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Abstract

Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually
deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate ‘‘semi-conservatively,’’ e.g.
viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of
populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can
extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite
population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and
relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute
the mean time until extinction (t) in a simplistic model where all mutations are either lethal or neutral. The solution
motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both
how t scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-
genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that
agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume
that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can
cause phase transition-like behavior from survival to extinction, which motivates the concept of ‘‘lethal isolation.’’
Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical
implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings
that support sufficiently large populations.
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Introduction

On average, mutations hurt organismal fitness, e.g. by

destabilizing proteins. Thus, left unchecked, new mutations tend

to erode fitness and endanger the long-term survival of any species.

Fortunately, natural selection usually balances against mutational

genetic decay by rewarding the fit and weeding out the unfit.

However, when the genomic mutation rate (i.e. the expected

number of mutations per genome duplication) exceeds a critical

value (Ucrit), mutation outpaces selection, causing population

extinction in a process known as ‘‘lethal mutagenesis’’ [1]. Lethal

mutagenesis is important both theoretically [2–7] and clinically,

where drugs (e.g. Ribavirin) can extinguish pathogens, especially

RNA viruses, by elevating the mutation rate beyond Ucrit [1,8–14].

Aside from mutation rate, population size (N) also plays an

important role in extinction. All existing estimates of Ucrit assume

that N = ‘ [2–4], so that extinction can be modeled with relatively

simple deterministic equations. In contrast, every real population

has only finitely many members and is consequently subjected to

‘‘random genetic drift,’’ i.e. stochastic fluctuations in birth-death

events. More precisely, every real population of size N is

guaranteed to experience fluctuations of order ,1/N reminiscent

of ‘‘shot noise,’’ since births and deaths occur as discrete events.

Upon first thought, it may seem that genetic drift merely

represents a small correction to the deterministic dynamics.

However, the actual behavior is dramatically more interesting:

Since drift continually obfuscates fitness differences among

individuals, it weakens selection and implicitly tilts the mutation-

selection balance in favor of mutation [15,16]. By this mechanism,

known as ‘‘Muller’s ratchet,’’ [17] unbiased birth-death fluctuations

end up downwardly biasing mean fitness within a population.

Muller’s ratchet has long been studied theoretically [18–24] and

routinely exploited experimentally to prepare low fitness lines of

organisms [25]. However, the extent to which high mutation rates

exacerbate Muller’s ratchet en route to extinction is neither

qualitatively nor quantitatively well understood. We revisit this

issue and review the literature on Muller’s ratchet in Discussion.

In principle, mutations can cause extinction by two distinct,

though non mutually exclusive mechanisms. First, deleterious

mutations might decrease the absolute birth rate of a population to

such a great extent that individuals are killed by natural forces (e.g.

old age, environmental stresses, etc) faster than they reproduce.

Most previous studies, e.g. refs. [2,19,20,22,23], have analyzed this

first scenario, which represents a struggle between a population

and its environment. A second, qualitatively distinct scenario is
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possible for organisms that reproduce ‘‘semi-conservatively,’’

including all viruses and unicellular species (see Results for

elaboration): Every birth event risks ruining the ‘‘original’’ genome

with new lethal mutations, thereby reducing the census size and

risking extinction [4,26]. These dynamics represent the struggle of

a population against itself. In this paper, we focus primarily on this

second mode of extinction.

A sticking point for all lethal mutagenesis models is the

relationship between genotype and fitness, i.e. the fitness landscape

(FL). The distribution of fitness effects (DFE) among new single

mutations furnishes the first order description of the FL. The

second order description specifies the form of epistasis, i.e. how

pairs of mutations interact to impact fitness. With few exceptions

[3,5,7], previous studies generally assume that the DFE conforms

to a simple mathematical function and make drastic simplifying

assumptions regarding epistasis. In particular, most previous

studies assume either no epistasis, or that mutations interact either

all synergistically or all antagonistically, leaving little room for

phenomena such as compensatory mutations. The motivation

behind those assumptions is in part due to the large number of

(unknown) parameters necessary to even write down a reasonably

complex, epistatic FL.

Here, we circumvent that impasse by utilizing a previously

developed approach [27] that is virtually parameter-free. We do

not explicitly impose a DFE or a model of epistasis. Instead, those

features emerge as the output from a biophysics-based protein

folding requirement: We assume that mutations inflict fitness

penalties proportional to the extent that they unfold proteins.

Remarkably, this minimal assumption roughly accounts for the

DFE observed in site-specific mutagenesis experiments on several

viral species [27].

Here, we combine our biophysics-based FL with individual-

based population-genetics simulations where extinction can only

result from lethal mutations. We measured the time until

extinction (t) as a function of population size (N) and mutation

rate (U). In accord with previous studies, we observe an ultimate

mutation rate (U�crit<2.5 mutations per genome) beyond which

even infinitely large populations go extinct ‘‘almost immediately’’

(t,log(N) generations). However, when UvU�crit, we find that t
depends dramatically on N: Small populations go extinct in

t,log(N) generations, whereas large populations survive ‘‘almost

indefinitely’’ (t,eN/N). The boundary between ‘‘large’’ and

‘‘small’’ populations depends on U and is reminiscent of a ‘‘phase

transition’’ between survival and extinction. In addition to t, the

coefficient of variation (i.e. standard deviation divided by mean)

also undergoes a transition from values near zero in the extinction

phase to values near one in the survival phase. These results

contradict the simplistic intuition that ‘‘small populations are more

stochastic than large populations.’’

For comparison, we also analytically solve for t in a very simple

model in which all mutations are either lethal or neutral. Solutions

to this model clarify the meaning of extinction in finite populations

and motivate our definition of survival vs. extinction phases.

Results

Semi-conservative birth-death-mutation model
Birth. This paper concerns asexual populations of replicating

entities, henceforth called ‘‘cells.’’ ‘‘Births’’ occur when a mother

cell gives rise to exactly two daughters and the mother

simultaneously dies. In continuous time, individual cells are

chosen to give birth with probability proportional to their fitness

(W), i.e. their birth rate. See Methods for further details.

