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Abstract

A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A
default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other
properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model
also suggests that the shape of the circadian limit cycle and the associated phase response curves (PRC) will vary since the
average concentrations of clock proteins change with temperature. We propose an alternative class of models where the
twin properties of a fixed period and entrainment are structural and arise from an underlying adaptive system that buffers
temperature changes. These models are distinguished by a PRC whose shape is temperature independent and orbits whose
extrema are temperature independent. They are readily evolved by local, hill climbing, optimization of gene networks for a
common quality measure of biological clocks, phase anticipation. Interestingly a standard realization of the Goodwin model
for temperature compensation displays properties of adaptive rather than distributed temperature compensation.

Citation: François P, Despierre N, Siggia ED (2012) Adaptive Temperature Compensation in Circadian Oscillations. PLoS Comput Biol 8(7): e1002585. doi:10.1371/
journal.pcbi.1002585

Editor: David Rand, University of Warwick, United Kingdom

Received December 21, 2011; Accepted May 2, 2012; Published July 12, 2012

Copyright: � 2012 Francois et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PF and ND were supported by Natural Science and Engineering Research Council of Canada (NSERC, http://www.nserc-crsng.gc.ca/), Discovery Grant
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Introduction

It has long been recognized [1] that the defining characteristics

of biological circadian clocks are (1) a free running period of order

24 hrs in the absence of any periodic stimulus, (2) entrainment by

a periodic light-dark signal and (3) temperature compensation of

the free running period. Equally important is entrainment by a

24 hour period temperature variation [2–6]. In a natural

environment, temperature and light stimuli are correlated but

laboratory experiments show a well defined response to each

stimuli separately in non endothermic organisms. In mammals

phase coordination between various organs is brought about by

the normal circadian temperature oscillation [7]. Temperature

might have been the original zeitgeber since most biochemical

reactions respond to temperature [8] and few directly to light. Yet

the response to temperature seems to impose two conflicting

requirements on circadian oscillators, the period should be

temperature independent yet there should be strong entrainment

by temperature, i.e., a small amplitude signal elicits a full phase

shift within one or two periods.

There is presently only very sparse data on how the principal

steps that additively determine the 24 hr period vary with

temperature [9]. A common supposition is that all biochemical

rates vary randomly with temperature with a typical Q10^2 ie

rates double for a 100C temperature change, and evolution

imposes a constraint on the individual Q values to keep the period

constant [10–13]. However if the on/off times of various clock

genes vary substantially with temperature, one might expect to see

changes in the phase response curve to light, PRCl . None were

observed by Zimmerman et al. [14] which lead them to the strong

assumption that the limit cycle orbit is temperature invariant,

along with the period [15]. Temperature entrainment in their

model occurs via an additional adaptive sensor variable that

responds to temperature change but assumes a constant temper-

ature independent value when the temperature is constant.

However numerous measurements have shown that the mean

message or protein levels of clock genes do vary substantially with

temperature (e.g. [3,5]) thus undercutting the appeal of their

model. The shape of the PRC in response to either light or

temperature is a phenotype of a circadian oscillator, and as such

may be under selection. We want to explore more constrained

models of circadian oscillators that are temperature entrainable

and leave the shape of the PRC as well as the period temperature

invariant. To do this we have to assume that the temperature only

enters a few parameters in the model. The challenge is how to

reconcile this assumption and more generally temperature

compensation itself, with the many observations that show

message and protein levels are very sensitive to temperature

[16]. The ostensible conflict between variable biochemistry and an

invariant period stems from the assumption that all rates

separately contribute to the clock period. Models such as delayed

negative feedback and relaxation oscillators certainly exist where

the period depends on only a subset of the parameters ([17]). In

addition, a single model parameter such as a degradation rate may

depend on multiple biochemical events that when combined are

temperature independent.

PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | e1002585



Sensory adaptation is an apt analogy for how the clock period

becomes temperature invariant yet temperature entrainable, and

forms the mathematical basis for our model. Assume the

temperature is the ‘stimulus’ and it only enters the model in a

few specific terms consistent with adaptation to the stimulus. Then

as we will show the period and PRC shape are temperature

independent. The response of an adaptive system to the derivative of

the stimulus ensures entrainment by temperature oscillations.

Some other variables in the adaptive system buffer the stimulus

and vary systematically with temperature which eliminates a flaw

in the Zimmerman et al. adaptive model.

The temperature response of this new class of so called adaptive

models is structural and resides in how the temperature enters the

network, namely in select terms. Adaptive circadian models are

not contrived. Both their topology and parameters are easily

evolved by incremental improvements in a commonly assumed

fitness namely linear correlation with a noisy periodic training

signal. When derived this way, our circadian models display a

shape invariant PRC and the property of temperature compen-

sation is robust to a 26 change in most parameters in the model.

