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Abstract

The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to
establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments.
The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level
approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a
large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes
are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit
method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to
correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we
constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null
mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the
dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap
gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The
successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant
achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional
regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations.
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Introduction

The segmentation gene network in early Drosophila embryo

provides a powerful model system to study the role of genes in

pattern formation. This network solves the fundamental problem

of embryonic patterning: how to establish a periodic pattern of

gene expression, which determines both the positions and the

identities of body segments [1,2]. The developmental process

which performs this task is called segment determination. The fruit

fly segments are arranged sequentially along the anterior-posterior

axis of the embryo. All segments are determined simultaneously

during the blastoderm stage, just before the onset of gastrulation

[3].

The segmentation genes have been subdivided into 4 classes

based on their mutant phenotype [1,2]. The maternal coordinate

genes are expressed from the mother and form broad protein

gradients in the anterior, posterior or terminal regions of the

embryo [4–7]. Other genes, which belong to gap, pair-rule and

segment-polarity classes, are zygotic, i.e expressed in the embryo.

Most of segmentation genes encode transcription factors, which in

turn regulate the expression of many other genes, including

segmentation genes themselves. It was demonstrated by genetic

analysis that segmentation genes form a hierarchical regulatory

cascade, in which genes in higher layers (e.g. maternal coordinate

genes) regulate genes in lower layers (e.g. gap genes), but not vice

versa. In addition genes in the same hierarchical level interact with

each other.

The gap gene system establishes discrete territories of gene

expression based on regulatory input from a long-range protein

maternal gradients, Bicoid (Bcd) and Hunchback (Hb) in the

anterior and Caudal (Cad) in the posterior of the embryo [8,9].

Gap genes Kr, kni, hb, gt and tll are expressed in from one to three

domains, each about 10–20 nuclei wide [10]. Early gap gene

expression of the trunk gap genes Kr, hb, gt and kni is established

through feed-forward regulation by maternal gradients, after

initial establishment gap domain borders sharpen, moreover both

sharpening and maintenance of gap domain boundaries requires

gap-gap cross-regulatory interactions [11]. This process is

accompanied by the anterior shift of Kr, kni and gt expression

domains in the posterior region of the embryo [10,12,13].

Kr plays a central role in segmental pattern formation as

indicated by strong alteration of expression patterns of almost all
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zygotic segmentation genes in Kr{ mutants [14–16]. Kr null

mutants show deletion of thoracic and anterior abdominal

segments as well as frequent mirror duplications in the abdomen

[15,17]. At the level of gene expression this mutation manifests in

the large shift of posterior Gt domain, resulting in overlap of

positions of posterior Gt and Kni domains [15,18]. During

sharpening and maintenance stage of gap gene expression Kr acts

a repressor of gt and hb [15,19,20]. The repression of gt, which

expression domains are strictly complementary to those of Kr, is

strong, while the effect of Kr on hb is more subtle [21–24]. It was

observed in assays with cell lines carrying reporter constructs that

the regulatory effect of Kr is concentration-dependent: Kr

monomer is transcriptional activator, while at high concentrations

Kr forms a homodimer and becomes a repressor that function

through the same target sequence as the activator. However it is

difficult to establish whether such an effect occurs at physiolog-

ically relevant regulator’s concentrations [25].

The segmentation gene network is one of the few examples of

developmental networks studied using data-driven mathematical

modeling [13,26–28]. These models fall into two categories. The

phenomenological models do not require any a priory information

about regulatory mechanism [29,30] and try to reconstruct it by

solving the inverse problem of mathematical modelling. A major

shortcoming of these models is that their parameters have no

explicit connection to the genomic DNA sequence. The second

modelling approach seeks to extract information about gene

regulation from the sequences of cis-regulatory regions and the

measured or inferred binding of sequence-specific transcription

factors to these elements [26–28], however it still neglects major

features of the transcription process, such as chromatin structure

and modifications, binding site orientation and proximity to

transcription start site, etc. Current simplifications and unknown

features limit the predictive power of these models, but more

powerful and complex models may be generated in future using

better datasets such as in vivo transcription factors occupancy,

relative accessibility of different DNA regions, in vivo data on

interplay between different transcription factors, nucleosome and

chromatin remodelling enzymes.

In this paper we apply a phenomenological model known as

gene circuits to reconstruct the gap gene network in Kr null

mutants. This model considers a row of nuclei along the A-P axis

of the embryo. Between nuclear divisions the model describes

three basic processes, namely protein synthesis, protein decay and

diffusion of proteins between neighboring nuclei of syncitial

blastoderm. A few basic assumptions about eukaryotic transcrip-

tional regulation were incorporated into the model. First a sigmoid

regulation-expression function was used to introduce regulatory

inputs into the model. Secondly, each regulatory interaction can

be represented by a single parameter which sign indicates the type

of regulatory interaction: activation (if it is positive), repression (if

negative), no interaction (if it is close to zero). Third it was assumed

that regulatory inputs are additive and independent of each other.

The gene circuit models were successfully applied to correctly

reproduce the quantitative features of gap gene expression in wild

type [12,13]. This study revealed five regulatory mechanisms

responsible for sharpening and maintenance of gap gene

expression domains: broad activation by maternal gradients of

Bcd and Cad; gap gene auto-activation; strong mutual repression

between gap genes which show complementary expression

patterns (hb and kni; Kr and gt); weaker asymmetric repression

between overlapping gap genes (Hb on gt, Gt on kni, Kni on Kr, Kr

on hb and Hb on Kr) and repression by terminal gene tll at the

embryo termini. The asymmetric repression between overlapping

gap genes is responsible for shifts of gap gene domains in the

posterior region of the embryo. It is important to note that the wild

type gap gene circuit model has the predictive power when

molecular fluctuations of the input factors are taken into account

[31,32].

It is evident that to understand the gap gene network we need

not only to describe the mechanism underlying its functioning in

intact state, but also to comprehend what happens when certain

stimuli or disruptions occur. Recently Papatsenko and Levine

(2011) constructed a dynamic model based on a modular design

for the gap gene network, which involves two relatively

independent network domains with elements of fractional site

occupancy. This model requires only 5–7 parameters to fit

quantitative spatial expression data for gap gradients in wild type

and explained many expression patterns in segmentation gene

mutants obtained in studies published mainly in the late 1980s and

early 1990s. However these patterns were characterized qualita-

tively by visual inspection, that may not capture the fine details of

gene expression. For example, previous studies based on

qualitative visual analysis of gene expression patterns showed that

a Kr null mutation results in large shift of posterior Gt domain,

overlap of positions of posterior Gt and Kni domains and decrease

in the level of gt expression in the second half of cycle 14A [15].

Here we obtained a large dataset on gap gene expression in Kr null

mutants and extracted quantitative gene expression data using a

data pipeline established previously [33]. The analysis of this data

allowed us to characterize the expression of other gap genes at

unprecedented level of detail. In particular we showed that the

significant decrease in the level of gene expression in the second

half of cycle 14A is common to all gap gene expression domains.

This novel biological result seems counterintuitive, because

genetics studies show that Kr acts as a repressor, and therefore

should come under close scrutiny.

The most serious limitation of the gap gene circuit models is

their inability to correctly reproduce the expression patterns in

trunk gap gene null mutants at quantitative level, although a

theoretical study had shown previously that such prediction is

possible if gene circuits models were fit to simulated, noise-free

data [29] and simulating null mutants of the terminal gap genes tll

and hkb was successful [12,13,34]. A variety of reasons could be

responsible for the failure, of which, from our point of view, the

most important is the oversimplified representation of transcrip-

Author Summary

Systems biology is aimed to develop an understanding of
biological function or process as a system of interacting
components. Here we apply the systems-level approach to
understand how the blueprints for segments in the fruit fly
Drosophila embryo arise. We obtain gene expression data
and use the gene circuits method which allow us to
reconstruct the segment determination process in the
computer. To understand the system we need not only to
describe it in detail, but also to comprehend what happens
when certain stimuli or disruptions occur. Previous
attempts to model segmentation gene expression patterns
in a mutant for a trunk gap gene were unsuccessful. Here
we describe the extension of the model that allows us to
solve this problem in the context of Kruppel (Kr) gene. We
show that remarkable alteration of gap gene expression
patterns in Kr mutants can be explained by dynamic
decrease of the activating effect of Cad on a target gene
and exclusion of Kr from the complex network of gap gene
interactions, that makes it possible for other interactions,
in particular between hb and gt, to come into effect.