Death. Besides the death of mothers upon birth, death also

occurs by three additional mechanisms. First, if a birth event ‘‘tries

to’’ increase the number of cells (n(t)) beyond a maximum number

(N), then a random cell is removed from the population (similar to

Moran’s model [28]). Note that, strictly speaking, N is not the

population’s size but rather its capacity; density-dependent

mortality kicks in abruptly when n = N. Secondly, as described

below, some cells inherit new mutations, and if any of these

mutations are lethal, then that daughter cell is killed immediately.

Thirdly, cells can die (with rate d) of ‘‘natural’’ causes, e.g. old age,

washout, clearance, etc, independent of replication events or lethal

mutations. Extinction in real populations is likely caused by a

combination of these second and third mechanisms of death. For

the bulk of this paper, we focus our attention on the second source,

which represents an ultimate limit to population survival. A crucial

feature of this limiting regime is that extinction cannot result from

low fitness per se, which merely increases the generation time.

Rather, lethal mutations are the only mechanism that can cause

extinction in this regime (fig. 1).

Mutation. Each of the two daughter cells independently can

acquire (nonsynonymous) mutations during their birth, i.e.

replication is semi-conservative; see below for elaboration on this

crucial assumption. In particular, if both daughters inherit lethal

mutations, then the census size decreases by one. Note that if a

master copy of the replicating genome was preserved (i.e.

replication was conservative) and the natural death rate is zero,

the population could not decrease in size and extinction would be

impossible. We assume that the number of new nonsynonymous

mutations per cell per birth event is Poisson distributed with mean

U, i.e. U is the total genomic nonsynonymous mutation rate. In

general, mutations can either be lethal or else merely perturb

fitness (W), i.e. alter the doubling time. Our hypothesis that the

onset of extinction is marked by excessive lethal mutations has

experimental support [29] in viruses (see Discussion).

Biological interpretations. Our use of the term ‘‘semi-

conservative’’ is based on the mechanism of DNA replication

during cellular binary fission: Each daughter cell inherits one of

the parent’s two DNA strands, which then acts as a template for

(potentially erroneous) synthesis of the remaining strand. Semi-

conservative replication applies to all unicellular species. Addi-

tionally, our semi-conservative model can be interpreted in terms

Author Summary

Most spontaneous mutations hurt organismal fitness, e.g.
by destabilizing proteins. In many species, the normal
mutation rate is strikingly high: on the order of one per
genome per replication. In the face of these mutations,
how can proteins maintain their native structure, and how
can populations of organisms avoid extinction? Are there
physics-based limits on how large the mutation rate of any
species can be before the onslaught of mutations
outpaces natural selection and melts-down proteins? Here,
we address these questions with a computational model
that combines protein folding thermodynamics with
individual-based population genetics simulations. We
calculate a theoretical ‘‘speed limit’’ equal to a few
mutations per genome per replication—near the mutation
rate of RNA viruses. Additionally, we find that the speed
limit can be much lower in small populations where
‘‘random genetic drift’’ is strong. Thus, we conclude that
stably folded proteins are only possible in ecological
settings that support sufficiently large populations. These
findings may have clinical implications for treating viral
infections with drugs that elevate the viral mutation rate.

Lethal Mutagenesis and Lethal Isolation
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of cells infected by viruses, even though real viruses often have

single stranded genomes that, on a molecular level, are conserved

during replication. In particular, viral reproduction is effectively

semi-conservative if the following assumptions apply:

1. Infected cells lyse (i.e. the ‘‘mother’’ cell dies) when viruses

emerge from them.

2. The number of virus particles that emerge upon lysis is very

large.

3. Of the large number of released virus particles, only a small

number (Ro) go on to infect other cells, independent of viral

fitness. For simplicity, we assume that Ro = 2 throughout this

paper.

Assumptions 2 and 3 together insure that the same exact

genome molecule that infects a cell does not initiate subsequent

infections (i.e. that the process is essentially semi-conservative).

Note that, when considering viruses, we keep track of the number

of infected cells as opposed to free viruses, which cannot

autonomously replicate. We assume that only a single genome

infects a particular cell, i.e. low multiplicity of infection; without

this assumption, a virus’s fitness would depend not only on its own

genotype, but also on that of co-infecting viruses [30]. Also note

that our model does not explicitly consider infected versus

uninfected cells [31]; for a treatment of lethal mutagenesis with

such a model, see ref. [7].

Flat, non-epistatic fitness landscape: survival phase
versus extinction phase

The goal of this paper is to calculate which values of the

population capacity (N) and mutation rate (U) support survival and

which lead to extinction. In a sense, the answer is trivial: extinction

is certain if N,‘ and U.0 since the population only has a finite

number of configurations and all of them, including extinction,

will be visited eventually. Nevertheless, the question remains as to

which values of N and U enable populations to live a ‘‘long time’’

versus a ‘‘short time.’’ However, it is not clear a priori even whether

there exists a sharp, qualitative distinction between ‘‘long’’ and

‘‘short’’ or whether those concepts continuously blur together.

Obviously, a crucial prerequisite for understanding extinction in

finite populations is to define exactly what is meant by ‘‘long’’ and

‘‘short,’’ i.e. ‘‘survival’’ vs. ‘‘extinction.’’ To this end, we first

consider a simple, analytically solvable fitness landscape whose

solutions clarify these crucial preliminary issues. Later, we consider

a more realistic FL based on protein biophysics.

By ‘‘fitness landscape’’ (FL) we mean a mathematical function

relating genotype to fitness. We first consider a very simple FL in

which the distribution of fitness effects (DFE) among new

mutations is always the same, independent of genotype and/or

fitness; this FL is non-epistatic, by definition. To further simplify

our analysis, we assume that this preliminary landscape is ‘‘flat,’’

insofar as all mutations are either lethal or completely neutral.