The period may change with parameters but it will remain

temperature independent.

We begin with a summary of experimental facts that cast doubt

on the literal application of a distributed temperature compensa-

tion to circadian clocks and then introduce a series of models of

increasing complexity and realism based on the idea of adaptive

compensation. The Discussion enumerates some surprising

experimental consequences of adaptive temperature compensa-

tion.

Models of temperature compensation
The most prevalent model of temperature compensation is also

the most parsimonious in that it makes no structural assumptions

about how temperature enters the network equations, and was

proposed by Ruoff and Rensing [10]. The period, t, depends in an

unknown way on all the constants in the model e.g., the rates and

equilibrium constants ki in a Michaelis-Menten description. Their

temperature, T, dependence can be expressed in Arrhenius form,

ki*e{Ei=RT . Then temperature compensation is expressed as

0~
d log(t)

dT
~
X d log t

d log ki

d log ki

dT
~
X

Ci
d log ki

dT
ð1Þ

and becomes a linear constraint on the Ei since the Ci are

supposed constant over a physiological temperature range. Since

Eq 1 imposes a global constraint on all parameters, we describe it

as ‘‘distributed’’ temperature compensation.

This model though parsimonious is not intuitively satisfactory in

all respects, though it does not directly contradict any experiment.

As noticed by Tyson and coworkers, several mutants do not

appear fully consistent with distributed compensation [18]: in

particular, more than 60% of mutants in fly and Neurospora

whose period is different from 24 hrs retain compensation (see

[18] Table 1 and references within and [19,20]). So we have to

assume there are genes that affect the period, yet are not

temperature dependent i.e., are compensated locally, or do not

change their temperature dependence when mutated. Also model

parameters can subsume multiple biochemical events that

collectively appear temperature independent [21]. Of course there

has to be temperature dependence somewhere to allow entrain-

ment.

Other fly mutants like nocte have a temperature compensated

period but fail to entrain [4]. This is unexpected if several terms

are temperature dependent; from our understanding of typical non

linear oscillating systems any coupling to temperature will lead to

entrainment. Finally if multiple Michaelis-Menten constants vary

with temperature one would expect the shape of the orbit to vary

in an arbitrary way with temperature. If the orbits change, the

phase response curves to either light or temperature should too,

since they just measure the isochrons (surfaces of constant phase)

around the orbit.

Results

Temperature compensation as adaptation
The dual properties of a temperature independent period and

strong entrainment by an oscillating temperature are tantamount

to asserting that the time rate of change of the phase (angular

velocity) around the orbit is adaptive, Fig. 1. Adaption means that

subject to a temperature step, the system responds with a pulse but

then returns to the same steady value it had before the step (see for

instance [22]). A minimal expression of this idea, now for the

phase, is given by an idealization of the situation envisioned in [14]

dw

dt
~vz

dT

dt
x(w) ð2Þ

where v is the angular frequency of the oscillator (period~
2p

v
)

and the temperature is T . The angular velocity only deviates from

its temperature independent value when the temperature changes.

A temperature step DT applied when the oscillator has phase w0

induces a phase shift Dw~DTx(w0). If we compute the cumulative

effect of a rapid step-up step-down in the temperature one finds a

total phase change:

PRCT (w)~g(T)
dx(w)

dw
ð3Þ

which is the definition of the PRC with respect to temperature

changes and where g(T) depends on details of the temperature

pulse (e.g., duration and intensity). Thus the PRC at different

temperatures can all be superimposed by scaling the overall

amplitude g(T); they have the same shape [14]. The magnitude of

x(w) and its w dependence both control how well the oscillator is

entrained by a periodic temperature signal [23]. Whereas PRCT is

proportional to the temperature pulse no matter how large, in

more realistic models the phase response to a light pulse occurs

Author Summary

Circadian clocks are biological oscillators which evolved to
couple the internal rhythm of animals, plants and even
some bacteria to the alternation of light and day. Circadian
oscillators are temperature compensated, i.e. they keep a
24-h period irrespective of the temperature of the
organism. This is surprising, since many biochemical
parameters, including average concentration of clock
proteins, vary with temperature. From dynamical system
theory, we therefore expect changes in both period and
relative lengths of features in the phase response curve
which are not seen. We couple mathematical modelling
and computational evolution of gene networks to formu-
late a novel explanation for temperature compensation
that accords better with experimental facts than alterna-
tives. Our model has deep mathematical connections with
the process of biochemical adaptation, by which cells
respond to temporal gradients of signals rather than their
absolute value.

