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Abstract

Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be
consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh
all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value.
In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when
they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases
where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where
subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback.
When introducing a cost associated with subjects’ response, we found that subjects exhibited a characteristic bias towards
low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making
processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that
both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative
fashion.
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Introduction

Biological organisms have evolved to succeed in environments

with considerable uncertainty [1]. One important way of dealing

with uncertainty is to develop models of the environment and to

form beliefs for prediction. Bayesian statistics provides a powerful

and unifying framework to deal with uncertainty not only in the

cognitive domain, but also in sensorimotor tasks [2]. Previous

studies have shown that sensorimotor integration in uncertain

environments is consistent with Bayesian integration by weighing

prior expectations and sensory evidence according to their

reliability [3–5]. In particular, it has been shown that the nervous

system is able to extract the statistics of variable environments and

to incorporate this information by modifying prior beliefs during

the process of learning [6]. The same formalism can also be used

to describe the weighing of information stemming from different

sensory modalities with different reliability, for example, when

integrating visual and haptic information. A number of previous

studies have shown that such multi-modal integration in sensori-

motor tasks is also in quantitative agreement with Bayesian

statistics [7–9].

More generally, internal models are thought to play an

important role during sensorimotor processing, for example, to

predict sensory consequences of one’s actions and to estimate the

state of body parts from noisy sensory feedback [10–12]. For

example, it has been shown that such estimation is consistent with

Kalman filtering, a particular form of Bayesian updating, when

subjects had to point to where they believed their hand was after

making reaching movements in the dark [10]. As a generalization

of this, Bayesian updating is also used as a module for estimation in

optimal feedback control models [13–16] that have successfully

explained a wide range of motor behaviors such as variability

pattern [13], the response to of bimanual movements to

perturbations [17,18], adaptation to novel tasks [19–21] and

complex object manipulation [22].

Bayes optimal decision-makers are, however, risk-neutral in the

sense that they weigh all possibilities based on prior expectation

and sensory evidence when they choose the action with highest

expected value. In contrast, a risk-sensitive decision-maker also

considers model uncertainty [23]. Intuitively, model uncertainty

implies that the probabilistic Bayesian model is only trusted to

some extent and that deviations from this model are possible

towards worst case outcomes (risk-averse) or towards best case

outcomes (risk-seeking)— especially if the predictions of the

model are imprecise. This model uncertainty leads to an

interesting interplay and biasing of estimation and control

processes in risk-sensitive decision-makers [24–26]. Consider,

for example, a goal keeper that tries to catch a ball flying towards

the edge of the goal. Not only will he combine his prior beliefs

about velocity, direction, etc. with his sensory evidence, but he

will also consider the fact that there are quite different costs

depending on which side of the goalpost the ball will most likely

end up. In other real-life situations the implications of risk-

sensitive estimation could even be more serious, for example

when considering evidence for low-probability events like the

possibility of a rare disease given some symptoms or the

possibility of an aeroplane or a space rocket crashing given a

malfunction signal from a noisy detector [27].

Recently, risk-sensitivity has been shown to be an important

determinant of motor behavior [28–31]. The main finding of these
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studies was that subjects choose their motor commands not only to

optimize the expectation value of some performance criterion, but

that they are also sensitive to the variability of the achieved

performance measure, which can lead to increased control gains

[28], increased (or decreased) hitting velocities [30] and accep-

tance of decreased mean effort [31] in environments where

performance is highly variable. However, there is an important

aspect of risk-sensitivity that these previous studies have not

considered: risk-sensitivity does not only affect the control process,

but also the estimation process in uncertain environments with

latent task variables that are not directly observable [24]. In

uncertain environments with latent variables risk-sensitivity leads

to effects of model uncertainty, whereby estimation can become

biased by the costs that are involved in the control process and

control can become biased by the uncertainty of the estimator

[23]. Crucially, none of the previous studies on risk-sensitivity

contained any latent variables. To investigate the effects of risk-

sensitivity on the estimation process, we therefore designed a

sensorimotor experiment that not only contained a latent variable

that needed to be estimated, but we also introduced a cost that was

associated with subjects’ responses. This way we could test whether

subjects would exhibit characteristic risk-sensitive biases.