Given said assumptions, all relevant aspects of the population

are completely described by the number of living cells (n(t)). n(t)

thus undergoes a biased random walk, with a natural absorbing

boundary at n = 0 and a reflecting boundary at n = N. Since the

number of lethal mutations per offspring is Poisson distributed

with mean Ul, the transition probabilities per unit time for

increasing and decreasing n by a single individual are, respectively:

T?(n)~W �ne{2Ul, nvNð Þ

T?(n)~0, n~Nð Þ
ð1aÞ

T/(n)~W �n(1{e{Ul)2zd ð1bÞ

where W* is the fitness of all viable cells and d is the natural death

rate. W* plays no essential role, and is often set to one for

convenience. Eqs.1 are plotted in fig.S1. The exponentials in eqs.1

express the probability that none or both of the offspring carry

lethal mutations. Note the factors of n in eqs.1, which are not

present in the simplest ‘‘text book’’ random walk. This model

could be extended to handle bursts of R offspring by replacing

factors of 2 with R and considering larger jumps.

We first investigate the average behavior eqs.1, and then

perform a stochastic analysis. According to eqs.1 (see also Text

S1), the expected change in the census n during the time interval dt

(Æd næ) obeys the following equation:

SdnT~ST?(n){T/(n)T ð2aÞ

~ W �(2e{Ul{1){d
� �

Sn(t)T ð2bÞ

: Wnet{d½ �Sn(t)T (nvN): ð2cÞ

We call Wnet the ‘‘net fitness,’’ since it has a component related

to fitness of living cells (W*) discounted by a component that

depends on the production rate (Ul) of mutants. The most

dramatic distinction between mean fitness and Wnet is that, while

the former must be $0 (birth rates obviously can’t be negative),

the latter becomes negative when Ul.ln(2) because of lethal

Figure 1. Mechanism by which the number of cells (n(t))
increases or decreases in the absence of natural death (d = 0).
The situation before and after a birth event is shown in the left and
right columns, respectively. A parent cell immediately dies after giving
rise to exactly two daughters. Replication is semi-conservative: Each
daughter independently acquires a Poisson distributed number of
lethal mutations, with mean Ul. If both daughters are free of lethal
mutations (check marks), then n(t) increases by one (top row). If both
daughters acquire lethal mutations and die (‘‘x’’ marks), then n(t)
decreases by one (bottom row). The probability of each transition is also
shown in the left column. In addition to these mechanisms, cells may
experience natural death with a fixed rate (d).
doi:10.1371/journal.pcbi.1002609.g001

Lethal Mutagenesis and Lethal Isolation
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mutations and semi-conservative replication. Note that for realistic

values of U and l, Wnet is substantially less than W*: e.g. if U = 1

and l = 0.3 (see fig. 2c), Wnet = 0.48W *(i.e. mutation reduces

fitness by 52%), which underscores the impact of lethal mutations

and semi-conservative replication in limiting the growth of Ænæ.
Eq.2 implies that the expected value (Ænæ) for the census size

either grows (until n = N) or decays exponentially with rate Wnet-d.

We denote these two opposing regimes as the ‘‘survival phase’’ and

‘‘extinction phase.’’ The boundary between survival and extinction

occurs when the natural death rate balances net fitness:

Ulð Þcrit~ln(2)zln
1

1zd=W �

� �
ð3aÞ

~ln(2){
d

W �zO
d

W �

� �2

ð3bÞ

Note that, if Ul.ln(2)<0.7, populations will be in the extinction

phase even if no natural death occurs (d = 0). To a close

approximation, the effect of natural death is merely to decrease

(Ul)crit by an amount d/W*, i.e. the number of natural deaths per

generation. Also not that the value of N is irrelevant to whether

populations are in the survival or extinction phase on this non-

epistatic fitness landscape (FL); the picture will be radically

different later, when we consider a more realistic FL.

We now turn to the stochastic features of this model. Given the

initial condition that there are N cells at t = 0, all populations go

extinct with probability one, but we can calculate the statistics of

how long the population survives before going extinct (i.e. hitting

the absorbing state at n = 0). In Text S1, we derive a general

analytic formula for the mean time until extinction (t), i.e. the

mean ‘‘first passage time,’’ by approximating n as a continuous

variable and solving differential equations. The continuity

assumption is valid for |v/D|%1 (see Text S1). The asymptotic

behavior of the general solution t(U,N), valid for large but finite N

and Ul?ln(2), is given by

t(U ,N)*{
1

v
lnD

Nv

D
D,

Nv

D
vv{1 ð4aÞ

t(U ,N)*
D

Nv2
eNv=D,

Nv

D
ww1, ð4bÞ

where D(n,U):
1

2n
(T?zT/) and v(n,U):

1

n
(T?{T/), plot-

ted in fig.S1, can be interpreted as the diffusion coefficient and

convection velocity from diffusion theory, respectively. Eqs.4,

along with the exact analytic expressions, are plotted in fig.S2.

Note that, since v equals the term in brackets in eq.2c, eqs.4a,b

corresponds to the extinction and survival regimes, respectively.

The rough functional dependence of t on N in eqs.4 might be

anticipated intuitively. Eq.4a applies when populations are biased

toward extinction. In that case one expects that n(t) decays

exponentially from n = N down to n = 0: n*Ne{vt , which implies

that t*
1

v
ln(N), similar to eq.4A. On the other hand, eq.4b

applies when populations are biased toward survival. In that case,

one expects that extinction requires an extraordinary run of ,N

lethal mutations, which should occur with probability on order of

(Ul)2N. The time until extinction in the survival regime thus

might be expected to scale as t*(Ul)N~eNln(Ul) , similar to

eq.4b which is also dominated by N in the exponent. In Text S1,

we also analyze how t scales with U. We find that in the survival

phase, but not too far from the transition at Ul = ln(2),

t*
1

4N(Ulzd{ln(2))2
e{4N(Ulzd{ln(2)). In the extinction phase

we find t*
1

Ulzd{ln(2)
ln 4N(Ulzd{ln(2))½ �. Thus, t de-

pends sharply on both N and Ul in the survival phase, yet depends

only weakly on these variables in the extinction phase. These

approximations are plotted in fig.S2. In Text S1 and fig.S3, we

also consider the variance in extinction time.