Adaptive Temperature Compensation
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through the degradation of one or more clock components (like

TIM in fly [24]) and clearly saturates. Since there is no basis in our

models for designating a light sensitive variable, we define a PRCk

with respect to any parameter k by making a rapid excursion in

the parameter from its nominal value and back to baseline.

While Eq. 2 may seem very artificial, we show next that its

principal features are recovered in a widely used model for

temperature compensation in the Neurospora clock.

Temperature compensation in the Goodwin model
rescales the limit cycle

Ruoff and coworkers have used the Goodwin model [10] as a

generic negative feedback oscillator with which to model the

circadian clock in Neurospora.

_XX~k1=(1zZ9){k4X ð4Þ

_YY~k2X{k5Y ð5Þ

_ZZ~k3Y{k6Z ð6Þ

Following [11] X would roughly correspond to FRQ RNA, Y

for cytoplasmic FRQ and Z to nuclear FRQ. For simplicity, in the

following, we will call k1,k2,k3 production rates and k4,k5,k6

degradation rates.

If we assume that variable Z is larger than 1 (as it actually is in

ref [10]), we can neglect 1 relative to Z9 in the first term of Eq. 4.

One can then rewrite the equations for rescaled variables,

x~aX ,y~bY ,z~cZ, so as to reduce Eqs. 4–6 to

_xx~z{9{k4x ð7Þ

_yy~x{k5y ð8Þ

_zz~y{k6z ð9Þ

using a~(k2k3)
9
10k

{ 1
10

1 ,b~(k3)
9

10(k1k2)
{ 1

10,c~(k1k2k3)
{ 1

10. So

the production rate parameters have been completely absorbed

in the rescaling and the degradation terms are not affected. This

has several consequences (Fig. 1):

N the amplitude of the orbit varies with the production rates,

while the period is independent of them.

N the oscillator orbit undergoes a linear transformation after a

temperature step if only the production rates are temperature

dependent i.e., A1~cA2 where A1,2 are the orbit coordinates

at two temperatures and the rescaling factor c is temperature

dependent.

N the phase response curve, defined by multiplying one or more

coefficients by a time dependent factor, is invariant under any

constant rescaling of the production terms, since the

transformation from Eqs. 4–6 to 7–9 clearly applies with the

temporally modulated coefficients.

These remarks then explain the results of Ruoff and coworkers

[10,11] on temperature compensation in the Goodwin model,

since they chose small activation energies for degradation rates,

and large ones for the production rates. Thus the amplitude of the

clock changes substantially with temperature, while the period is

fixed since the degradation rates were not changed. The Goodwin

model for their parameters is not an example of distributed

temperature compensation as sometimes claimed, but rather is

effectively temperature independent! Thus the PRC shape is also

temperature independent Fig. 2D.

Evolving temperature compensated oscillators
The linear transformation on the orbits induced by temper-

ature and the temperature invariant PRC we derived from Eq. 7–

9 seems very specific to the Goodwin model, and we would like to

demonstrate that the same properties are found in a wider class of

models. As explained above, temperature compensation looks

formally very similar to biochemical adaptation. Thus it is natural

Figure 1. Three idealized behaviours in response to a temperature step. Red is temperature, blue is
dw

dt
for the clock phase. (A) Temperature

sensitivity. The clock ticking rate (and consequently its period) changes with temperature. (B) Temperature insensitivity. Nothing changes with
temperature. (C) Temperature compensation. The clock runs faster just after a temperature step (explaining entrainment and phase shifts) but then
returns to its initial value, so that period of the clock does not change.
doi:10.1371/journal.pcbi.1002585.g001
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to ask if we can build temperature compensation upon an

adaptive network for temperature. To be consistent with mutants

such as nocte, we are looking for models where temperature

explicitly changes only very few parameters : temperature

compensation in this limit is expected to rely on structural

properties rather than the distributed compensation mechanism.

Given the complexity of these constraints, we use in silico

evolution as a mathematical tool to generate temperature

compensated models.

Our simulations evolve both the gene network and the

parameters as we have done previously [22,25–27], and we allow

just transcription and protein-protein interactions, PPI, (see

Supplementary Text S1 for more details). Temperature is

introduced through a so called input variable, I ,which typically

couples to just one or a few other variables. The input will vary

over a range of 2 or more to represent a substantial temperature

dependence as defined by a typical Q10 parameter.