Results

Subjects had to hit a target halfway in a reaching movement to

a goal bar by controlling a cursor representing their hand position

in a virtual reality set-up (Figure 1). In each trial the lateral

position of the target was randomly drawn from a Gaussian

distribution. However, the reliability of the visual feedback of the

target position was manipulated, such that each trial belonged to

one of three feedback conditions: s0, s1 or s?. In the s0-

condition the target position was displayed clearly and through-

out the trial, corresponding to full information and (practically)

zero uncertainty. In the s1-condition only blurry feedback was

provided by displaying a short flash of a Gaussian cloud centered

around the target. In the s?-condition no feedback was

provided. Naturally, the probability of hitting the target

decreased with increasing feedback uncertainty— compare

Figure S1 in Text S1. In this setup, the lateral target position

constitutes a latent variable that needs to be estimated in every

trial from noisy feedback. The aim is to study subjects’

sensorimotor integration with respect to this latent variable and

to study their susceptibility to risk-sensitive distortions.

Previous studies have shown that human sensorimotor integra-

tion of feedback information with varying degrees of reliability can

be understood by Bayesian models [4]. In particular, it has been

shown that subjects rely more on their prior information when the

quality of their sensory feedback gets worse. This can be seen in

Figure 2 which shows a typical subject’s lateral deviation from the

target as a function of the target position (red lines). In the full

feedback condition (s0) the lateral deviation was close to zero, as

subjects could see the target clearly. In contrast, in the no-feedback

condition (s?) subjects had to rely on their prior about the target

position and should ideally move through the point of maximum

prior probability— which is zero in our case, such that the lateral

deviation as a function of the target position is described by the

identity line. The subject’s behavior in the third panel of Figure 2

conforms to this prediction. Furthermore, the model predicts that

in the s1-condition subjects should mix prior beliefs with sensory

feedback, leading to an intermediate slope for the lateral deviation.

We also found this effect in our subjects as displayed in the second

panel of Figure 2. In summary, when comparing the red lines of

the three panels of Figure 2, it can be seen that the slope of the

lateral deviation increases with the uncertainty, which is exactly

what previous studies have reported [4].

To investigate effects of risk-sensitivity we introduced a force

landscape that assigned different costs to subjects’ responses. The

force landscape was given by a viscous force in the forward-

backward direction during the second half of the movement

between target and goal bar— this is indicated as the red force

area in Figure 1. We imposed three different force functions (F0,

FL and FR) that were presented consecutively to subjects in three

blocks of 750 trials each. The F0-function was applied in the first

Figure 1. Experimental setup. Subjects move from a start bar to a
goal bar and have to hit a target halfway in the reaching movement. In
each trial the lateral position of the target was randomly drawn from a
Gaussian distribution. The reliability of the visual feedback of the target
position was manipulated, such that each trial belonged to one of three
feedback conditions: s0 , s1 or s?. Furthermore, we imposed three
different force functions (F0 , FL and FR) in the force area, where the
force depended on the presumed target position as they indicated it by
their forward movement. Screenshots of the actual display can be
found in Text S1.
doi:10.1371/journal.pcbi.1002698.g001

Author Summary

Statistically optimal decision-makers use probabilistic
predictive models of their environment to achieve their
goals. However, in real life such probabilistic models can
be wrong or only approximately true, in which case basing
decisions exclusively on the statistics of such models can
constitute a problematic decision criterion. In contrast,
risk-sensitive decision-makers can take model uncertainty
into account. They allow deviations from their probabilistic
model depending on the quality of the predictions of the
model. In particular, they trust their model less if it makes
imprecise predictions and bias their decisions towards
worst-case or best-case outcomes. Here we designed a
sensorimotor task where subjects exhibit Bayesian infor-
mation integration when they infer the hidden location of
a target and they had to decide to make a more or less
costly movement. We found that subjects exhibited a bias
with respect to the statistically optimal movement towards
less costly outcomes, the higher the uncertainty about the
target location was. This interplay between estimation
uncertainty and movement cost is consistent with a risk-
sensitive decision criterion that takes model uncertainty
into account.