Modeling of Drosophila Kruppel mutants
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tional regulation in the model. Indeed, as was already mentioned

above, the action of regulator on its target gene is represented by a

single parameter, whereas it is well known that the cis-regulatory

elements (CRE) of segmentation genes often reproduce only one of

expression domains of an endogenous gene when placed upstream

of a reporter gene [35–37]. Moreover different CREs of one gene

can have different transcription binding site composition, i.e.

different regulatory inputs. For example, computational prediction

of transcription factor binding sites showed that regulatory

sequences which drive expression of gt in the anterior and

posterior domains have different transcription binding site

composition: the anterior gt domain has regulatory inputs from

Bcd and Kni, while the posterior domain contains inputs from Hb

and Cad, which are absent in the sequences responsible for

anterior expression [37]. Similar to gt, two CREs essential for hb

expression in anterior domain and in central stripe and posterior

domain differ in transcription binding site composition [38–40]. It

is evident that current gene circuits models do not consider the

mechanism of gene regulation at such a level of detail. This defect

does not interfere with the ability of these models to fit gap gene

expression patterns in wild type, however in mutant background

with deficient set of regulators the failure of the model to take into

account such features may suddenly become essential.

To avoid such problems we use a revised model which builds on

separate treatment of domains with different regulatory inputs.

This is possible by narrowing down the spatial domain of the

model and considering only the posterior half of the blastoderm

(region from 47 to 92% embryo length (EL)), in which each of the

trunk gap genes is expressed in one domain.

As opposed to previous gap gene circuit models, which have a

constant Bcd gradient and did not consider Cad data from late

time points just before the onset of gastrulation [12,32], and

similar to approach used in [30], we implement Bcd as a time-

variable input and use data on late Cad expression to represent the

rapidly changing expression dynamics of these two genes. After

cleavage cycle 12 Bcd nuclear gradient starts to decay [41].

Analysis of data from fixed embryos showed that Bcd protein

reached its maximal level near the beginning of cycle 14A and

thereafter starts to decrease slowly that culminates in an almost

twofold decline by gastrulation [10]. From the second quarter of

cleavage cycle 14A onward the cad expression in abdominal region

start to gradually decrease and by gastrulation cad expression in the

posterior region sharpens to a stripe which spans from 75 to 90%

EL [10].

The gene circuit models do not require any assumption about

regulatory interactions within a gene network. Instead the

regulatory topology of the network is obtained by solving the

inverse problem of mathematical modeling, i.e. by fitting the

model to the data [29]. To obtain the estimates for regulatory

parameters that predict a specific network topology in mutants we

fitted the model to gap gene expression patterns in wild type and in

embryos with homozygous null mutation in Kr gene simultaneous-

ly. The logical justification of such an approach is to use the

parameters of the wild type gap gene network as specific

constraints on regulatory weights in mutants in order to obtain

the consistent parameter estimates for both genotypes on one hand

and on the other hand to preserve the characteristic features of

gene regulation in mutant. The parameter estimates obtained in

such a way were further studied by applying identifiability analysis,

that confirmed that fitting to two genotypes simultaneously

substantially increases the statistical significance of parameter

values.

We use the modeling framework outlined above to explain the

characteristic features of gap gene expression in Kr null mutants

and in the posterior half of the blastoderm. In what follows we

describe the expression patterns of gap genes in Kr null mutants

and analyze quantitative gene expression data extracted from

these patterns. We then use these data as input to a new gap gene

circuit model. We show that in contrast to earlier models, this

model correctly reproduces the characteristic features of gap gene

expression in Kr mutants. In particular, it reproduces correctly the

greater shift of posterior Gt domain than in wild type and

significant decrease in the level of gap gene expression in the

second half of cycle 14A. We next obtain the parameter estimates

for the model (and hence the predicted gap gene network topology

in wild type and mutant) and perform identifiability analysis to

understand how reliable are these estimates. We study the

dynamical behavior of our model and analyze the role of

individual regulatory loops in gap gene expression in wild type

and mutants. We show that a remarkable transformation of gap

gene expression patterns in Kr mutants can be explained by

dynamic decrease of activating effect of Cad on a target gene and

exclusion of Kr gene from the complex network of gap gene

interactions, that makes it possible for other interactions, in

particular, between hb and gt, to come into effect. Our model also

predicts the derepression of the anterior border of Hb posterior

domain in Kr;kni double mutants, that is established in the absence

of key repressors. We validate this prediction and show the

correctness of network topology inferred in this work.

Results

Gap gene expression in Kr mutants
In wild type Drosophila embryos gap genes are expressed as large

intersecting domains along the A-P axis (Figure 1A). In general, all

these domains exhibit similar temporal dynamics: after formation

they start to grow, reach maximum expression levels around mid-

cycle 14A and decline by gastrulation. In the course of cycle 14A

gap gene domains change their positions and shift to the anterior

[10]. We have shown that the asymmetric gap-gap cross-

repression with the posterior dominance is responsible for these

shifts [12].

In Kr null mutants gap gene expression is significantly altered

(Figure 1B). It has been previously reported that in these mutants

the posterior domain of gt is expanded towards the center of the

embryo [42,43]. We detect that in the course of cycle 14A the

posterior domain of gt shifts dynamically on 15% embryo length

(EL) in the anterior direction and overlaps with Kni domain.

Thus, by gastrulation, the difference in position of gt domain in

mutants and wild type embryos constitutes approximately 10%

EL. The anterior shift of the Kni domain maxima in Kr mutants

constitutes only 1.8% EL. Hb posterior domain in mutants is

formed at the beginning of cycle 14A and shifts on about 3% EL in

the anterior direction during this cycle. Thus, the positional

dynamics of this domain in mutants and wild type is similar.

The level of hb posterior expression in mutants is nearly the

same as in wild type until time class 3, but declines afterwards. By

gastrulation it constitutes only a half of the wild type expression

level (Figure 1C,F). Gt posterior domain is initially lower than in

wild type, it grows up to time class 4 and significantly declines

thereafter (Figure 1D,G). The level of kni expression remains

constantly low throughout cycle 14A (Figure 1E,H) with a slight

decrease at the very end of this cycle (not shown).

The features of the gap gene expression in Kr mutants described

above raise many questions. Namely, the regulatory mechanisms

underlying a decrease in gene expression levels, as well as a much

larger shift of Gt posterior domain should be explained. In the

following sections, we describe our modification of the gene circuit

Modeling of Drosophila Kruppel mutants
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model [12,13,29,44] that correctly reproduces the gap gene

expression in Kr mutants and hence can serve as a tool to answer

these questions.

Model fitting
The gene circuit model used in this work differs from previous

implementations in several aspects. First we narrowed down the

spatial domain of the model by considering only the posterior half

of the blastoderm (region from 47 to 92% embryo length (EL)), in

which each of the trunk gap genes is expressed in one domain.

This allows us to avoid the inherent limitation of the model, in

which the action of regulator on its target gene is represented by a

single parameter.

Secondly, as opposed to previous gap gene circuit models which

have a constant Bcd gradient and did not consider Cad data from

late time points just before the onset of gastrulation [12,32], we

implement Bcd as a time-variable input and use data on late Cad

expression to represent the rapidly changing expression dynamics

of these two genes at that stage. We used bcd and cad profiles from

FlyEx database for cycle 13 and eight temporal classes of cycle

14A as external inputs to our model equations.

We used the modeling framework outlined above to explain the

characteristic features of gap gene expression in Kr null mutants

and in the posterior half of the blastoderm. To obtain the estimates

for regulatory parameters that predict a specific network topology

in mutants the model was fitted to gap gene expression patterns in

wild type and in embryos with homozygous null mutation in Kr

gene simultaneously. DEEP method was applied to minimize the

sum of squared differences between experimental observations and

model patterns [45,46] and find all parameters of model

equations, i.e. regulatory weights, synthesis rates, decay and

diffusion constants, that allow to reproduce the characteristic

features of gap gene expression in Kr null mutants as closely as

possible. We performed over 200 runs with different initial

parameter approximations and control variables. The search space

was sampled uniformly for each parameter in the interval defined

by biologically relevant limits. Two step procedure was applied to

construct the ensemble of parameter sets. On the first stage, the

residual mean square (RMS) was checked and the sets with RMS

less than 5% of the maximal gene expression value (equals 255 in

our data) were accepted for further analysis. Secondly, we

inspected the model expression patterns visually. Consequently,

the ensemble of 11 parameter sets was obtained that correctly

reproduces the dynamics of gene expression in wild type and

mutant embryos, in particular the decrease of gap gene expression

levels and the anterior shift of gt domain.

Gene network topology
To infer the topology of regulatory network we classified the

estimates of regulatory weights (the elements of T and E matrices)

into the following three categories: ‘activation’ (parameter values

greater than 0.005), ‘repression’ (parameter values less than

20.005) and ‘no interaction’ (between 20.005 and 0.005). This

leads to a predicted regulatory topology of the network based on

which category a majority of parameter estimates falls into

(summarized in Figure 2).