To emphasize the connection to adaptation we initialize our

simulations with a simple two gene adaptive network, shown in

3A, that we evolved previously [22] and is standard [28]:

_xx1~k1{k2Ix1 ð10Þ

_xx2~k2Ix1{k3x2 ð11Þ

(We hence forth generically use lower case variables in all

equations with no implication that they are rescaled in some

manner.) The identical temperature dependence is implied

wherever the parameter I occurs in the equations. Thus in

Eqs. 10, 11, I controls the rate of an interaction that consumes

x1 and makes x2, so there is really only one instance of I .

Adaption is realized by the output, x2 that responds to a

temperature step with a pulse (as in Fig. 1 C) but ultimately

Figure 2. Scaling of the limit cycle for the Goodwin model. The parameters are k1~k2~k3~(1zI), k4~k5~0:1, k6~0:1, where I is the
input, a proxy for temperature. (A) limit cycle for different values of the input in XY space. (B) linear rescaling of the orbits to [0,1] collapses them all
onto a single orbit. The central dots indicate the unstable (Hopf) fixed point. Straight lines from the fixed point separate the cycle in 4 periods of
equal duration. (C) PRC of the Goodwin model for different input values is invariant. PRC was computed by adding a degradation term of {10Y in
Eq. 5 for 10% of the period. (D) Variable X as a function of phase for the limit cycles at different temperatures, scaled as in B. The maximum of X is
defines phase 0 for the PRC. There is perfect overlap for different input values (as shown on the scale bar for all panels) as expected.
doi:10.1371/journal.pcbi.1002585.g002
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returns to the value k1=k3. The absolute level of temperature is

reflected in x1.

In contrast with the model of Zimmerman et al. [14] or Eq. 2,

where temperature was filtered through an adaptive system and

only the output, essentially dT=dt, was coupled to the clock

variables, this adaptive initial system forms the core clock

components. This ensures that the mean levels of some variables

analogous to x1 are required to vary substantially with temper-

ature as is observed in natural systems. When we evolve a

temperature compensated circadian oscillator, the objective

function has to overcome the tendency for all features of the

system to vary with Input, our surrogate for temperature.

The evolution optimizes the fitness, F, defined here as a sum of

two functions. The first part of the fitness, F1 is average correlation

between the output, O0(t) (the model variable that evolves from x2

in the adaptive system), and an Input I0(t). Let brackets denote the

average over the time window for the fitness evaluation, typi-

cally 12 periods of the input and vwc the subtracted nor-

malized correlator i.e., vABwc~(vABw{vAwvBw)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vA2

w{vAw
2)(vB2

w{vBw
2)

p
. Then:

F1~DvO0I0wcD ð12Þ

We take I0(t)~1:1zcos w(t), where _ww~vzD(t), v defines the

period. There are one or more random jumps in the phase defined

by D for 0vtvt1=3 : the phase jumps favor entrainment since the

fitness forces the output to follow the jump.

The second part of the fitness F2 is the average correlation

between output OI - entrained by a different Input signal I(t) -

and output O0 computed in the first part of the fitness

F2~DvOI O0wcD ð13Þ

For the first third of the integration period, I(t)~I0(t), then I(t)
tapers down a constant for the remainder of the integration, as

shown in Fig. 3B. The constant input for t§t1=3 encourages an

autonomous oscillator (rather than a system that merely follows

the initial input oscillations) and its variable level directly enforces

temperature compensation. As can be seen, Fig. 3B, the mean of

x1 continues to register the final input level, as it does in Eq. 10,

even when oscillating, while the amplitude of the other variables is

nearly independent of input level (i.e., our temperature surrogate).

The correlation function F2 between Outputs computed for

different constant Input values ensures that the shape of the limit

Figure 3. Evolution of adaptive temperature compensation. (A) Sketch of the initial adaptive topology and its subsequent network evolution.
Parameters and equations are given in Supplementary Text S1. Properties of this network are further detailed in Figure 4. The input, I which models
the temperature; the output O which adapts; and x1 (Eqs 10 11) changes substantially with a temperature step and functions as a buffer are color
coded. (B) Temporal behaviour of the evolved network for two different input trajectories (the colors follow (A)). The input oscillates, undergoes a
random phase shift around time t~100, and decays exponentially to a constant value. Note only the mean of the buffer x1 changes substantially with
the terminal input value.
doi:10.1371/journal.pcbi.1002585.g003
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cycle for the different terminal Input values is the same. F2 is

computed for different terminal values of the Input between 0 and

2, then averaged. The final fitness is {F1{F2, which when

minimized ensures that the Output is fully correlated with an

oscillating Input, and that Output for different Inputs constant

values behave in similar way.

One of the simplest models found by numerical evolution is

presented in Fig. 3A. The first step in evolution adds variable 3

which creates a delayed negative feedback from the output back to

itself by repressing x1 and creates an oscillator. The PPI between 1

and 3 is added next and actually improves the temperature

compensation illustrated in Fig. 3B.