Figure 2. Biophysics-based fitness landscape (FL). A: A two dimensional slice of the C dimensional FL. Fitness values are shown in grayscale
and pairs of mutations are represented by colored arrows. Deleterious mutations interact synergistically (yellow/red pair). Compensatory and non-
epistatic mutations are also possible (yellow/green and yellow/yellow pairs, respectively). Mutations that push DG.0 cause lethality. B: Distribution
of mutational thermodynamic effects p(DDG). Our approximation for p(DDG) agrees with experimental values obtained via thermal (black bars) and/
or solute (red bars) denaturation. The ,4,000 experimental values were taken from the ProTherm database [56]. C: The distribution of fitness effects
(DFE) among new random mutations from our model (black curve) and several viral species (colored bars). The horizontal axis is the selection
coefficient, which depends on fitness before and after the mutation: s;Wafter/Wbefore21. The DFE from this model depends on N and U [27]; here
N = 10240, U = 2 (chosen so that the population was near the extinction threshold). See Methods and ref. [27] for procedures used to obtain the DFE.
doi:10.1371/journal.pcbi.1002609.g002
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Extinction on epistatic biophysical fitness landscape
We next consider a recently developed biophysics-based fitness

landscape (FL), which features a continuous distribution of fitness

effects (DFE) among random new mutations (fig. 2). The basic

assumption of this approach is that mutations inflict a fitness

penalty proportional to the extent that they unfold proteins by

perturbing thermodynamic stability (DG). Below, and in fig. 2, we

describe some important features of this model; see Methods and/

or ref. [27] for details.

1. This FL is epistatic: a given mutation unfolds barely-stable

proteins more so than very stable proteins.

2. Fitness increases (though usually very weakly) with increasing

stability (i.e. decreasing DG).

3. Approximately 30% of all mutations are compensatory,

although most increase fitness by only a negligibly small

amount (% 1/N).

4. Each cell has a fixed number (C) of proteins, or, more precisely,

C protein folding domains. For convenience, we assume C = 20

in simulations.

Mutations that completely unfold proteins or hit a small fraction

of functionally critical residues (e.g. the active site) are considered

lethal. Points 1–3 above are not explicit assumptions of our model;

rather, they follow naturally and implicitly from a biophysics-

based framework (see Methods and ref. [27]). Crucially, the DFE

from this FL roughly agrees with experimental data, at least for

viruses [27] (fig. 2C). Unlike the flat landscape that we considered

previously, the biophysical FL features many mutations that only

slightly decrease fitness. These mutations profoundly increase the

importance of N (even when d = 0), because they can only be

purged by sufficiently large populations (|Ns|.1).

As with most multi-locus models, dynamics on our biophysics-

based FL is too complex to solve analytically for finite N. Thus, we

resort to stochastic computer simulations, as described in Methods.

Fig. 3a shows how the mean extinction time (t) depends on

population capacity (N) for various mutation rates (U). On this log-

log plot, upward bending curves increase faster than a power law

(exponential-like scaling, c.f. eq.4b), whereas downward bending

curves increase slower than a power law (logarithmic-like scaling,

c.g. eq.4a). As we observed in the non-epistatic analytic model, U

strongly impacts t. Above an ultimate extinction rate (U�crit<2.5,

roughly estimated by eyeing simulation results), t scales approx-

imately logarithmically with N (extinction phase), even when d = 0

and NR‘. For very small U, t scales approximately exponentially

with N (survival phase) for all N. Fig.S4 explicitly shows t versus U.

For reference, we note that real RNA viruses have mutation rates

in the approximate range 0.1,U,5, whereas DNA based

microbes generally have U<0.003 [32,33]. According to fig. 3a,

our model predicts that mutation rates characteristic of (non-

mutator) DNA based microbes will always reside squarely in the

survival regime for virtually any N, whereas RNA viruses lie near

the extinction regime, and may be pushed into it, by modestly

adjusting N and/or U. A few viral species have slightly higher

mutation rates than the threshold U�crit (<2.5) from our model (e.g.

bacteriophage Qb has U<5 [33]); this is likely due to large burst

size: see Discussion.

In stark contrast to the preliminary, non-epistatic FL, fig. 3a

shows that N, not just U, also determines whether a population is

in the survival or extinction phase. This is most apparent in the

cyan curve representing U = 2, whose curvature suddenly changes

near at a critical value (Ncrit). For large N, populations are in the

survival phase, whereas below Ncrit populations enter the extinction

phase. Ncrit becomes arbitrarily large as URUcrit. To get a

quantitative sense of these values, given reasonable parameter

values, consider U = 2: Ncrit equals 100 or so when d = 0 and rises

to ,104 for the modest value of d = 0.1. t is only ,100 generations

in the extinction phase, and rises quickly from this level in the

survival phase.

The extinction vs. survival phases are even more clearly

delineated by the coefficient of variation (CVt) of the extinction

time (i.e. its standard deviation divided by its mean (t)). CVt

measures stochasticity in populations’ longevity. Fig. 3b shows that

deep in the extinction phase, CVtR0, whereas CVtR1 in the

survival regime. These limits make intuitive sense: CVt = 0

represents deterministic extinction, whereas CVt = 1 is a hallmark

Figure 3. Extinction on biophysical fitness landscape. All finite populations eventually go extinct. The mean number of generations until
extinction (t) increases with population capacity (N) and decreases with mutation rate (U). A: t versus N at various fixed m; notice the double logscale.
Curves for U,2.5 or so have an inflection point, signaling a qualitative transition from extinction to survival as N increases. Solid curves correspond to
d = 0, while dashed curves correspond to d/W* = 0.1. B: Coefficient of variation in time until extinction (CVt) for the same parameters as panel A. CVt

increases towards one in the survival phase and decreases toward zero in the extinction phase, as N increases. Curves ‘‘peel off’’ toward CVt = 1 at the
critical population capacity (Ncrit), shown approximately with dashed lines. When UwU�crit, both simulation results and general arguments (see main
text) show that curves do not peel off, i.e. Ncrit does not exist. C: Heuristic cartoon ‘‘phase diagram’’ summarizing the behavior from panels A,B. In
panels A,B t values are reported only in cases where extinction occurred within 105 generations in each replicate. See main text and fig.S5 for a
quantitative sense of how Ncrit depends on Ucrit. See Methods for averaging procedures. C = 20 throughout this paper.
doi:10.1371/journal.pcbi.1002609.g003

Lethal Mutagenesis and Lethal Isolation
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of an exponential distribution describing the waiting time for an

extraordinary run of independent lethal mutations in all N cells.