There are several networks in the ensemble called consensus

networks, in which the signs of regulatory parameters coincide

with the predicted network topology inferred from the fits.

Figure 2A shows simulation results together with experimental

data and Table S1 presents parameters for one of such networks. It

is evident that in spite of some patterning defects especially at early

Figure 1. The main features of gap gene expression in Kr mutants as compared to wild type embryos. A,B. Integrated patterns of gap
gene expression in wild type embryos (A) and in Kr mutants (B). The red dotted line in (B) shows Kr expression in wild type embryos. C–E. hb, gt and
kni expression in Kr mutants and wild type embryos from time class 3. F–H. Expression of the same genes in time class 7.
doi:10.1371/journal.pcbi.1002635.g001

Modeling of Drosophila Kruppel mutants
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stages the model correctly reproduces the dynamics of gene

expression in wild type and mutant embryos.

Some basic features of the gap gene network topology in wild

type and mutant become immediately obvious from inspection of

Figure 2B and Table S1. First, Cad activates zygotic gap gene

expression. Second, hb, Kr, kni, and gt show autoactivation. Third,

Bcd activates Kr, gt, kni in all parameter sets, however in case of hb

it shows activation in approximately the same number of circuits

as it shows repression. Fourth, all reciprocal interactions among

trunk gap genes are either zero or repressive. An important

exception is activation of hb by Gt. Finally tll represses kni and Kr

and weakly activates gt.

Parameter identifiability and correlations
The identifiability analysis was conducted with respect to

parameters of the model estimated by fitting to experimental data.

The model considers the time evolution of protein concentrations

of four gap genes hb, Kr, gt, and kni in two genotypes: wild type and

in embryos with homozygous null mutation in Kr gene. The total

parameter set that minimizes the cost functional 0 consists of 40

parameters and is denoted as H. The set includes four subsets Hhb,

HKr, Hgt, and Hkni of 10 parameters each, that describe regulatory

action on each target gene. In mutants the model is only fitted to

quantitative gene expression data for 3 genes, gt, hb and kni, and

hence the parameters from HKr are estimated using data points

from wild type embryos only (half of all data points). All the other

parameter subsets are estimated from the whole dataset. Due to

lack of space we denote the elements of inter-connectivity matrices

T and E by single-letter notations of genes, namely, H, K, G, N, B,

C, and T stand for gt, Kr, gt, kni, bcd, cad, and tll, respectively. For

example, TNH characterizes the regulatory action of Hb on kni.

The sensitivity of the model solution to parameter changes is

characterized by the size of confidence intervals. The confidence

intervals (2) (see Methods) are constructed under the assumption of

normally distributed error in data, that is not satisfied for gene

expression data. The error in data almost linearly increases with

the mean concentration that is typical rather for the Poisson than

for normal distribution. To make the error independent of the

mean we applied the variance-stabilizing transform y~
ffiffiffi
x
p

to both

data and model solution. The transformed objective functional

was minimized using the parameter estimates obtained for non-

transformed functional as initial values for the optimization

procedure. The new solutions were found in a very close vicinity

of initial parameter sets.

The 11 parameter sets, which minimize the transformed model

functional, are given in Table S2 and will be referred to as circuit

parameter sets. The newly estimated regulatory weights were

classified into regulatory categories as described in subsection

Gene Network Topology. This classification results in predicted

regulatory topology of the network (Figure 2C), which is largely

the same as in Figure 2B, however not all the entries in two tables

coincide. The estimates of some parameters not-uniquely deter-

mine the type of gene regulation in different circuits, i.e. in some

circuits the parameter estimates exceed the threshold 0.005 in

absolute value, while in the others are below the threshold. It is

also true for new parameter sets, however, the number of such

circuits is different than those given in Figure 2B.

The confidence intervals for individual parameters are con-

structed in the vicinity of the model solution. The results for one

representative circuit are presented in Figure 3. Most of the values

of regulatory parameters are very close to zero, and it is important

to make sure whether the value (more precisely, the sign) of a

regulatory parameter is significant. The hypothesis that the

parameter estimate is non-zero is tested as follows: if a confidence

interval includes both positive and negative values, the hypothesis

is rejected, otherwise, accepted.

Our classification method to infer the topology of regulatory

network used in this work, was based on comparison of the values

of regulatory parameters with the threshold +0:005. However, as

it has already been mentioned, estimates of some parameters take

values, which only exceed the threshold in part of circuits. By

exploration of confidence intervals for these parameters we came

to the conclusion, that almost all the estimates, that are close in

absolute value to the threshold, are insignificant. This result

explains the discrepancies between the network topologies

presented in Figures 2B and 2C: the conclusions about the type

of gene interaction that are based on insignificant parameter

estimates are unreliable.

The analysis of confidence intervals conducted for all the

circuits (Figures S2 and S3) allowed us to refine the predicted

regulatory network topology (Figure 2C). We classify parameters

as insignificant activation/repression if the parameter estimates

are positive/negative in almost all the circuits but their confidence

intervals contain zero, and hence the parameter sign cannot be

identified. As a result the non-identifiable regulatory parameters

are THB, TKH , TKG , EB
G, ET

G , EB
N , and ET

N and therefore we

cannot draw any conclusion about these interactions. Interestingly

most of these interactions involve Kr as a target gene or Bcd as a

regulator of gap gene domains located in the posterior of the

embryo. Other regulatory parameters are well identifiable and,

hence, the identifiability analysis corroborates the gene network

topology drawn from classifying parameter values only.

It should be stressed that the confidence intervals provide the

full information about the parameter estimates only in case of

parameter independency, otherwise the intervals are overestimat-

ed. Moreover, strong correlation between parameters may lead to

their non-identifiability, because a change in one parameter value

can be compensated by the appropriate changes of another

parameters and, hence, does not significantly influence the

solution. In view of this we investigate the dependencies between

parameters using the collinearity analysis of the sensitivity matrix.

This method allows to reveal correlated and hence non-

identifiable subsets of parameters.

The sensitivity matrix defined in Methods was analyzed in the

vicinity of 11 points in the parameter space that define the optimal

model solutions. The collinearity index ck (equation (3) in

Methods) was computed for all the subsets of dimension k of the

parameter set H. The threshold value for ck was chosen equal to 7.

This value in case of k~2 corresponded to approximately 99%

pairwise Pearson correlation between columns of the sensitivity

matrix. The method allowed to detect subsets of dimension 2 and

3 with the collinearity index exceeding the threshold value, i.e.

subsets of poorly or non-identifiable parameters.

Most of parameter combinations in these subsets were the same

for all 11 circuits (see Table 1). Almost all the pairs of parameters

in subsets of dimension 2 belonged to HKr, i.e. were related to Kr

target gene. To explain this result we additionally compute the

collinearity indices c’k between columns of the upper half of the

sensitivity matrix, that only include the partial derivatives

computed at 1532 wildtype observations. The method detected

much more parameter subsets with collinearity indices c’k greater

than the threshold, that included the parameters characterizing

the input of all four genes. The parameters of the full model fitted

to two genotypes thus are better identifiable than those of the

model that solely describes the wild type data. However, the

parameters from HKr cannot be identified from the full model as

are just estimated from the wild type observations.

Modeling of Drosophila Kruppel mutants
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The subsets of dimension 3 with the highest collinearity indices

(w7) are also common for the most of the circuits. Most of these

combinations are related to gt and Kr, i.e., include parameters from

Hgt and HKr.

The two approaches applied to characterize parameter identifia-

bility are closely connected and complement each other. By

exploration of confidence intervals we can see to what extent the

model solution is sensitive to parameter changes and test the

significance of parameter sign, but this method does not give any

explanations to the sources of non-identifiabilities. One of such

explanations can be provided by collinearity analysis. The

correlation between parameters revealed by this approach can

Figure 2. Model output for a representative consensus network compared to quantitative gene expression data and predicted
regulatory network topology. A. Right panels display simulation results and data for mutant genotype, left panels show simulation results and
data for wild type. Top, middle and bottom panels present data and profiles for first, third and seventh temporal classes, respectively. Wild type data
was taken from the FlyEx database [75,84]. B. Prediction of network topology based on classification of regulatory weights. C. Prediction based on
both classification and identifiability analysis of regulatory parameters. Rows correspond to target genes; columns correspond to regulators. Numbers
in cell define in how many circuits a given interaction was classified as activation, no action or repression. Red, blue and white cells mark activation,
repression and no action correspondingly. Light red and light blue cells define insignificant activation and insignificant repression correspondingly.
Cells colored in grey define the situation in which a parameter takes both negative and positive values and therefore the type of regulation is not
obvious.
doi:10.1371/journal.pcbi.1002635.g002
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clarify insignificance or unreliability of parameter estimates with

large confidence intervals. For example, we derive non-identifia-

bility of TKH from the large size of its confidence interval and at the

same time the analysis of the sensitivity matrix allows us to detect the

subset of parameters TKH and ET
K with high mean collinearity index

equal to 7.76 (see Table 1). Thus, poor identifiability of TKH can be

explained by correlation between two regulatory parameters, that is

reflected in their high collinearity index.