Schematically, compensation in this model works in a way very

reminiscent to biochemical adaptation in the network used to

initialize evolution: variable x1 buffers most variation by essentially

scaling as 1=I (Figs. 3 and 4, Supplementary Table S1) while other

variables vary much less in comparison. The reason is that the

effective reaction rate controlling x2 is x1I and is therefore roughly

Input invariant, and consequently so is the shape of the limit cycle.

The properties of the oscillations defined by the network in

Fig. 3 as a function of the input level are shown in Fig. 4.

Oscillations arise as a Hopf bifurcation and persist for input values

in the interval ½0:4,1:6�. There is no change in period for two

inputs that cause a 26 change in the mean of x1 and only a 15%
change in period when x1 changes by its maximum possible range

of 56. (Fig. 4B and C, Supplementary Table S1). These values are

perfectly compatible with the typical variation in clock period with

temperature : for instance, in zebrafish, the oscillation amplitude

and average value of Per4 changes roughly by 2 and period

decreases by 10% for a temperature change from 20 to 30 C [5].

In Neurospora, the period decreases by 10% between 20 and 280C
for the control strain KAJ10 [3,29]. In a pure WT background,

the average concentrations of FRQ protein are roughly multiplied

by 3 over the same range while the period decreases of around 5%
[11,30], and at higher temperature, a Q10 of 1:2{1:3 is observed

[30].

Clocks built from an adaptive system, share a feature of the

Goodwin model that the orbits for different inputs, as well as the

location of the unstable Hopf fixed point, can be superimposed by

a linear rescaling, Fig. 4D. Thus the phase corresponding to the

limits of the orbits is temperature invariant. A stronger form of this

property is seen in the PRC. If we simulate a PRC by zeroing the

output at a defined phase, Fig. 4E, we see that they too collapse for

all inputs even though we are administering a strong perturbation.

We verified numerically that the PRC are shape invariant

whether derived from a strong localized decay rate applied to any

of the adapted variables in Fig. 3 (i.e., variables other than x1), or

by momentarily jumping up the production rates of adapted genes

(see Supplementary Fig. S1). (The PRC defined for the decay of

the buffer variable x1 is less well conserved since its more mixed in

with a change in input level)

Since the fitness is linear correlation with a sinusoidal reference

phase, it is maximum when the solution is itself sinusoidal and

optimally remains so when the temperature is shifted, thus

explaining the linear covariance of the orbits with temperature.

In general the evolved models behave as if they were near the

Hopf bifurcation, yet do so over a parameter range that causes a

106 change in the orbits.

We have also verified that a two-fold variation in parameters

does not appreciably degrade the period compensation shown in

Fig. 4B (Supplementary Fig. S2), i.e., the period changes but it

remains temperature independent. However doubling the PPI

between the input and x1 is equivalent to doubling the input range

and thus shows more period variation since its like doubling the

temperature range.

Thus parameters are not tuned, and their general magnitudes

are easy to find by a simple local hill climbing algorithm (a.k.a.

gradient search). Two other evolved networks with similar

properties are presented in Supplementary Figs. S3 and S4.

Temperature compensation via feed-forward adaptive
networks

Network of Fig. 4 is adaptive via a feedback mechanism,

however feed-forward networks form the other main class of

adaptive networks and their evolution into oscillators gives rise to

the Mixed Feedback Loop (MFL) that is common in circadian

clocks [22,28] and has been proposed by one of us as a core model

for the Neurospora circadian clock [31,32]. The MFL is an oscillator

in which a transcriptional activator A activates a gene B and then

A and B dimerize. Examples include WCC and FRQ in Neurospora,

Clock and PER/TIM in fly, Clock/BMAL and PER/CRY in

mammals. If the production rates of A and B (via transcription or

translation) depend in a similar way of the input, it can be shown

that the fixed point for A is adaptive as we evolved in [22].

Strikingly, for this adaptive MFL, the limit cycle shape and period

are then automatically independent of the input value and still

entrain, as seen in Fig. 4 and shown analytically in the

Supplementary Text S1. This is again a structural property of

the network which can be understood mathematically : the strong

PPI makes the system function as a relaxational oscillator between

two states either A or B high. The fact the production rates of both

genes have similar dependence on the input then implies that the

input dependence can be scaled out of the equations, in analogy to

the Goodwin model, and the period is input independent.

Evolving variable PRCs and temperature compensation
We further wondered if computational evolution is able to select

for different categories of compensated clocks, where the limit

cycle and PRCs depend much more significantly on the input. We

modified the fitness so it continued to favor entrainment to

temperature F1, but we dropped the linear correlation F2 so as not

to constrain the shape of the output for the free running clock.