Thus, CVt behaves as an ‘‘order parameter’’ familiar from phase-

transition theory: survival plays the role of the ‘‘ordered phase’’

(CVt = 1) while extinction represents the disordered phase

(CVt = 0). In contrast, the preliminary, non-epistatic FL does not

transition from the extinction to survival phase as N increases,

since CVt in a monotonic function of N in that model (fig.S3).

A crucial lesson from fig. 3b is that Ncrit depends on Ucrit, and

vice versa. Curves representing higher mutation rates ‘‘peel off’’ to

CVt = 1 at larger values of N than do curves representing lower U.

However, for UwU�crit, the curves cannot transition to CVt = 1 for

any value of N. This assertion is clear from the fact that a finite

percentage (10% here, see Methods) of mutations are uncondi-

tionally lethal, and at sufficiently large U, nearly all progeny will

acquire these (if no other) lethal mutations, resulting in extinction.

Following the logic of eq.2, an upper bound for U�crit given 10%

unconditional lethals, is U�critv
ln(2)

0:1
&7 nonsynonymous muta-

tions per genome replication. Overall, the transition from

extinction to survival is summarized by the ‘‘phase diagram’’ in

fig. 3c. The non-rectangular phase boundary in fig. 3c emphasizes

the interrelatedness of Ncrit and Ucrit. In particular, the boundary

can be crossed by either increasing U (i.e. lethal mutagenesis) or

decreasing N, which we refer to as ‘‘lethal isolation.’’ Fig.S5 shows

a quantitative version of fig. 3c.

Why does the biophysics-based FL enable ‘‘lethal isolation’’

while the non-epistatic FL does not? The answer is that mean net

fitness ( �WWnet) increases with N (fig. 4c) on the biophysics-based

landscape; this increase derives from two distinct sources. First,

larger populations more effectively purge weakly deleterious

mutations having Ns,1, thereby driving up the mean birth rate

( �WW ) among living members of the population. Consequently, large

populations can grow fast enough to outpace natural death (d).

Secondly, and more profoundly, small populations produce a

larger fraction (l) of lethal mutations (fig. 4a) on the epistatic,

biophysics-based FL; these additional lethal mutations can

decrease Wnet below zero and cause extinction even when d = 0

(figs. 3,4). The biophysical basis for this effect is that, when

proteins are only barely stable (as predicted to be the case in small

populations, see fig. 4b), more mutations are within striking range

of the unfolding transition at DG = 0 (fig. 2a) and a corresponding

lethal phenotype.

Discussion

A prerequisite for understanding extinction in finite populations

is a coherent method for classifying extinction versus survival:

Although all finite populations eventually go extinct, our analytic

and simulation models show that ‘‘not all extinction is the same.’’

That observation led us to define two opposing dynamical phases

for evolving populations: The extinction phase is characterized by

rapid, nearly deterministic (CVt<0) decline whereas the survival

phase is characterized by long yet uncertain extinction times

(CVt<1). Intuitively, one usually thinks of small populations as

being more stochastic than large populations. However, results

from our biophysical fitness landscape (FL) show that that intuition

needs refinement: the increased stochasticity caused by small N actually

makes extinction more deterministic (e.g. CVt can decrease with N in

fig. 3b). The situation is analogous to a building experiencing an

earthquake: if the strength of noisy seismic vibrations (i.e. genetic

drift) crosses a threshold, gravity (i.e. deleterious mutations)

deterministically destroys the building (i.e. population goes

extinct).

Previous studies of mutation-induced extinction focused exclu-

sively on either the role of high mutation rate (U) or small

population capacity (N). Those that focused on high U neglected

the role of genetic drift by assuming that N = ‘ [2–4]. Likewise,

those studies that included genetic drift generally neglected the

role of high U [7,19–21,23,34]. This paper bridges those previous

two approaches by exploring how interplay between small N and

large U accelerates extinction. We found that rapid extinction

occurs on the biophysical FL whenever N is too small (N,Ncrit) or

U is too large (U.Ucrit). Furthermore, we found that Ncrit depends

on Ucrit and vice versa, i.e. the phase boundary in fig. 3c is not

rectangular. In particular, small population capacity reduces Ucrit.

This reduction is generally modest: e.g. we see Ucrit shift from

about two to about one in figs. 3 and S5, as N varies from 10 to

105. Although Ucrit depends only weakly on N, fig. 3 shows that t,

Figure 4. Small population capacity (N) and high mutation rate (U) cause depressed fitness, unstable proteins, and many lethal
mutations. A: Fraction of mutations (l) which were lethal during simulations on our biophysical fitness landscape. Fig.S6 shows a related plot of Ul/
ln(2) versus N. B: Protein stability (DG) averaged over both proteomes and populations. The accumulation of unstable proteins when N is small and/or
U is large is the underlying cause of changes in l observed in panel A. C: Mean net fitness, which takes into account both average birth rate and lethal
mutations (eq.2c). Populations are not perfectly fit because of genetic drift (caused by small N) and mutation load (caused by large U). The classical
expectation, which assumes N = ‘ and no beneficial/compensatory mutations, predicts that overall growth rate is given by e{U (shown with dashed
lines on the right of panel B). The classical expectation fares poorly at small N and large U. Data is shown only for (N,U) values for which at least one of
the replicate populations survived until the end of the simulation (see Methods); otherwise, l, W, and DG are not clearly defined, since a quasi-steady
state does not exist.
doi:10.1371/journal.pcbi.1002609.g004
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as well as the qualitative behavior of the population, can depend

dramatically on N.

Semi-conservative reproduction is a key feature of our model

that distinguishes it from most previous studies, e.g. refs.