The gene network topology inferred from both classifying the

parameter values and parameter identifiability analysis is present-

ed in Figure 2C. As Figure S4 shows it is largely in agreement with

topologies predicted by earlier models [13,31,34,47]. Strong

constraints for mutual repression are present for kni and hb, which

show complementary expression patterns. Besides, strong repres-

sive action exert both Kr on hb and Hb on gt. Some previous

models had predicted the repressive action of Kr on hb [31], while

most showed no interaction [13,34,47]. Many repressive interac-

tions between gap genes show weaker constraints toward

repression, and interestingly we have found very weak or no

dynamical constraints for repression of Gt on Kr, the interaction

with strong constraint for repression in all wild type gene circuit

models [13,31,34,47,48]. In addition our model predicts weak

repressive interactions between Kni and gt and Kr and kni. In

earlier gap gene circuit models the first interaction was predicted

as no interaction [13], activation [34] or activation in about half

the circuits, and repression in the other half [31]. The repressive

action of Kr on kni is only observed in our model, all other models

predicted no interaction between the two genes. In addition in

current model Bcd shows activation of hb in approximately the

same number of circuits as it shows repression, while in all

previous models this interaction was predicted as activation. Weak

activation of gt by Tll is now present in 10 parameter sets, while

previous results predicted this interaction as repression. Finally our

model predicts no interaction between Tll and hb. Some previous

models had classified this interaction as activation [31,34], while

other predicted it as repression or no interaction [13,48,49].

Mechanism of alteration of gap gene expression patterns
in Kr mutants

Null mutation in Kr gene results in strong alteration of expression

patterns of almost all zygotic segmentation genes. In gap gene

network this mutation manifests in significant reduction of gap gene

expression levels in cycle 14A, as well as in large shift of posterior Gt

domain and overlap of positions of posterior Gt and Kni domains.

Previous gap gene circuit models fail to correctly model the gap

gene expression patterns in the embryos homozygous for null

mutation in a trunk gap gene. A new model introduced here

correctly reproduces the characteristic features of gap gene

expression in Kr null mutants and in the posterior half of the

blastoderm. To investigate the mechanism responsible for strong

alteration of the expression patterns of gap genes in Kr null

mutants we have performed the detailed graphical analysis of gap

gene regulation in the posterior of the embryo. This analysis

revealed the following regulatory principles.

In both Kr mutants and wild type the posterior Hb domain is the

last gap domain to form; its expression is initiated in cleavage cycle

13 and the domain retracts from the posterior pole at temporal

class 2 of cycle 14A. Later the expression level in the posterior Hb

domain increases gradually up to temporal class 7 and diminishes

at the very end of cycle 14A in wild type embryos, while in

mutants the level of expression is nearly the same as in wild type

until time class 3, but declines afterwards.

In the model, combined activating inputs by Cad and Gt are

responsible for hb expression in early cycle 14A. At later time (from

time class 3 onward) hb autoactivation starts to play role and it

gradually supplements activation by other factors, which strength

decreases in both genotypes. In mutants the positional dynamics of

Hb domain resembles that in wild type, while the anterior shift of

Gt domain is much larger. Larger anterior shift of Gt domain

causes stronger decrease in activation contribution by gt to the Hb

domain (Figure S5). This effect together with smaller autoactiva-

tion level may cause the fall in accumulation of Hb in Kr mutants.

We do not include hkb, the gene responsible for formation of the

posterior boundary of the Hb posterior domain, in our model and

Figure 3. 95% confidence intervals for estimates of parameters
of a consensus circuit (circuit C5, see Table S2). Regulatory
weights are labeled by single-letter notations of genes: hb(H), Kr(K),
gt(G), kni(N), bcd(B), cad(C), tll(T). The first letter corresponds to the
target gene (e.g., HK stands for THK ).
doi:10.1371/journal.pcbi.1002635.g003

Table 1. Two- and three-dimensional subsets of regulatory
weights with mean collinearity indices higher than 7.

Parameter combinations Collinearity index #

TKK EB
K

12.21 10

TKG EC
K

10.27 1*

TKH EB
K

9.99 11

EB
K ET

K
9.43 11

TKH TKK 7.93 7

TKH ET
K

7.76 11

THH ET
H

7.16 5

TGG TGN ET
G

10.03 8

THH TGH EB
G

7.42 4

TGG TGN EB
G

12.11 1*

TGG TGN EB
N

8.27 1*

TGG TGN ET
N

10.26 1*

TKG EB
K TGK 9.75 1*

TKG ET
K TGK 9.54 1*

TKG EC
K TGK 8.76 1*

Column # is the number of circuits in which the collinearity index exceeds the
threshold value. The parameter combinations marked by * were only detected
in a single C6 circuit (see Table S2). Regulatory weights are labeled by single-
letter notations of genes: hb(H), Kr(K), gt(G), kni(N), bcd(B), cad(C), tll(T).
doi:10.1371/journal.pcbi.1002635.t001
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therefore only the mechanism underlying the formation of the

anterior boundary can be analyzed. In wild type this boundary is

formed by joint repression by Kr and Kni, while in Kr mutants Kni

is the only repressive input, which strength diminishes with time

due to decrease in kni expression level.

Gt posterior domain forms in cycle 13. In wild type embryos the

expression of gt in this domain reaches maximum at time class 5

and then declines. In Kr null mutants gt expression is lower than in

wild type, it grows up to time class 4 and significantly declines

thereafter (Figure 1D,G). In mutants the anterior shift of gt

posterior domain is much larger than in wild type: by gastrulation,

the difference in position of gt domain in mutants and wild type

embryos constitutes 10% EL and Gt domain overlaps Kni

domain.

Cad and Gt autoactivation contributes activating inputs on

posterior Gt domain (Figure 4). Both in Kr mutants and wild type

embryos the strength of Cad activating input decreases by

gastrulation, however in mutants this reduction is larger, as Gt

domain shifts closer to the anterior end of the embryo against

gradient of Cad concentration (Figure 4C). It is obvious that

weaker activation of gt by Cad will lead to lower level of gt

autoactivation within its domain. Indeed, by time class 7

autoactivation contributes strongly to expression of gt only in

wild type. This provides a straightforward mechanism for

reduction in the level of gt expression in the posterior of the Kr

mutant embryos: the decrease of activating contribution by Cad

and diminishing gt autoactivation result in downregulation of gt

expression.

It should be noted that in mutant a small level of Hb repression

is evident across the middle region of the model spatial domain at

all times (Figure 4B). This repression is caused by the spurious

expression of hb in the region of 60–77%EL (see Figure 1) and

could be responsible for decrease in the gt expression level.

However the exclusion of this elevated expression from the model

(by setting Gt input into hb expression to zero) does not lead to

increase in the gt expression level (Figure S6) in mutants, that

makes it unlikely that Hb repression contributes significantly to the

low levels of gt.

Kr and Kni repression is involved in the positioning of the

anterior boundary of the Gt posterior domain in wild type

embryos (Figure 4). In mutants Kni does not significantly

contribute to this boundary formation, that can be accounted

for its small expression level. Besides by time class 7 Gt shifts to the

anterior border of the model spatial domain. All this precludes the

conclusions on the possible mechanisms of the anterior boundary

formation of Gt domain in Kr mutants.

The posterior boundary of the Gt domain depends almost

exclusively on very strong repression by Hb both in wild type

embryos and Kr mutants (Figure 4). The accumulation of Hb in

the posterior region causes increase in both levels and extent of this

repression over time. This in turn leads to an anterior shift of Gt

domain. In Kr null mutants the lack of gt repression by Kr and very

weak repression of gt by Kni allows Gt posterior domain to move

further than in wild type to the territory of kni expression. Thus,

the mechanism underlying the shift in posterior Gt domain in Kr

mutants is equivalent to those of other gap domains in wild type

embryos: shift happens because of the almost absence of repression

by the adjacent anterior domain (Kni), while it becomes

increasingly repressed posteriorly (by Hb, in this case).