Risk-Sensitivity in Bayesian Integration
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block and corresponded to a zero force condition. The force FL

(‘‘easy left’’) was presented in the second block and corresponded

to a linear function that increased from left to right. Therefore,

pointing to a target position on the left required less effort than

pointing to a target position on the right of the center of the target

distribution. Finally, the force FR (‘‘easy right’’) was presented in

the last block and corresponded to a linear function that decreased

from left to right— see Methods for details.

Assigning cost to subjects’ reponses predicts an interesting

interaction between uncertainty and cost for a risk-sensitive

decision-maker. In the absence of uncertainty (s0-condition) there

is no risk and a risk-sensitive decision-maker will produce the same

behavior as a risk-neutral estimator that is independent of the

imposed cost. However, in the presence of uncertainty, there is risk

involved and a risk-sensitive decision-maker will bias its behavior

based on cost. Having uncertainty about the target position implies

that a risk-sensitive decision-maker has to consider a range of

possible target positions and essentially ‘‘hopes’’ that the target is

in one of the possible positions that requires less effort. In the case

of linear force functions this ‘‘bias’’ translates into a parallel shift of

the line that describes subjects’ lateral deviation. The magnitude of

the shift depends on the uncertainty of the target position, the cost

of the presumed target position and subjects’ risk-sensitivity. This

prediction can be seen in Figure 2.

When reaching for the target, subjects had to combine prior

information about the distribution of target positions, visual

feedback and the cost of the pointing movement. We examined

how they combined these three factors in the following way. For

each force block (F0, FL and FR) we conducted three linear

regressions corresponding to the three feedback conditions (s0, s1

or s?). In each case we regressed the lateral deviation of subjects’

pointing movement against the true target position and deter-

mined slope and intercept of this line. According to the model

predictions in Figure 2, the slope should only depend on the

uncertainty of the feedback independently of the force condition,

whereas the intercept should depend on both the cost given by the

force and the uncertainty given by the feedback condition.

The slopes and intercepts fitted to every subject are shown in

Figure 3. In the upper panels of Figure 3, one can see that the

slopes describing subjects’ lateral deviation increased with higher

levels of uncertainty within each force block. This is in line with

the prediction and reproduces previous findings. Moreover, in

accordance with the prediction from Figure 2, this slope increase

was not affected by the force condition. To assess the statistical

significance of this result we conducted a repeated-measures two-

way ANOVA with force and uncertainty as factors. We found that

the uncertainty had a significant effect on the slope (pv0:01),

whereas the effect of force was not significant (pw0:4).

In the lower panels of Figure 3, one can see subjects’ intercepts

that describe their mean lateral deviations from a reference target

located in the center of the workspace (zero position). In

accordance with the prediction from Figure 2, our ANOVA

revealed that intercepts were affected by both uncertainty

(pv0:01) and force condition (pv0:01). In the no-force condition

the intercepts are close to zero for all uncertainty levels, as

subjects have no incentive to deviate from an unbiased Bayesian

estimate. In the force conditions FL, we found that the intercepts

become increasingly negative with growing uncertainty. This

means that subjects’ behavior was biased towards the left, as

target positions on this side were associated with lower costs.

Compared to the no-force condition, subjects deviated on

average 8:1+0:5mm more to the left in the no-feedback

condition and 2:2+0:4mm more to the left in the s1-condition.

Similarly, in the FR force condition, we found that intercepts

increased with growing uncertainty reflecting a low-cost bias

towards the right side of the workspace. Compared to the no-

force condition, subjects on average deviated 8:0+0:5mm more

to the right in the no-feedback condition and 3:2+0:4mm more

to the right in the s1-condition. All subjects but one exhibited this

bias pattern— compare Figure 3.