[2,19,20,22,23]. This distinction is sharpest in the regime that

d = 0, where low fitness (i.e. long generation time) contributes to

extinction only insofar as it increases the fraction of lethal

mutations (l). In other words, the population is its own (and only)

enemy in the d = 0 regime. In reality, populations must survive not

only in spite of themselves, but also in spite of death imposed by

the environment. Fig. 3a shows that, in the plausible scenario

where 10% of the population dies from natural causes each

generation, t is further shortened significantly. We note that

obtaining parameter values for d is not always straightforward

because it requires discriminating between natural death and

density-dependent death (i.e. death due to fixed N). For example,

cells infected with HIV turn over approximately once per day

[35], but it is unclear what fraction of the turnover is due to density

dependence versus other ‘‘natural’’ causes.

For the sake of simplicity, we assumed that only two offspring

result from a birth event. In the case of viruses, two should be

replaced by an ‘‘effective burst size’’ that takes into account the

number of virions released during the infected cell’s lifetime as well

as the fraction of those virions that go on to infect future cells. A

simple deterministic analysis [2] suggests that Ucrit increases as the

logarithm of effective burst size, but otherwise does not change the

qualitative picture. In the context of finite populations, large burst

size may also non-trivially reduce the effective population size

[36], since all members of a burst are closely related; we leave

investigation of this topic to future work.

Apart from large burst size, Martin and Gandon [7] recently

pointed out another mechanism that may partially buffer viral

populations against extinction. Using an explicit viral dynamics

model that includes both susceptible and infected cells, those

authors point out that as viral load declines under elevated

mutation rates, the number of susceptible cells is predicted to

correspondingly increase. This effect may tend to offset and/or

halt the decline in growth rate caused by elevated mutation rates.

While this mechanism may be important, our model predicts that

its extinction-buffering potential may be limited. In particular, we

predict that the fraction of lethal mutations (l) increases as fitness

decreases (fig. 4a); in our model, any increased growth rate, from

whatever origin, will be countered by a correspondingly elevated

death rate from lethal mutations.

Previous calculations of Ucrit (deterministic studies)
Deterministic models remove N from consideration by assuming

that N = ‘, which enables a comparatively straightforward

calculation of the ultimate mutation rate (U�crit) beyond which

even infinitely large populations go extinct. Our biophysical model

also features an ultimate mutation rate (U�crit) (see horizontal

asymptote in fig. 3c), and additionally it predicts that when N is

finite, UcritvU�crit. While it is unsurprising that t decreases as N

does, it is rather surprising that decreasing N can fundamentally

change the dynamical regime of the population from survival to

extinction.

Zeldovich et al. [3] utilized a biophysical fitness landscape

similar to the one presented here. Apart from their assumption

that N = ‘, the main difference with our approach is that their

fitness landscape had a strictly flat ‘‘mesa,’’ i.e. they approximated

eq.6 (Methods) as a true step function. By contrast, our model

features nearly-neutral mutations (fig.S4) which enhance the role

of population capacity (N), since mutations with Ns,1 are invisible

to natural selection [27,37].

The deterministic theory of Bull and Wilke, first laid out in ref.

[2] and subsequently elaborated upon in ref. [4], is another

important benchmark for comparison. Using a simple, classical

equation, those authors calculated equilibrium mean fitness and

compared this to the rate of natural death. Neglecting beneficial/

compensatory mutations, they calculated a maximum allowable

‘‘deleterious mutation rate’’ of ln(2)<0.7, which is the same value

we calculated for the lethal mutation rate (Ul) in the preliminary,

non-epistatic FL. By contrast, on our biophysical FL, we predict an

overall maximum nonsynonymous mutation rate of U�crit&2:5
(fig. 3). The discrepancy between 0.7 and 2.5 derives from many

factors, including compensatory mutations in our model and

ambiguity in what those authors mean by ‘‘deleterious,’’ i.e. which

mutations they would define as deleterious as opposed to neutral.

Previous calculations of Ncrit (stochastic studies)
Random drift is the paramount concern of a separate line of

previous studies that describe extinction in terms of Muller’s

ratchet [19–22,38]. However, those studies minimize the impor-

tance of mutation rate. For example, neglecting beneficial

mutations and using an approach based on fixation probabilities,

Lande [21] calculated that t,1/U; i.e. his result is that U merely

sets the time units but is irrelevant to the essential behavior. As

another example, Whitlock [23] included beneficial mutations and

calculated that Ncrit,(Udeleterious/Ubeneficial)
1/3, which depends only

on the balance of beneficial to deleterious mutations and not on the

mutation rate itself. Both of those examples contradict our results,

which show that Ncrit and t depend dramatically on |U|. The

dominant reason for the discrepancy is that those authors assumed

that deleterious mutations occur ‘‘one at a time,’’ which is not true

when the rate that mutations are introduced (U) exceeds the rate at

which selection removes them (,1/s). When U/s&1, the

population experiences ‘‘Hill-Robertson interference’’ [39], which

both accelerates extinction and also makes analytic solutions

intractable.

A separate, very serious concern about many previous studies

(e.g. refs. [19,21]) is that, for all parameter values they explored,

they always observed a small coefficient of variation in extinction

time (CVt). Based on our results (fig. 3), this suggests that those

authors only probed the extinction regime. In other words, their models

were constructed such that extinction occurred nearly determin-

istically. By contrast, it seems likely that most, if not all, natural

populations are in the survival regime as long as their population

size and/or mutation rate are not interfered with externally (e.g.

via mutagens or habitat destruction). A related issue concerns the

initial conditions of those models. They assumed that populations

were extremely fit initially, such that each individual leaves a large

number (Ro) of descendants (Ro&1). Extinction occurs in those

models when Ro semi-deterministically drops to just below one,

after several deleterious mutations achieve fixation. By contrast,

our simulations begin in a natural condition (see Methods):

mutation-selection-drift equilibrium, which may not even exist in

those previous models. The existence of a quasi-equilibrium state,

i.e. the survival phase, is a major advantage of our approach.

Indeed, the survival phase can be viewed as a stochastic analog of

deterministic mutation-selection equilibrium.