Instead, we computed the number of peaks of the Outputs for

different constant Input values and forced it to be equal to the

number of peaks of I0 : this ensures that only the period of the

Output is constrained, but not the shape of the limit cycle.

Properties of a network evolved under this scheme is described

in Fig. 5. This network obviously is much more complex, with two

interconnected transcriptional negative feedbacks explaining

oscillations (via species 4 and 7). The Input enters in various

places, not only in the imposed original core network (species 1

and 2) but it also acts independently on species within the two

negative feedback loops (species 5 and 4). This system is therefore

closer to the traditional picture of distributed temperature

compensation, with the input entering the equations at various

places.

This network displays autonomous oscillations for input values

higher than 0.1. Remarkably, while the input is changing from 0:1
to7, variables 1 and 2 vary themselves over more than one order of

magnitude (Fig. 6 C), while the period only varies by about 10%
(Fig. 6B). Clearly, neither limit cycle shapes nor PRCs are

conserved over this input interval (Fig. 6 C and D). This illustrates

our contention in the Introduction that distributed temperature

compensation is incompatible with a shape invariant PRC.

Unexpectedly, both PRCs and limit cycle shapes cluster onto

two different regimes,namely inputs above and below 0.7, and in

Adaptive Temperature Compensation
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Figure 4. Scaling of the limit cycle for first evolved model. (A) Sketch of the model. Parameters and equations are given in Supplementary
Text S1 (B) Variation of the period with input level demonstrating compensation. (C) limit cycle for different values of the input in x1,x2 space. Limit
cycle varies over almost one order of magnitude in x1 while the period changes by 14%. The input values follow the color bar in F. (D) Rescaling the
limit cycles to the unit interval in each variable shows almost perfect collapse for different input values. Circles indicate the fixed point. (E) PRC for
different input values, represented by different colors. The PRC was computed by adding a degradation term of {10x2 for x2 for 10% of the period.
(F) x1 as a function of phase for the limit cycle at different temperatures. The maximum of x1 is defined as phase 0 for the PRC. There is almost perfect
overlap. Panels D–F here and the following figure, demonstrate our contention that the evolved models replicate essential properties of the Goodwin
model even though there is no direct parameter rescaling.
doi:10.1371/journal.pcbi.1002585.g004
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Figure 5. Scaling of the limit cycle for the Mixed Feedback Loop adaptive model. (A) Sketch of the model. Parameters and equations are given
in Supplementary Text S1 (B) Variation of the period as a function of input values. (C) limit cycle for different values of the input in the B-transcript, A-
protein plane. Limit cycle varies over almost one order of magnitude in B-transcript level, while the period changes by a few percent. Note that the fixed
point for A is adaptive (independent of input). (D) Linear rescaling of the limit cycles to the unit interval in each variable showing almost perfect collapse
for different input values. Circles indicate the fixed point. Color code follows bar in panel F (E) PRC for different input values, represented by different
colors. The PRC was computed by adding a degradation term of {10r for B transcripts for 10% of the period (see equations in Supplementary Text S1). (F)
B as a function of phase for the limit cycle at different temperatures. The maximum of B is defined as phase 0 for the PRC. There is almost perfect overlap.
doi:10.1371/journal.pcbi.1002585.g005
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Figure 6. Absence of scaling for an evolved model with distributed temperature compensation. (A) Sketch of the model. Parameters and
equations are given in Supplementary Text S1 (B) Variation of the period as a function of input. (C) limit cycle for different values of the input in x1,x2

space. Limit cycle varies over one order of magnitude in variable 1 and 2 while the period changes at most 9% (D) Rescaling of those limit cycle to the
unit interval for each variable. The orbits for different inputs no longer scale. Circles mark the fixed point (E)The PRC for different input values do not
scale. The PRC was computed by adding a degradation term of {10x2 for variable 2 for 10% of the period. (F) Variable x1 as a function of phase for
the limit cycles at different temperature. Its rescaled maximum of 1 is defined as phase 0 for the PRC.
doi:10.1371/journal.pcbi.1002585.g006
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each regime the scaling has all the characteristics of the adaptive

compensation in Fig. 4.

Discussion

We have exhibited a sequence of adaptive models for temper-

ature compensation and entrainment in circadian oscillators. They

arise naturally when a system that adapts to temperature steps

evolves to become an oscillator. These models can be generated by

a gradient search or hill climbing optimization, thus there are no

subtle correlated changes that have to be made to generate these

models. Prior analysis of temperature compensation e.g., [12,13],

has focused on distributive models. An exception is [18], which

however does not temperature entrain since the period is given by

model parameters.