Figure 2. Lateral deviation from target as a function of target position in a risk-sensitive model (top row) and in a typical subject
(bottom row). The three columns correspond to the three levels of uncertainty of the target feedback (s0 , s1 and s?). Each panel compares the
three different force conditions F0 (red), FL (green) and FR (blue). The model predicts that higher levels of uncertainty are associated with higher
slopes and that higher forces are associated with shifts in the intercept that are proportional to the uncertainty.
doi:10.1371/journal.pcbi.1002698.g002

Risk-Sensitivity in Bayesian Integration
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Importantly, the model of risk-sensitive decision-making not

only predicts a fixed bias— which is what a Bayes optimal

decision-making model would predict— , but a modulation of bias

and uncertainty, such that the bias increases with the amount of

uncertainty and vanishes in the limit when uncertainty is absent.

In accordance with this prediction, we found that the mean lateral

deviations from the center of the target in the s0-condition are

negligible in all force conditions. The exact values of the mean

lateral deviations were {0:4+0:1mm in the F0-condition,

{0:6+0:1mm in the FL-condition, and z0:4+0:1mm in the

FR-condition— all well within the target halfwidth of 2:0mm.

Similarly, the lateral deviations from the center of the starting

position at the beginning of the trial was not significantly different

between the groups (pw0:05, repeated measures one-way

ANOVA). The exact values of the mean lateral deviations were

{1:1+1:2mm in the F0-condition, {1:9+1:0mm in the FL-

condition, and z0:7+1:7mm in the FR-condition— all well

within the target halfwidth of 2:0mm. In summary, these results

suggests that subjects did not simply avoid high costs, but that their

behavior was determined by an interplay of uncertainty and cost

as predicted by a risk-sensitive decision-making process.

Discussion

In our study we examined the effects of risk-sensitivity on

sensorimotor integration. In line with previous studies, we found

that information integration was consistent with a Bayes optimal

decision-maker as long as subjects’ responses were cost-neutral [4].

However, once we introduced a cost that was associated with

subjects’ responses, subjects started to bias their behavior when

faced with uncertain feedback. Importantly, subjects did not

simply minimize their effort, but they modulated their behavior

based on an interplay between cost and uncertainty. In particular,

we found that the higher the uncertainty, the higher the bias.

When sensory feedback was unambiguous— i.e. in the (near)

absence of uncertainty— this bias vanished. This is in accordance

with the predictions of a risk-sensitive decision-making process, but

violates risk-neutral Bayes optimal integration.

Previous studies have found that risk-sensitivity is an important

determinant of motor behavior [29]. The main finding of these

studies was that subjects not only optimize their expectation of

success, but also take the performance variability into account. For

example, a basket ball player choosing between throwing a three

with a 50% success rate and throwing a two with a 75% success

rate would prefer the first option if risk-seeking, the second option

if risk-averse, and he would be indifferent if risk-neutral. These

previous studies have found that risk-sensitive motor behavior can

be accounted for by a mean-variance trade-off [31] that affects

control gains and the speed-accuracy trade-off when performance

success becomes more variable [28,30]. Importantly, the effects of

risk-sensitivity on the estimation process could not be investigated

in these previous studies, because they did not contain any latent

variables that would have required estimation.

The differential effects of risk-sensitivity on control and

estimation can be readily inspected in the case of risk-sensitive

control of linear systems with quadratic costs and Gaussian

noise— sometimes abbreviated to risk-sensitive LQG control [24].

The standard LQG control that has often been used in optimal

feedback control models of motor behavior [13] can be derived as

a special case of the risk-sensitive LQG control in the limit of

vanishing risk-sensitivity. Importantly, in risk-neutral LQG con-

trollers the estimation and control processes can be separated such

that the solution to the estimation problem is given by the Kalman

filter and the solution to the LQ control is given by the solution of

the Riccati equation. The overall solution to the LQG system is

then simply given by the LQ optimal controller where all directly

observed variables are replaced by their estimates from the

Kalman filter. In summary, in the risk-neutral case the estimates

are obtained independent of the controls, and the control law is

obtained independently of the estimation process.