Other sources of random genetic drift
In this paper we have focused on the subtly deleterious impact

of unbiased fluctuations on allele frequency (i.e. genetic drift)

caused by finite population capacity (N). In addition to finite N,

several other factors can have a similar effect, including population

bottlenecks, micro-environmental fluctuations, and stochasticity in

gene expression [40]; these effects are sometimes summarized
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collectively by an ‘‘effective population size’’ (Ne) [36]. Of

particular relevance to extinction of RNA viruses are population

bottlenecks that occur during transmission events. Indeed, it is

estimated that most HIV-1 infections originate from a single

infectious particle, which would greatly reduce Ne below the viral

load.

Importance of fitness landscape
An important result from previous studies is that t depends

strongly on both the severity of deleterious mutations (i.e. the DFE

[19,21,34]) and on epistasis [22,38,41]. The DFE has traditionally

been represented by either a single selection coefficient (i.e. a Dirac

delta function) or by a continuous function (e.g. Gamma

distributions), which was assumed not to change with fitness

and/or time. Thus, even relatively simple approaches were forced

to make somewhat ad-hoc modeling choices and also introduce

several parameters. The fact that t depends strongly on the DFE

thus presents a dilemma to researchers: they must either comb

through a high-dimensional parameter space or else their results

depend on myriad questionable assumptions. Our model circum-

vents this problem because the parameters (e.g. eqs. 6,7 in

Methods) are not ‘‘adjustable’’; rather, they are set by strictly

biophysical considerations. In effect, we exchanged a poorly

understood, high-level question (how mutations affect fitness) for a

well-understood, microscopic question (how mutations affect

protein folding thermodynamics). The validity of this exchange

is commensurate with the extent to which our DFE matches

experimental data (ref. [27] and fig.S4).

Apart from the advantages of our FL, we expect that the

qualitative behavior in fig. 3 might also be observed in some

traditional models. We anticipate that the essential requirements

are (i) both beneficial and deleterious mutations (so that the

population does not inevitably ‘‘slide downhill’’) and some upper

bound on fitness (so that the population cannot forever ‘‘climb

uphill’’).

Extinction versus ‘‘error catastrophe’’
Decades ago, Eigen calculated that genomes can become

‘‘delocalized’’ in sequence space during an ‘‘error catastrophe’’

when the mutation rate exceeds a critical value [42]. As pointed

out by previous authors [2], extinction and error catastrophe are

distinct concepts: The former is a demographic process whereas

the latter refers to loss of the single fittest genotype on a toy fitness

landscape, usually in the N = ‘ limit. Nevertheless, some results

from one study of error catastrophe in the context of finite N [43]

hint at our results in fig. 3; e.g. they observed that the time taken

for populations to experience delocalization decreases with N.

Connections with experiments and viral infection
treatment

In reality, is extinction accompanied by excessive lethal

mutations (as in our model) or merely by a slow generation time

that is unable to keep pace with natural death (as in previous

models, e.g. refs. [2,19,20,22,23]? These two scenarios are

distinguishable in laboratory evolution experiments on viruses

because viral load (nucleic acid molecules per mL) and infectivity

(plaques formed per mL viral suspension) can be measured

separately. Several experiments on at least three viral species

[29,44–47] show that when U is elevated near/past Ucrit, viral load

transiently continues to increase, simultaneous with a decline in

infectivity. Thus, noninfectious genomes (i.e. those carrying lethal

mutations) signal extinction during experiments, in accord with

our model’s interpretation of extinction.

A clinically relevant prediction of our model is that changing N

can radically alter population survival, especially when U is

elevated by drugs. This phenomenon was observed experimentally

[8] with foot-and-mouth disease virus, where merely 10-fold

dilutions during viral passages dramatically accelerated extinction

in the presence of mutagenic drugs. As remarked by those authors,

this finding suggests that therapies combining both mutagenic

drugs and traditional drugs (which reduce the number of viable

viruses) could substantially increase efficacy. Indeed, our analytic

results (eqs.4 and eq.S11a) imply that even in the survival phase,

the expected time to extinction depends exponentially on (i.e. is

very sensitive to) both U and N, suggesting that altering either of

these parameters could dramatically impact the chances of

population extinction during a fixed time interval.

Apart from extinction per se, our general biophysics-based

approach also has substantial experimental support. Our basic

assumption is that protein unfolding/misfolding accounts for the

deleterious effects of most mutations. If this were true, species with

high U and/or low N should have less stable proteins. Several

experimental facts suggest that this is in fact the case. First,

chaperone overexpression compensated for the fitness decline

caused by single-cell bottlenecks (low N) in bacterial populations

[48,49]. Thus, these populations likely contained unstable,

unfolded proteins which caused the fitness decline. Secondly,

Fernandez and Lynch [50] recently reported more structural

defects and thermodynamic instability among monomeric protein

subunits in small populations than in large populations. Along

similar lines, another study calculated less stability among proteins

in endosymbiotic bacteria (small N) than in orthologs from free

living relatives (large N) [51]. Thirdly, proteins from RNA viruses

(high U) have a lower density of van der Waals contacts than

orthologs in DNA viruses (lower U), suggesting, though not

proving that RNA viral proteins are less stable [52]. Indeed, we

have gone even further and predicted the distribution of stabilities

within proteomes from species with various U and N (see fig. 5

from ref. [27]).

Methods

Biophysics-based fitness landscape
The approach here closely follows ref. [27]. Every cell contains

a number (C) of well-adapted proteins, each of which exists in

thermal equilibrium between its native, functional conformation

and an ensemble of unfolded, nonfunctional conformations. The

fraction of time in equilibrium that protein i spends in its native

conformation is Pnat
i . Qualitatively, our assumption is that fitness is

impaired when either the concentration of folded proteins

decreases or, equivalently, the concentration of unfolded proteins

increases. Quantitatively, we assume that

W~ P
C

i~1
Pnat

i ð5aÞ

&1{
XC
i~1

1{Pnat
i

� �
i

if all W~Pnat
i w0:5

� �
ð5bÞ

W~0 lethal if any Pnat
i v0:5

� �
, ð5cÞ

where Pnat
i is the fraction of time in equilibrium that protein i

spends in its native conformation and W is fitness (i.e. birth rate).