In wild type embryos kni expression is first detected in cycle 13;

it reaches maximum by temporal class 5 of cycle 14A. In Kr

mutants the level of kni expression remains constantly low

throughout cycle 14A (Figure 1E,H) and the anterior shift of the

Kni domain maximum constitutes only 1.8% EL.

In the model cad and kni autoactivation provides activating

inputs on Kni domain. Both in Kr mutants and wild type embryos

the strength of Cad input decreases by gastrulation, however in

mutants this decrease is stronger, happens faster and is accompa-

nied by diminishing kni autoactivation. By temporal class 7

autoactivation of kni is present at significant level only in wild type.

Similar to Gt domain a small level of hb repression evident across

the middle region of the model spatial domain (Figure 5B) is

unlikely to contribute to the low levels of kni as the exclusion of

this spurious expression from the model does not lead to increase

in the kni expression level (Figure S6).

In wild type embryos Kr repression is responsible for positioning

the anterior boundary of Kni domain, while in Kr mutants this

boundary forms outside the model spatial domain. The posterior

boundary of this domain depends on repression by Gt, Hb and Tll

in both genotypes, however Tll repression is only retained in a

region posterior of 80% EL. In Kr mutants Gt repression spreads

into a territory where kni expression domain forms, preventing the

increase of gene expression level in this domain.

The analysis performed above points on the central role of hb in

gap gene regulation in Kr{ embryos. To support the validity of

this prediction the in silico experiments were done. In these

experiments, instead of setting RKr to zero (as is usually done to

model mutant genotype), we multiplied it to the scaling coefficient

h[½0,1�, which gradually decreases from 1 to 0, and inspected

changes in gap gene expression in the posterior of the embryo. It is

evident in Figure 6 that decrease in Kr regulatory input is most

important for hb dynamics. Besides, this experiment demonstrates

the monotonous dependence of change of gap protein concentra-

tions on h, that may be an additional argument for validity of

numerical results, obtained independently in two genotype

modeling. It should be stressed that though such an experiment

does not has a special biological sense, it makes it possible to

predict, which component of the network is subject to biggest

impact by mutation. The last hardly could be revealed in

biological experiments.

Discussion

In this paper we investigate the mechanism of alteration of gap

gene expression patterns in null mutants for one of trunk genes, Kr.

We applied the integrative approach, which combines on one

hand the characterization of expression of gap genes in Kr mutants

in a quantitative manner and on the other the gene circuit method,

a system-level approach to refine gap gene network topology and

reveal mechanisms responsible for the alteration. However before

considering these biological questions in detail below, we wish to

discuss several improvements in gene circuits method, which for

the first time make it possible to correctly reproduce gap gene

expression patterns in mutant for a trunk gap gene. We believe

that these methodological improvements have important implica-

tions for reverse engineering of gene networks in general.

Revised gene circuit model
The failure of gene circuit models to correctly reproduce

expression patterns in gap gene null mutants could be due to a

variety of reasons: it is possible that our data does not correctly

reflect the absolute concentrations of gap gene proteins and some

scaling of expression patterns in the data is necessary or

production delays may be required in the model to eliminate

premature initiation of gap-gap gene interactions. Alternatively, a

more detailed consideration of molecular mechanisms responsible

for gap gene expression may be required for mutant simulation. At

present we do not have a satisfactory understanding of such
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mechanisms for any of the gap genes, however some important

regulatory principles emerged from experiments with reporter

constructs, DNAse protection assays, Chip-chip experiments and

large-scale computational screens to identify and analyze gap gene

enhancers. These experiments demonstrated that cis-regulatory

elements (CRE) of segmentation genes often reproduce only one

Figure 4. Interactions involved in regulation of Gt posterior domain. A. Modeled expression patterns at temporal classes T1, T3 and T7. B.
Regulatory contributions in wild type (center) and mutant (right). C. Temporal change in regulatory contributions at position corresponding to Gt
domain maximum. Colored areas are given by DTabvb

i D or DEe
ave

i D in equation (1) and reflect the strength of a given interaction at a specific point in
space and time. All plots are based on best scoring solution (circuit C9, see Table S1 for parameters).
doi:10.1371/journal.pcbi.1002635.g004

Figure 5. Interactions involved in regulation of Kni posterior domain. A. Modeled expression patterns at temporal classes T1, T3 and T7. B.
Regulatory contributions in wild type (center) and mutant (right). C. Temporal change in regulatory contributions at position corresponding to Kni
domain maximum. Colored areas are given by DTabvb

i D or DEe
ave

i D in equation (1) and reflect the strength of a given interaction at a specific point in
space and time. All plots are based on best scoring solution (circuit C9, see Table S1 for parameters).
doi:10.1371/journal.pcbi.1002635.g005
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element of an endogenous gene expression pattern when placed

upstream of a reporter gene [35–37] and that different CRE of

one gene can have different transcription binding site composition,

i.e. different regulatory inputs. For example, three gt CREs drive

reporter gene expression in the posterior (gt_(-3)) and distinct

anterior domains (gt_(-6), gt_(-10)), respectively, while another

element (gt_(-1)) reproduces endogenous gt expression in both

anterior and posterior domains [36,37]. Moreover computational

screens predict that the anterior and posterior gt domains have

different regulatory inputs. It is currently unclear how gt CREs

interact in regulation of the endogenous gt gene, however it is

obvious that the representation of the gap gene regulatory

interactions by a single parameter in the gene circuit model is

hardly suitable for theoretical description of such a complex

mechanism and should be substituted by more realistic represen-

tation.

As a first step in this direction we introduced a revised model

which builds on gene circuit method but treats domains with

different regulatory inputs separately. A straightforward way to

implement such a modification is to narrow down the spatial

domain of the model by considering only the posterior half of the

blastoderm, in which each of the trunk gap genes is expressed in

one domain. Here we demonstrated that the new model correctly

reproduces the characteristic features of gap gene expression in Kr

mutants, the greater shift of posterior Gt domain than in wild type

and significant decrease in the level of gap gene expression in the

second half of cycle 14A in particular. The successful modeling of

expression patterns in a mutant for a trunk gap gene is a significant

achievement of this work. This result also clearly indicates that the

oversimplified representation of transcriptional regulation in the

previous models is one of the reasons for unsuccessful attempts of

mutant simulations.

Most of previous gap gene circuit models represent Bcd as a

time-constant gradient and did not consider Cad data from late

time points just before the onset of gastrulation [12,32]. It was

reasonable to implement such an approach when the mechanism

for precise positioning of segmentation gene expression domains

was investigated, however an intriguing feature of Kr mutants is the

reduction in the level of gap gene expression in the second half of

cycle 14A, a phenomenon which understanding requires a precise

consideration of activators responsible for gap gene expression. As

we have shown before [10], Bcd protein reaches its maximal level

near the beginning of cycle 14A and thereafter starts to decline

slowly, while Cad expression in abdominal region starts to

gradually decrease from time class 3 onward. Accordingly in the

model we implement Bcd as a time-variable input and use data on

late Cad expression to represent the rapidly changing expression

dynamics of these two genes. This allows us to demonstrate that

decrease of activating input by Cad and weakening of autoacti-

vation are responsible for reduction in the level of gt and kni

expression in the posterior of the Kr mutant embryo.

In gene circuit models the regulatory topology of the network is

obtained by solving the inverse problem of mathematical

modeling, i.e. by fitting the model to the data [29]. To obtain

the estimates for regulatory parameters that predict a specific

network topology in mutants we fitted the model to gap gene

expression patterns in wild type and in embryos with homozygous

null mutation in Kr gene simultaneously. The rationale behind

such an approach is that, as it was shown in the Parameter

identifiability and Correlations section, using the parameters of the

wild type gap gene network as specific constraints on regulatory

weights in mutants substantially increases the statistical signifi-

cance of fitted parameter values.

Our results demonstrate the existence of parameter sets

describing gap gene expression in two genotypes simultaneously

and thus the applicability of the gap gene circuit formalism to

model genotypes of trunk gap gene mutants. One finds hard to say

whether the overfitting is the reason why these parameter sets were

not discovered during the fit to the wild type data alone.

Overfitting is defined by a fine balance between the number of

model parameters and the level of details used to describe the

system. The qualitative models usually require small amount of

parameters. However, when the data under modelling becomes

more quantitative, the number of parameters usually increases,

and in the general case there are no methods to find the optimal

number of parameters, exceeding which will lead to overfitting.

We treat the possible overfitting problem by applying the

practical identifiability analysis of the found parameter values. The

parameter estimates obtained in such a way were further studied

by applying identifiability analysis. Two approaches were used.