Figure 3. Slopes (top row) and intercepts (bottom row) of linear regression for all subjects. Linear regression was performed as in
Figure 2. The three columns correspond to the three different force conditions F0 , FL and FR . The three different feedback conditions s0 , s1 and s?
are displayed within each panel. It can be seen that the slope increases with increasing uncertainty. The intercepts are modulated by both uncertainty
and force condition.
doi:10.1371/journal.pcbi.1002698.g003

Risk-Sensitivity in Bayesian Integration
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Effects of risk-sensitivity in optimal feedback control have been

previously studied in [28], however in the absence of observation

noise— i.e. in the absence of a latent variable. In this case the

solution to the risk-sensitive LQG control problem is given by the

solution of a modified Riccati equation. Nagengast et al. [28]

studied effects of this modification of the control process, for

example, the change in control gain in response to increased

process noise that determined the Brownian motion of a virtual

ball. Crucially, however, the observation noise was entirely

negligible compared to the process noise in this task, so effects of

risk-sensitive estimation did not play any role in this experiment.

In the presence of observation noise, i.e. in the presence of a

latent variable, estimation and control processes are no longer

independent, but they have interesting interconnections between

them that are absent in risk-neutral systems [24]. There is a

modified risk-sensitive Kalman filter that depends on control costs,

a distortion of the Riccati equation depending on the uncertainty,

and a distorted certainty-equivalent that is the value that is

reported from the modified Kalman filter to the controller. In our

experiment we introduced a force as a cost to subjects’ responses

when they report the latent variable, that is the presumed target

position. We can model this process in terms of risk-sensitive LQG

control as follows— compare Text S1. The Kalman filter estimate

of the target position is unbiased, yielding a Bayesian estimate

x̂xkalman~x̂xbayes. However, the certainty-equivalent value �xx that is

conveyed to the controller is a distortion of the Kalman filter

estimate, that is �xx~x̂xkalman{hx̂xbias. The control is given by

u~�xx{c, where c is a constant that trades off the importance of

reaching the target against the strength of the field. If the field

becomes excessively strong, at some point the optimal controller

would simply ignore the target and point to the position with

lowest cost. As we did not see a significant constant shift across the

three uncertainty conditions in our experiment, this constant—

which is a free parameter— was very small— which means that

subjects cared much more about hitting the target than the force.

Most importantly, we can rule out a risk-neutral account of our

experiment, since the observed bias term depends on the risk-

sensitivity. In particular, we can rule out that subjects simply trade

off the expected loss of missing the target against the cost of the

force. Ultimately, it is the risk-sensitive cost function that considers

higher order moments of the expected costs that leads to a

coupling between estimation and control in risk-sensitive decision-

makers that do inference over latent variables. This coupling

predicts exactly the interplay between uncertainty and force that

we observed in our experiment, namely that subjects apparently

cared less and less about hitting the target when the prediction

about the target location was imprecise. A risk-sensitive subject

therefore allows for deviations as if following the maxim ‘‘If I’m

not going to get the target anyway— because the uncertainty is

high— , why not miss it in the less costly fashion’’.

Another possible explanation could be that subjects care less about

hitting the target, not because of the uncertainty of where it is, but

because the hitting probabilities are low. This would predict that if

subjects attempted to hit smaller targets that have lower hitting

probabilities, but no associated uncertainty with respect to location, they

should exhibit the same kind of bias. This is however unlikely to be the

case, as subjects would explicitly have to violate the task description and

move away from a target that they can clearly see, just because it is small.

Another related question is also whether biases occurred not

due to uncertainty about the target position, but due to

imprecision about performance success in no-feedback trials. Like

previous studies on Bayesian integration [4] we assumed that the

statistics applicable to no-feedback trials are learned in trials that

have full feedback. For example, Kording and Wolpert [4] did not

show any terminal feedback after completing no-feedback trials,

but terminal feedback was only shown in full feedback trials, so as

to probe the inference process without giving subjects the

possibility of learning a mapping in the no-feedback trials. In

our study we additionally introduced binary auditory feedback

after each trial to indicate whether the target was hit or not. This

auditory feedback was also provided after no-feedback trials to

give subjects an idea about their success rate and to indicate that

there really is a target even though it cannot be seen, but without

giving them the explicit possibility of learning a mapping.