The approximation between eq.5a and eq.5b is valid for Pnat<1, as
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is the case for real proteins (see below). Eq.5a emphasizes the

positive interpretation that each of the proteins is required in order

for the organism to live and function. Likewise, eq.5b emphasizes

the negative interpretation that misfolded/unfolded protein hurts

the organism in proportion to their concentration in the cell.

In our model, Pnat is the master variable that connects proteins

with fitness. However, it is simpler to work with a closely related

quantity: the free energy difference (DG, also called ‘‘protein

stability’’) between the folded conformation and the ensemble of

nonfunctional conformations. We assume that proteins fold ‘‘two-

state’’ [53], which implies the relationship

Pnat~
1

1zeDG=kbT
, ð6Þ

where kb is Boltzman’s constant and T is temperature.

Working with DG simplifies mutational effects because, (i) effects

of mutations on free energy (DDG) are well characterized

experimentally and (ii) DDG (but not DPnat) is additive when

several mutations accumulate sequentially [54,55]. We approxi-

mate p(DDG) by a Gaussian function with a mean of +1 kcal/mole

and standard deviation 1.7 kcal/mole [3,56], which reasonably

matches empirical data from the ProTherm database [56] (fig.S4):

p(DDG)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(1:7)2
q exp

{ DDG{1)2
� �

2(1:7)2

" #
: ð7Þ

We also assume that p(DDG) is independent of DG, which is

consistent with empirical data [5,56], though only to a rough

approximation.

While most mutations in our model only alter DG, a small

fraction destroy protein function for non-thermodynamic reasons.

For example, a few amino acid positions comprise the active

catalytic site, and virtually all mutations there will abolish

functional activity. Assuming that there are 3 catalytic residues,

another 3 nearby critical sites and 100 total residues in the folding

domain, these represent 6% of all random mutations. Besides the

active site, some point mutations abolish activity by introducing

premature STOP codons. Assuming random codon usage,

premature STOP codons represent <4% of random mutations

[27]. Thus, together, these categories comprise <10% of all

nonsynonymous mutations, which we assume to unconditionally

confer a lethal phenotype.

Eqs.6,7 al ong with said assumptions regarding lethal muta-

tions, indirectly imply the distribution of fitness effects (DFE) in

the biophysical model; detailed explanation of how this works is

the subject of ref. [27]. Briefly, we first equilibrated populations

for at least 105 generations, at which point populations had

substantial diversity in fitness. Next, we measured the DFE among

all single point mutations for each clone in the population. Finally,

these DFE were averaged to obtain the overall DFE, e.g. in

fig. 2C. This procedure essentially averages the DFE of each

clone, weighting each in proportion to its probability of being

randomly chosen as the starting point for mutagenesis experi-

ments. Since our DFE describes nonsynonymous mutations only,

synonymous mutations were removed from the experimental

datasets in fig. 2c.

Simulation procedures
We iterated the birth-death-mutation process for 105 genera-

tions or until population extinction, whichever occurred first. Each

birth event represents 1/n(t) generations. All populations were

initialized with genomes (i.e. sets of DG values) sampled from a

single, ‘‘burn-in’’ population that had previously achieved

mutation-selection-drift equilibrium during 105 generations of

evolution. The parameter values (N = 105, U = 1) of the burn-in

population were chosen so as to lie clearly in the survival regime

yet close to the regions of parameter space being probed

throughout the paper. This choice minimizes the impact of

(inherently somewhat artificial) initial conditions. The fraction of

lethal mutations (l) was estimated during each simulation run as

the total number of lethal mutations divided by 2U�nn, where �nn is

the time-averaged number of cells during the run.

Supporting Information

Figure S1 Transition probabilities, ‘‘convection velocity’’ and

‘‘diffusion coefficient’’ as functions of the lethal mutation rate (Ul),

assuming that d = 0. These are the per capita quantities (i.e. n = 1).

(EPS)

Figure S2 Mean time until extinction on flat, non-epistatic

fitness landscape. Solid curves illustrate the exact solution, eq.S11.

The dashed curves in panel A illustrate the approximations

eqs.S12A,S12B. Dashed curves in panel B illustrate eq.S13A. The

vertical dotted line marks the transition at Ul = ln(2). d = 0. Note

that eq.S13A breaks down for very small Ul. As discussed in the

text, the entire continuum approach breaks down in that regime.

(EPS)

Figure S3 Coefficient of variation (standard deviation divided by

mean) in time until extinction (CVt) when d = 0. A: Supercritical

(Ul.ln(2)) populations become more deterministic as N increases,

while subcritical populations become more stochastic. B: CVt
decreases sharply at Ul = ln(2), though the sharpness of the

transition increases with N.

(EPS)

Figure S4 The mean time until extinction declines rapidly as U

increases when U,Ucrit. Data here is a subset of that shown in

fig. 3a from the main text.

(EPS)

Figure S5 Quantitative version of fig. 3c from the main text. As

in fig. 3c, here we see a boundary between phases that increases up

and to the right. However, fluctuations at very low N inevitably

obscure the underlying phase boundary. Points in the survival

regime were colored white (i.e. we assumed CVt = 1) if extinction

never occurred during simulations during a feasible amount of

time (105 generations). d = 0.

(EPS)

Figure S6 Lethal mutations during simulations on our bio-

physical landscape when d = 0. As in fig. 4 from the main text,

this plot shows data only from (N,U) pairs such that populations

survived for the duration of simulations (105 generations).

However, the left-most terminus of each curve is near the

extinction phase. In our non-epistatic, analytical model, the

boundary between survival and extinction phases occurs at

Ul = ln(2). Here we see that the criterion that Ul = ln(2) is

unlikely to mark the transition to extinction on our (epistatic)

biophysical model, since the left-most termini always have Ul
substantially below ln(2).

(EPS)

Text S1 Analytical derivations of mean and variance in

extinction time on flat, non-epistatic fitness landscape.

(PDF)
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