Figure 6. Simulation of Kr null mutants. A. Modeled expression
patterns (lines) and experimental data (lines with symbols) on gap gene
expression in wild type. B–D. Data on gap gene expression in Kr mutant
(lines with symbols) and model output (lines) at the values of h equal to
0.6, 0.4 and 0.025. h decrease is indicated by arrow.
doi:10.1371/journal.pcbi.1002635.g006
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First the sensitivity of the model to parameter changes and

identifiability of parameters in the vicinity of the model solution

were analyzed on the basis of confidence intervals of parameter

estimates. This analysis showed that the most of regulatory

parameters are well identified and their estimates can be used to

make conclusions about the type of gene interaction. Secondly, as

parameter non-identifiability can be a consequence of their strong

correlation we applied the collinearity analysis of the sensitivity

matrix to reveal the subsets of correlated parameters. We found

that non-identifiability of some parameters detected by the method

based on confidence intervals can be explained by the correlations

between different parameters. Our analysis also demonstrated that

parameters of the model fitted to two genotypes are better

identifiable than those of the model fitted to wild type data only.

Mechanism of transformation of gap gene expression
domains in Kr null mutants

Our quantitative analysis of gap gene expression in Kr{

mutants confirms and extends results from earlier studies. It was

previously reported that in cycle 14A the shift of posterior Gt

domain is much larger than in wild type and that this domain

overlaps Kni domain [15,18]. It was also demonstrated that the

level of Kni expression in Kr mutants is reduced. Here we showed

that by gastrulation the difference in position of gt domain in

mutants and wild type embryos constitutes approximately 10%

EL. Contrary to posterior Gt domain, the anterior shift of the Kni

domain maxima in Kr mutants constitutes only 1.8% EL, as a

result these domains overlay each other. The level of kni

expression remains constantly low throughout cycle 14A. Decrease

in the expression levels of both kni and gt in Kr mutants was shown

in earlier qualitative studies [15,42,50,51]. High temporal

resolution of our dataset enabled us to find out that the decline

in gene expression level in the second half of cycle 14A turned out

to be an intrinsic property of all gap domains.

The regulatory mechanisms for expression of the trunk gap

genes in the posterior of the embryo predicted by our model r

summarized in Figure 7A: (1) Cad activates zygotic gap gene

expression. (2) Autoactivation is involved in maintenance and

sharpening of hb, Kr, kni, and gt domains. (3) Trunk gap genes

either repress each other or do not interact. An important

exception is activation of hb by Gt. (4) Bcd activates Kr, gt, kni in all

parameter sets, however identifiability analysis showed that this

activation is insignificant. In case of hb Bcd shows activation in

approximately the same number of circuits as it shows repression.

(5) In the posterior terminal region of the embryo Tll represses Kr

and does not interact with hb.

In general this regulatory principles are in agreement with the

results from previous studies (see Figure S4), however some

differences exist. This is not surprising, if to consider that contrary

to previous studies the model was fitted to two genotypes

simultaneously. The rationale behind such an approach is to use

the parameters of the wild type gap gene network as specific

constraints on regulatory weights in mutants in order to obtain the

consistent parameter estimates for both genotypes on one hand

and on the other hand to preserve the characteristic features of

gene regulation in mutant.

Previous models predict the mutual repression between non-

overlapping gap genes hb and kni, as well as gt and Kr. Indeed, our

model showed strong constraints for mutual repression between kni

and hb, however identifiability analysis classified the action of Gt

on Kr as insignificant repression. This discrepancy can be

explained by the fact that in our model the parameters

corresponding to Kr gene are estimated using data points from

wild type embryos only and therefore their identifiability is inferior

to that of parameters estimated from the whole dataset. The non-

identifiability of parameters describing the action of Bcd on gap

genes in Kr-deficient gap network may be explained by the

exclusion from the model of the anterior half of the blastoderm,

where Bcd contributes stong activating inputs on the anterior and

central gap gene domains [12,52]. Bcd activating inputs on

posterior domains are smaller and the interactions of gap genes

come into play to dynamically position the posterior gap domains.

In the gap gene circuit models the motif which includes Tll is

the most variable component of the gap network (see Figure S4).

The network reconstructed in this work constitutes no exception to

this pattern: our model predicts no interaction between Tll and hb,

while some previous models had classified this interaction as

activation [31,34] or predicted it as repression or no interaction

[13,48,49]. In previous models Tll exerts repressive action on gt

and kni, however in our model these parameters are non-

identifiable. In addition our model predicts repression of Kr by

Tll, however in the other model [34] this parameter was classified

as non-identifiable.

Interestingly that in spite of the differences in gene regulation

between the models discussed above the asymmetric cascade of

cross-repressive interactions between gap genes with overlapping

expression domains is preserved in the current two genotype

model. As is evident from inspection of Table S1 the regulatory

weights TGH and TNG are larger than the reciprocal weights THG

and TGN in all circuits, while the regulatory weight TKN is larger

than the reciprocal weight in 9 out of 11 circuits. These

asymmetrical interactions lead to anterior shifts in domain

positions both in wild type and mutant, as will be discussed below.

The regulatory mechanisms predicted by the model are mainly

in agreement with experimental evidences. During cleavage cycle

14A both Cad and Bcd continue to activate gap genes, however

the Bcd gradient starts to rapidly decay about 10–15 min before

gastrulation [41,53]. The evidence for autoactivation of gap genes

is not so clear. In Kr and gt mutants expressing non-functional

proteins Kr domain is narrowed and weakened [16], and the

intensification of Gt domains during cycle 13 is delayed [42].

Besides computational studies predict that both Kr and Gt bind to

some of their own regulatory elements [37]. The autoactivation is

not required for expression of the posterior Hb domain [21].

Repressive feedback between hb and kni and gt and Kr is suggested

by many experimental results [15,42,54]. There is experimental

evidence for additional repressive interactions between gap genes

with overlapping expression domains. Repression of gt by Hb is

supported by the fact that the posterior Gt domain fails to retract

from the posterior pole of the embryo around mid-cycle 14A

[15,42], while no gt expression can be detected in embryos over-

expressing hb [42]. The central Kr domain expands posteriorly

into regions with reduced or lacking kni activity in mutants

[22,55,56]. There is a Kni binding site in the Kr regulatory region,

which overlaps with a Bcd activator site [50]. It has been proposed

that Kr is required for kni activation, however, this effect turned out

to be indirect [51,57]. Kr and hb are the only pair of overlapping

gap genes that show mutual repression, however there is some

ambiguity in the genetic evidence. Some authors have reported a

posterior expansion of the anterior Hb domain in Kr mutants

[54,58]. Repression of Kr by Hb is suggested by an anterior

expansion of the central Kr domain in hb mutants [22,55,56,59–

61] and multiple Hb binding sites have been identified in the Kr

regulatory region [60]. Evidences on repression of kni by Gt and

repression of gt by Kni are ambiguous [15,42,51,62], e.g. a

posterior expansion of the abdominal Kni domain was reported in

one study [42], this effect was not seen in another [62]. Terminal

gap genes have strong repressive effects on trunk gap gene gt, kni
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and Kr [38,57,63]. In contrast the posterior domain of Hb is

present and expanded to the anterior in embryos over-expressing

tll [64]. This suggests that Tll activates hb expression in its posterior

domain, however, this interaction is probably indirect, since

posterior Hb is present in tll;kni double mutants.

The important corollary that follows from the inferred topology

(Figure 7A) is the prediction that in Kr,kni double mutants the

anterior border of Hb posterior domain will not be properly set as

both regulators responsible for formation of this border are

deficient. We confirmed this prediction in experiment (Figure 7B).

This experimental result strongly supports the model.

To explain mechanisms responsible for alteration of the gap gene

expression pattern in Kr mutants we implement the analysis of

regulatory loops and study the dynamical change of Cad contribu-

tion to a target gene regulation in wild type and mutants. Cad is the

main activator of gap genes in the posterior of the embryo.

This analysis revealed two mechanisms responsible for alter-

ation of the posterior gt expression pattern in Kr mutants. First, gt

expression level decreases because the activating effect of Cad on gt

diminishes with time (Figure 4). Secondly, two interactions from

Kr to gt and hb responsible for formation of the anterior borders of

Gt and Hb posterior domains correspondingly are impaired in

Kr{ embryos (Figure 7A), that makes it possible for Gt posterior

domain to move forward to the anterior due to repression by Hb.