Properties of these models (beyond the temperature compensa-

tion and entrainment that we imposed on the evolution) are:

1. temperature explicitly enters the network in a limited number of

terms,

2. clock components oscillate around means that either are

temperature independent (and are coupled to the adaptive

variables) OR vary and buffer the temperature change (e.g.,

variables 2,3 vs 1 in Fig. 4),

3. orbits rescale linearly with temperature, and in addition the

phases that define extrema on the orbits are invariant,

4. the shape of the PRC is temperature independent, when

defined by an augmented decay rate on the adapted variables.

Experiments from a variety of organisms are better explained by

adaptive rather than distributive temperature compensation. In

fly, mutations in nocte abolish temperature entrainment but not

compensation [4]. Since periodic modulation of any parameter

should generically (i.e., other than for special choices of

parameters) entrain a nonlinear oscillator, the nocte mutant is very

suggestive of item (1). The numerous mutants with altered periods

that continue to temperature compensate [18] suggest that the net

result of the biochemistry that defines the transitions between the

principal phases of the clock is temperature invariant. There is

contradictory data about the loss-of- function mutation cryb and

temperature. Reference [4] notes cryb flies still temperature

entrain, but [33] show the temperature PRC is almost flat.

In saturating light the fly PRC are temperature invariant [14]

and the activity peak in light-dark synchronized flies is temper-

ature independent as first observed by Pittendrigh [8] which

support items (3–4). Adaptive compensation in fly would also

suggest that clock phases defining the interval of tim expression and

its maximum are temperature invariant [34] (item 3)

In cyanobacteria circadian clock temperature compensation

occurs through the KaiC component alone and temperature

compensation persists in mutants with periods substantially

different from 24 hrs [35], suggesting again localized temperature

compensation. Importantly, KaiC ATPase rate is temperature

independent and obviously does not follow an Arrhenius law [35].

Evidence for an adaptive mechanism of temperature response as

in Eq.2 where the temperature jump generated the phase shift, was

provided in [2] (their ‘nonparameteric’ model).

In Neurospora the mean of the oscillating FRQ protein varies

substantially with temperature and provides a mechanism for how

a step up in temperature resets the phase [29]. The majority of

circadian temperature effects seem to be mediated by FRQ

[29,36], supporting item (1).We consider FRQ analogous to our

buffer variable 1 in Fig. 4. The mean of frq transcripts appears

much less temperature dependent, supporting item (2). Data from

[29] are consistent with the idea that phases of FRQ peaks do not

vary much with temperature (item 3). The VIVID protein [37] is

implicated in the temperature invariance of the PRC.

The situation appears less clear to us in plants, perhaps because

there are many more duplicated genes in Arabidopsis. It has been

suggested that two cycles could co-exist, one sensitive to temper-

ature, the other sensitive to light [38] which is consistent with (1–2).

For all models presented here, properties 1–4, when they apply,

are structural : for the Goodwin model this is due to the specific

forms of the equation that allowed rescaling, in the MFL model

the properties derive from the specifics of the coupling to inputs,

and for Fig. 4 we verified 1–4 survive parameter variation. These

properties would be difficult to understand unless temperature

appeared in only a few terms of the equations.

Experiments that would most readily substantiate an adaptive

model for temperature would be comprehensive data on the

zeitgeber time of the maxima and minima of the clock components

as a function of temperature. We predict their invariance, while a

generic model of distributed compensation would predict that they

move with temperature but of course continue collectively add up

to the invariant period length. Temperature invariance of the

extrema in the clock gene orbits, would suggest some degree of

shape invariance in the PRC, but the later is in principal a

separate prediction. The linear rescaling of orbits at different

temperatures that we found in our models could be probed by time

lapse imaging two out of phase clock genes. However the effect

might not occur for all choices of genes if there was some

saturation. In that situation the phases of extrema will be invariant

and thus provide a more robust prediction.

The primary 24 h periodic pacemaker in nature is light. It is

worth stressing that adaptation for light inputs themselves has been

suggested in Neurospora, a phenomenon called photoadaptation

[39,40]. In O:Tauri, a computational study showed that phase

shifts happen only when luminosity strongly changes [41], and this

observation has been related to robust entrainment for all species

[23]. These examples actually suggest a generic adaptive model for

light sensing, just like described in Fig. 1C. Temperature variations

are certainly correlated to sunlight [34], as well as other metabolic

properties (such as the ADP/ATP ratio zeitgeber for cyanobac-

teria [42]) and could have been used as the original pacemaker.

However, intrinsic day-to-day variations in the level of any

zeitgebers would favor evolution of mechanisms to buffer these

changes, and hence adaptation.

