E1(t’)dt’
� �

:ð48Þ

When the neuron has many inputs and a non-zero background

firing activity, the group effect dominates with N1
ffiffiffiffiffi
c1
p

&1, so we

can neglect the term in w1 in (48). The ratio between (49) and (48)

then becomes

Dn�outzN1
ffiffiffiffiffi
c1
p

w1

ÐD

0
E1(t’)dt’

h i
Dn�outzw1

ÐD

0
E1(t’)dt’

h i ^1zN1

ffiffiffiffiffi
c1

p
w1

ÐD

0
E1(t’)dt’
Dn�out

: ð49Þ

To maximize this ratio, the optimal D lies beneath the values for

which most of the integral of E is covered. Larger values for D
beyond the timescale of the PSP kernel (e.g., several hundreds of

ms as used for rate-based coding) lead to a smaller gain. With

our parameters, we choose D~25 ms such that
ÐD

0
E1(t’)dt’^1.

The lower the equilibrium mean firing rate n�out, the stronger

this signal-to-noise ratio is. For the Poisson neuron, n�out is also

the variance of the firing rate, which can also be thought as a

source of noise for rate coding. Note that from (26) with plain

STDP, the equilibrium weight w�1 for a pool of N1 instanta-

neously correlated inputs with strength c1 satisfies

w* w�1
� �

zN1c1w�1x(w�1,0)~0, which gives a theoretical prediction

of the expressions above.

Supporting information
Text S1. This section focuses on the situation where the

spectrum of C
x

contains imaginary eigenvalues. For add-STDP,

this can lead to an oscillatory-like behavior of the weights. In

contrast, weight-dependent STDP stabilizes the weight distribu-

tion.

Figure S1. Example of quasi-periodic evolution for plastic

weights modified by add-STDP.

Text S2. We show that spike coordination and rate covariation

can induce correlations of similar strength. We consider a neuron

stimulated by inputs that have a common periodic firing rate. We

show how the weight evolution is determined by the frequency of

the input rate, the postsynaptic response and the STDP learning

window.

Figure S2. Example of weight evolution that depends on the

frequency of oscillatory input firing rates. The postsynpatic neuron

can be trained to represent only a certain frequency range, similar

to a band-pass filter.

Supporting Information

Figure S1 Instability of the emerging weight distribution. (A)

The postsynaptic neuron is stimulated by m~10 pools. Nine pools

exhibit correlated activity such that their respective inputs tend to

fire in sequence a common reference R1, namely after a time lag

equal to �qq1
l ~(l{1)|10 ms for pool 1ƒlƒm{1; cf. (11) in the

main text. The tenth pool has no correlation (x). (B) Spectrum of

the corresponding input covariance matrix C
x
. Comparison of the

weight evolution for (C) add-STDP+SCC and (D) nlta-

STDP+SCC with c~0:03. The other STDP parameters are the

same for both models: Az~3; A{~2; tz~8:5 and t{~17 ms;

g~2|105; ain~0:4; ain~{0:05; wmax~0:013. (1) The weight

traces are represented in light gray. The mean weights over each

input pool are in darker gray, apart from three that are displayed

in color (thicker line). (2) Normalized distribution of the mean

weights over each pool at different time of the simulation (time is

indicated in thousands of seconds on the y-axis; blue corresponds

to the earliest). For C1, the blue curve for t~12000 s has been

reproduced in dotted line to compare it with distributions at two

later times.

(EPS)

Figure S2 Competition between instantaneous correlations and

oscillatory firing rate. (A) Schematic representation of a single

neuron stimulated by pool �11 with instantaneous correlations and

pool �22 with an oscillatory firing rate (frequency f ). Their respective

cross-correlograms are represented in red and blue. (B) Plot of the

correlogram Cij(t) between two oscillatory inputs from pool �22
(blue trace). The two spike trains were simulate for 1000 s and the

time bin for the x-axis is 1 ms. The predicted curve (black dashed

line) corresponds to (S2) in Text S2: a cosine function with

frequency f ~20 Hz and amplitude n2
0=2 with n0~10 sp=s. (C)

Theoretical prediction of the mean input-neuron correlation

coefficients �CCx for each input pool. The blue solid curve

corresponds to the oscillatory pool �22 and varies with the frequency

f , cf. (S3) in Text S2. The red dashed and dashed-dotted

(48)
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horizontal lines represent the instantaneous correlation of �11 for

�cc1~0:05 and 0:025, respectively; cf. (13) in the main text. The

input firing rate is n0~10 sp=s for both pools. (D) Plots of the

difference between the mean weights after 500 s of simulated time.

Purple circles and green crosses correspond to �cc1~0:05 (dashed

line in B) and 0:025 (dashed-dotted line in B), respectively. Positive

values indicate that the oscillatory pool is the winner at the end of

the learning epoch. (E) Effect of dendritic delays on the STDP

effect. The solid line is the same as in the case with dden~0,

whereas the dashed and dashed-dotted curves correspond to

dden~1:5 and dden~3 ms, respectively.

(EPS)

Text S1 This section focuses on the situation where the spectrum

of C
x

contains imaginary eigenvalues. For add-STDP, this can

lead to an oscillatory-like behavior of the weights. In contrast,

weight-dependent STDP stabilizes the weight distribution.

(PDF)

Text S2 We show that spike coordination and rate covariation

can induce correlations of similar strength. We consider a neuron

stimulated by inputs that have a common periodic firing rate. We

show how the weight evolution is determined by the frequency of

the input rate, the postsynaptic response and the STDP learning

window.

(PDF)
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