The mechanism responsible for reduction of kni expression level

in Kr mutants is essentially the same as described for gt posterior

Figure 7. Summary of predicted gap gene regulatory mechanisms (A) and hb expression pattern in Kr, kni, Kr;kni mutants and wild
type embryos from time class 6 (B). In A gap domains are shown schematically, with anterior to the left, posterior to the right. Background color
indicates the most prominent activating input by Cad. Autoactivation is indicated by double arrows. T-bars indicate repressive gap-gap interactions.
Dotted lines show interactions present in wild type only.
doi:10.1371/journal.pcbi.1002635.g007
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domain: Kni level reduces because the activating effect of Cad on

kni decreases with time (Figure 5) and because the interaction

between Kr and gt is deficient that makes it possible form Gt

repression to spread into a territory where kni expression domain

forms (Figure 7A).

It should be noted that the difference in Cad regulatory effect on

the posterior gt and kni expression between mutant and wild type is

not very large (see Figures 4C and 5C). This fact could raise doubt

on the role of Cad in the reduction of gap gene expression levels in

mutants. However recently it was demonstrated that only a 3%

overlap exists between transcription factor occupancy and gene

response to TF knockout [65,66]. This and other results (discussed

in detail in [67]) point that the relations between TF concentration

and function are non-linear and that weak regulatory events and

small differences in regulation may play a biologically significant

role in the quantitative control of complex biological processes.

Our model can also explain the mechanism, which provides for

decrease of the hb posterior domain expression level: such a

reduction happens because Gt stops to activate hb due to its shift

(Figure S5). However it should be noted that the activation of hb by

Gt predicted by all gene circuit models [13,31,34,48] is currently

not supported by the literature.

In our model hb activation by Gt leads to the elevated and

spurious expression of hb in the region of 60–77% EL (see

Figure 1). The exclusion of this elevated expression from the model

does not cause an increase in both gt and kni expression levels

(Figure S6), that makes it unlikely that Hb repression contributes

significantly to the low levels of these domains in mutant.

We note finally that the reduction of gap gene expression levels

is peculiar not only for Kr mutants. For example hb expression (see

Figure 7B) and gt posterior domain levels [26] are reduced in kni

mutants. In wild type embryos the gap gene expression levels stop

to grow in the second half of cycle 14A and slightly decrease by

gastrulation [10]. Mutations in gap genes aggravate this effect, that

underlines the importance of intact network for maintenance of

normal gap gene expression levels.

Methods

Acquisition of quantitative data on gene expression
We obtained Kr{ embryos from Kr1 loss-of-function allele

(FlyBase ID FBal0005790) [17]. Kni{ embryos were collected

either from Df(3L)ri-79c or Df(3L)ri-XT1, ru[1] st[1] e[1] ca[1]

stocks. Kr;kni double mutant embryos were made by crossing Kr1

and Df(3L)ri-79c flies.

3–4 hr old embryos from flies carrying Kr1 mutation [17] were

collected, fixed and stained as described elsewhere [68,69]. We

used primary antibodies against Kr, Knirps (Kni), Giant (Gt),

Hunchback (Hb) and Even-skipped (Eve) [68,70] and secondary

antibodies conjugated to Alexa Fluor 488, 555, 647, and 700

(Invitrogen). Each embryo was additionally stained with either

anti-histone H1-4 antibody (Chemicon) or Hoechst 34580

(Invitrogen) to mark the nuclei.

Laterally oriented Kr null embryos, showing zero level of Kr

expression and severely transformed Eve pattern [15], were

scanned using Leica TCS SP2 and Leica TCS SP5 confocal

microscopes as described [69]. For each experiment, the

microscope gain and offset were set on maximum expression level

of a given gene in wild type patterns and then these settings were

applied for mutants. The 8-bit 1024|1024 digital images of gene

expression in Kr mutants were acquired for cleavage cycle 14A.

For spatial registration and data integration, embryos from

cleavage cycle 14A were distributed into 8 time classes about

6.5 min each on the basis of measurement of degree of membrane

invagination, as well as characteristic features of the even-skipped

gene expression pattern [53]. The quantitative gene expression

data and integrated patterns for each temporal class of cycle 14A

were obtained as previously described [33,69,71,72] using recently

developed packages ProStack and BREReA [73,74]. The one-

dimensional integrated patterns of gene expression in wild type

were taken from FlyEx database (http://urchin.spbcas.ru/flyex/,

[75]).

Gene circuit models
Gene circuit models [12,13,31,76,77] describe the dynamics of

segmentation gene expression in the syncytial blastoderm of

Drosophila melanogaster. The circuits used in this paper consider the

time evolution of protein concentrations of gap genes hb, Kr, gt, and

kni in two genotypes: wild type and in embryos with homozygous

null mutation in Kr gene. To make separate treatment of domains

with different regulatory inputs possible we narrowed down the

spatial domain of the model by considering only the posterior half

of the blastoderm (region from 47 to 92% embryo length (EL)), in

which each of the these genes is expressed in one domain. We

consider a one-dimensional row of nuclei along the anteroposte-

rior axis of the embryo, as anteroposterior (A-P) and dorsoventral

(D-V) patterning systems are largely independent of each other in

the presumptive germ band of the blastoderm embryo. The

modeled region extends over 45% of the A-P axis, from the

minimum of gt expression inbetween third and fourth gt stripes to

the posterior border of the posterior hb domain (Figure 1).

Gene circuits function according to three rules: interphase,

mitosis and division [29]. During mitosis, only protein transport

and protein decay govern the dynamics as transcription shuts

down and nascent transcripts are destroyed [78]. Mitotic division

is modeled as a discrete change in the state of the system. At the

end of a mitosis, each nucleus is replaced with its daughter nuclei,

the inter-nuclear distance is halved and the daughter nuclei inherit

the state of the mother nucleus. During interphase the change in

concentration va
i for each gap gene product a in each nucleus i

over time t is described by the following system of ordinary

differential equations (ODEs)

dva
i =dt~Rag(ua

i )zDa(n)½(va
i{1{va

i )z(va
iz1{va

i )�{lava
i : ð1Þ

The three terms on the right-hand side of the equation represent

protein synthesis, protein diffusion and protein decay.

ua~
PNg

b~1 Tabvb
i z

PNe

e~1 Ee
ave

i zha is the total regulatory input

to gene a. Ng is the number of gap genes in the model (hb, Kr, kni

and gt), Ne is the number of external regulatory inputs (bcd, cad and

tll genes, which are not regulated by gap genes, but regulate these

genes). Tab and Ee
a are genetic inter-connectivity matrices that

characterize the action of regulator b or external input e on gene a.

The sizes of these matrices are Ng|Ng and Ng|Ne correspond-

ingly. ha is a threshold parameter of the sigmoid regulation-

expression function g(u)~0:5½(u=
ffiffiffiffiffiffiffiffiffiffiffiffi
u2z1
p

)z1�. Ra is the maxi-

mum synthesis rate, Da the diffusion coefficient, and la the decay

rate of the product of gene a.

The gap gene circuits used in this study consider events

occurring during cleavage cycles 13 and 14A and ending at the

onset of gastrulation [3]. The divisions are carried out according to

a division schedule based on experimental data. Time t is

measured in minutes from the start of cleavage cycle 13. The

interphase of cycle 13 lasts for 16.0 min, and its mitosis from 16.0

to 21.1 min. At t~21:1 min, the thirteenth division is carried out

by applying the division rule. The interphase of cycle 14A starts
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immediately after division, and lasts until gastrulation at

t~71:1 min. The cleavage cycle 14A is subdivided into 8

temporary equivalent classes, as a result the model is compared

to data at 9 time points, one time point for cycle 13 (C13), and

eight points for cycle 14A (time classes T1–T8).

Kr, gt, and kni are exclusively zygotic, and are not present at

significant levels before cycle 13 [10], thus they have initial

conditions of zero. For hb, the expression data from cycle 12 is

used as the initial condition. hb, which is expressed both maternally

and zygotically, shows a large increase in expression in cycle 13

[38,39], indicating commencement of its zygotic expression. Non-

zero initial conditions for external inputs Bcd, Cad and Tll are

obtained by piecewise linear interpolation of integrated expression

data at midpoint of C12 (t = 26.2 min) and midpoint of C13

(t = 10.55 min). Moreover, in order to solve the right hand side of

equation (1), the concentrations of external inputs must be

supplied for any time in the duration of the model. This is

implemented by linear interpolation between data points at C13

and eight time classes of cycle 14A (T1–T8), with data points

corresponding to midpoints of C13 and each time class.

As was suggested in previous studies [79] the zero flux boundary

conditions were chosen at both ends of modeling interval because

other numerically feasible alternatives, such as periodic boundary

conditions, are not biological. The actual flux through the

boundaries is nonzero but depends on gene expression in a

complicated manner that may add the unneeded overhead for

numerical simulations.

Parameter estimation
The model parameters are estimated by fitting the model output

to experimental data. This is performed by minimization of cost

function based on the sum of squared differences between gap

protein levels in the model and data.