We have no definitive proposal for how almost all the

temperature dependent biochemical rates disappear from the

schematic or phenomenological models we are proposing for the

circadian clock. We speculate that the shape of the PRC is under

strong selection to remain temperature independent along with the

period, and thus forces local compensation to render most model

parameters temperature invariant, but leaving behind adaptive

temperature dependence to allow temperature entrainment. The

experimental implications of phase orbits that linearly rescale with

temperature are sufficiently dramatic that their observation would

render adaptive circadian models plausible though still surprising

from the biochemical vantage point.

Methods

For evolutionary simulations we follow [22] and use only

transcriptional interactions and protein-protein interactions. Reg-

ulation of transcription of a protein B is modelled as a combination

of Hill functions. Assuming that transcription factors A1 and A2

activate expression of gene B and that repressor R represses it,

equation for B would then be:
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Ai� and R� are threshold concentrations in Hill functions, ni are

Hill coefficients accounting for cooperativity. Parameters are

chosen and evolved randomly. Equation 14 expresses that we

assume an ‘‘OR’’ combinatorial between activators (i.e. one single

activator is enough to activate trannscription) while repressors act

multiplicatively.

Protein-protein interaction (PPI) are explicitly modelled using

standard mass-action laws. For instance, if proteins A and B form a

dimer C, the equations are:

dA

dt
~{EABzdC

dB

dt
~{EABzdC

dC

dt
~EAB{dC

The fitness is computed for a population of networks, typically

40 in number. The most fit half of the population is retained, and a

copy of each network is mutated and added back to the population

to maintain its number. Parameter changing mutations are

typically ten times as likely as topology changing events. Mutations

are sampled according to their intrinsic rates and the generation

time is chosen such that approximately one mutation occurs per

network.

Supporting Information

Figure S1 Families of PRCs for model of Fig. 4. All PRCs

are computed by imposing a perturbation for 10% of the period of

a cycle. (A) Strong degradation of species 1 (as described in main

text) (B) Strong degradation of species 3 (C) Strong degradation of

species 4 (D) 46 increase of transcription of gene 1 (E) 46 increase

of transcription of gene 3 (F) 50% relative increase of Input. The

strongest departure from input (temperature) invariance is in A

since adding degradation to species 1 breaks the adaptation in the

initial adaptive system composed of species 0,1,2 in Fig. 3.

(PDF)

Figure S2 Relative period as a function of Input for
simulated mutants of networks in Fig. 4. Period 0
corresponds to absence of oscillation, periods are computed relative

to the original network for the reference Input value of 0.4.

Individual period for each mutant can be different from the original

network, but for most mutants taken individually, period variation is

comparable to the original network. (Left) Parameters individually

divided by 2. The most significant relative difference (20%) is for the

parameter in dark blue which corresponds to the degradation rate of

the Output (species 2). (Right) Parameters individually multiplied by

2. The most significant relative difference (30%) is for the parameter

in yellow which corresponds to the coupling between the input and

the network, so effectively multiplies the input range by 2.

(PDF)

Figure S3 A scaling model evolved with Fitness A. (A)

Sketch of the model. (B) Variation of the period as a function of Input.

(C) Left : limit cycle for different values of the Input in 1–2 space.

Limit cycle varies by a factor 4 for variable while the period changes

by at most 11% Right: Rescaling of the limit cycles to the unit interval

for each variable. The orbits again collapse well. Circles mark the

fixed point (D) Left : The PRC was computed by adding a

degradation term of {10s2 for variable 2 for 10% of the period.

(Right) Variable 1 as a function of phase for the limit cycles at different

temperatures. Maximum of 1 is defined as phase 0 for the PRC.

(PDF)

Figure S4 A scaling model evolved with Fitness B. (A)

Sketch of the model. (B) Variation of the period as a function of

Input. (C) Left : limit cycle for different values of the Input in 1–2

space. Limit cycle varies over one order of magnitude in variable 1

while the period relatively changes of at most 1% Right: Rescaling

of those limit cycle to the unit interval for each variable. The orbits

overlap again. Circles mark the fixed point (D) Left : Scaling of the

PRC was computed by adding a degradation term of {10s2 for

variable 2 for 10% of the period. (Right) Variable 1 as a function of

phase for the limit cycles at different temperature. Maximum of 1

is defined as phase 0 for the PRC.

(PDF)

Table S1 Detailed properties of limit cycle of network
from Fig. 4 for different Input values.

(PDF)

Text S1 Summary of computational evolution algo-
rithm, detailed properties of network of Fig. 4, analytic
derivation for the adaptive MFL network and equations
for the different networks.

(PDF)
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