DEEP - Differential Evolution Entirely Parallel method is

applied to biological data fitting problem. We introduce a new

migration scheme, in which the best member of a branch

substitutes the oldest member of the next branch, that provides

a high speed of the algorithm convergence [46].

Differential Evolution Entirely Parallel method.

Differential Evolution (DE) is a stochastic iterative optimization

technique introduced by Storn and Price [80]. It is an effective

method for minimization of various and complex quality

functionals. The power of DE is based on the fact that under

appropriate conditions it can attain the global extremum of a

functional; the weakness of this method is in high computational

demand and dependence on control variables, that provides a

motivation for its parallelization. Previous work in this area has

produced a number of methods that perform well on particular

problems.

DE starts from a set of randomly generated parameter vectors

qi, i~1,:::,NP. The set is called population, and vectors are called

individuals. The population on each iteration is referred to as

generation. The size of population NP is fixed. The name of the

method comes from the fact that the difference between members

of the current population is used to generate offsprings (see Figure

S1).

Being an evolutionary algorithm, DE can be easily parallelized

due to the fact that each member of population is evaluated

individually. The whole population is divided into subpopulations

that are sometimes called islands or branches, one per each

computational node. This eliminates the restriction on the number

of individuals. The individual members of branches are then

allowed to migrate, i.e. move, from one branch to another

according to predefined topology [81]. The number of iterations

between migrations is called a communication period.

The Differential Evolution Entirely Parallel (DEEP) method,

developed by us [46], takes into account the age of an individual

that is defined as the number of iterations during which this

individual survived without changes. The fact that a certain

parameter set has not been updated during several iterations

indicates that this set corresponds to the local minimum of the

quality functional. As we seek the global minimum such a

parameter set can be deleted from the population. The set of

parameters corresponding to the minimal functional value found

so far in a source parallel branch is copied in place of the deleted

parameter set in a target branch.

The computational nodes are organized in a ring and

individuals migrate from node k to node kz1 if it exists and

from the last one to the first one. In [46] we have shown that the

migration scheme provides a high speed of the algorithm

convergence and the parallel efficiency is about 80% for the 50

nodes and 55% for 100 nodes. The reliability of the method was

demonstrated by its ability to recover model parameters with

about 1% accuracy.

Other details can be found in Supplementary information (See

Text S1).

Identifiability analysis
For the comprehensive analysis of modeling results it is

necessary to know how reliable the parameter estimates are. In

practice insufficient or noisy data, as well as the strong parameter

correlation or even their functional relation may prevent the

unambiguous determination of parameter values. Such parameters

are related to as non-identifiable.

To reveal non-identifiable parameters the method based on

confidence intervals [49,82] is applied. The confidence intervals

are constructed for the parameter estimates bhihi in the vicinity of

model solution and are given by

(hi{bhihi)
2
ƒ

m

N{m
S(h)Fa,m,N{m(J(h)T J(h)){1

ii , ð2Þ

where J(h) is the sensitivity matrix, the N|m matrix of partial

derivatives of the model solution with respect to the parameter

vector; S(h) is the objective functional; Fa,m,N{m is an a-quantile

of F -distribution with m and N-m degrees of freedom. The size of

confidence intervals characterize the sensitivity of the solution to

parameter changes: the shorter is the confidence interval the more

reliable is the parameter estimate. If the most important feature of

the parameter estimate is its sign, the identifiable estimate must

have the confidence interval bounded away from zero. It is

important to mention that the confidence intervals are only

estimated precisely in case of independent parameters, if some

parameters are strongly correlated the confidence intervals are

overestimated. In other words the confidence interval (2) is the

whole area of the parameter variation as the other parameters take

any possible values from the m-dimensional confidence area (see

equation (1) and Figure 1 in Text S2). Besides, correlation of

parameters causes calculational errors due to ill-conditionality of

the sensitivity matrix. This issue is discussed in more detail in Text

S2.

The other method to detect interrelations between parameters is

the collinearity analysis presented in [83]. The method is suitable

for models with large number of parameters. The aim of the

method is to reveal the so-called near collinear columns of the

sensitivity matrix, the matrix of partial derivatives of the model

solution with respect to the parameter vector, and thus detect
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subsets of non-identifiable parameters. Identifiability of a param-

eter subset is characterized by collinearity index defined as

ck~
1ffiffiffiffiffi
lk

p , ð3Þ

where lk is the minimal eigenvalue of the submatrix of the Fisher

information matrix. High values of ck indicate that the subset of

parameters is poorly identifiable due to relations between at least

two parameters. The aim of the analysis is to detect all the

parameter subsets of any dimension with high collinearity index

such that they do not contain subsets of lower dimension for which

the collinearity index is also high. Thus we reveal all the non-

identifiable parameters.

For more detailed description of the methods see Text S2.

Supporting Information

Figure S1 Geometric interpretation of Differential Evolution.

(PDF)

Figure S2 95% confidence intervals for estimates of regulatory

weights, elements of genetic inter-connectivity matrix T in 11

circuits. Regulators and target genes are gap genes hb (H), Kr(K),

gt(G) and kni(N). Graphs are labeled by gene notations, the first

letter corresponds to the target gene (e.g., HK stands for THK ).

(PDF)

Figure S3 95% confidence intervals for estimates of elements of

genetic inter-connectivity matrix E in 11 circuits. Target genes are

gap genes hb (H), Kr(K), gt(G) and kni(N); external regulators are

bcd(B), cad(C) and tll(T). Graphs are labeled by gene notations, the

first letter corresponds to the target gene (e.g., HB stands for EB
H ).

(PDF)

Figure S4 Comparison of the gap gene network topologies

predicted by the current two genotype model (A) and earlier

models (B). Dashed lines show interactions with regulatory weights

that were either non-identifiable or classified into different

categories in different models.

(PDF)

Figure S5 Interactions involved in regulation of Hb posterior

domain. A. Modeled expression patterns at temporal classes T1,

T3 and T7. B. Regulatory contributions in wild type (center) and

mutant (right). C. Temporal change in regulatory contributions at

position corresponding to Hb domain maximum. Colored areas

are given by DTabvb
i D or DEe

ave
i D in equation (1) and reflect the

strength of a given interaction at a specific point in space and time.

All plots are based on best scoring solution (circuit C9, see Table

S1 for parameters).

(PDF)

Figure S6 Spurious expression of hb in the region of 60–77% EL

is not responsible for decrease in the gt expression level. Patterns

for mutant without the spurious domain shown in the right panel

were obtained with Gt input to hb expression equal to zero. To

compensate the decrease in repression level we set the gt and kni

autoactivation to 70% of values found by fitting the model to data.

The left panel is shown for comparison; it demonstrates that in

wild type embryos the autoactivation level decrease does not lead

to reduction of gt and kni expression to the levels observed in

mutants.

(PDF)

Table S1 Parameters of a representative gene network. Rows

correspond to target genes, columns to regulators hb (H), Kr(K),

gt(G), kni(N), bcd(B), cad(C) and tll(T). R - maximum synthesis rate,

D - diffusion coefficient, l - decay rate, t1=2 is a protein half-life

measured in minutes. Promoter thresholds h for all genes were

fixed at value 23.5. This reduces time needed for DEEP to find

the minimum. The values for diffusion coefficient D are given as

they appear in the equations so the units are min{1. To relate

these values to conventional diffusion coefficient, we should

consider the diffusion term in the model equations as a finite

difference approximation of the conventional diffusion term

containing the second order spatial derivative. The approximation

takes place at the 1D mesh of points that coincide with real nuclei.

That gives the following approximate formula for the conventional

diffusion coefficient d~s2|D, where s&5|10{6m is the

distance between adjacent nuclei. As the real diffusion coefficients

of the proteins in question haven’t been measured in live embryos

or such measurements are not available we can compare our

values with results for other proteins. For example, the diffusion

coefficient of Bcd was measured in live Drosophila embryos by

Gregor et al. [85] as 0:3|10{6m|s{1~18|10{6m|min{1.

By using the above formula, we get the following values for the

conventional diffusion coefficient for gap proteins obtained from

the fitting: dHb&22, dKr&13, dGt&7, and

dKni&16|10{6m|min{1. These values are realistic.

(PDF)

Table S2 Circuit parameter sets: 11 sets of parameter values that

optimize the transformed functional. Regulatory weights are

labeled by single-letter notations of genes: hb(H), Kr(K), gt(G),

kni(N), bcd(B), cad(C), tll(T).

(PDF)

Text S1 Supplementary methods. Parameter estimation.

(PDF)

Text S2 Supplementary methods. Identifiability analysis.

(PDF)
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