However, we cannot exclude the possibility that revealing the

true target position with respect to the subjects’ response after the

trial could have reduced the observed bias. On the one hand,

revealing the true target position in these trials would not provide

any new statistics about the target location since these were the

same in all trial types. On the other hand, highlighting subjects’

‘‘misjudgements’’ under the supervision of an eager experimenter

might well lead to a reduction in bias. However, this might also be

regarded as introducing an extra cost. Therefore, the imprecision

of performance feedback might influence subjects’ responses, but

this is not necessarily in disarray with the predictions of a risk-

sensitive decision-making process.

In the future it could also be interesting to study risk-sensitive

models in the context of ‘‘wishful thinking’’ when people over-

estimate their own abilities [32–36]. What makes risk-sensitivity

especially interesting in the context of Bayesian inference is that it

has also been related to model uncertainty [23]. Model uncertainty

allows a decision-maker who has a probabilistic model of the

environment to deviate from this model if he trusts this model only

to a limited extent. In particular, an infinitely pessimistic decision-

maker would disregard the probabilistic model entirely and only

focus on worst-case outcomes. Since all models are typically prone

to error at some precision, taking into account model uncertainty is

a crucial aspect of estimation and control.

Methods

Ethics Statement
All experimental procedures were approved by the ethics

committee of the medical faculty at the university of Tübingen.

Subjects
Two female and four male subjects from the Tübingen

University student population participated in this experiment

after giving informed consent. Participants were paid the local

standard rate of 8 Euros per hour for their participation.

Materials
The experiment was conducted using a vBOT robotic manip-

ulandum [37]. Participants controlled the vBOT handle in the

horizontal plane. Movement position and velocity were recorded at

a rate of 1kHz. A planar virtual reality projection system was used to

overlay images into the plane of movement of the vBOT handle.

Experimental Procedure
Subjects performed reaching movements from a start bar (gray

rectangle, width 4cm, height 1:5cm) to a goal bar (green rectangle,

width 14cm, height 0:5cm) 25cm away by moving a cursor (red

circle, 3mm radius) representing their hand position— compare

Figure 1. The hand position was represented veridically at all times.

Subjects could start anywhere from within the start bar and they

were told to hit a yellow target that would appear midway during

the forward movement to the green bar. When placing the cursor

on the start bar, participants heard a beep that informed them to

Risk-Sensitivity in Bayesian Integration
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move. At the same time the target appeared midway at a distance of

12:5cm from the start bar with a lateral displacement drawn from a

Gaussian distribution with zero mean and standard deviation

sp~1:0cm. Movements had to be completed within 0:6s.

In each trial the target position was displayed under one out of

three possible feedback conditions (s0, s1, s?) selected randomly

with relative frequencies of (2,1,1) respectively. In the s0-

condition, the target was displayed during the whole trial as a

small rectangle of 4mm width. The displayed height of the target

was 10mm, but only relevant for visualization purposes without

consequence for the hitting probability. In the s1-condition, five

small circles (radius 2mm) were drawn each trial from a two-

dimensional Gaussian distribution (mean 0cm, standard deviation

1:5cm) and shown for 80ms at the beginning of the trial. No

feedback was provided in the s?-condition. In all three conditions

subjects had to make a choice in the lateral position u when they

were halfway in the movement (12:5cm from the start bar) in order

to indicate their belief about the target position. Halfway into the

movement they also received auditory feedback, which was a high

frequency beep if they hit the target or a low frequency beep if

they failed to do so. Another beep of the same frequency informed

them when they reached the goal bar.

Between the target and the goal bar subjects entered a ‘‘force

zone’’ in which they experienced a viscous force F~{k(u):v that

made movements more strenuous. The viscous force was applied

in the forward-backward direction and was proportional to the

forward or backward velocity v. The force was also applied in the

force zone while subjects returned to the start position to initiate

the next trial. The strength k(u) of the force depended only on

subjects’ movement position u halfway into the movement (12:5cm
from the start bar). To allow for a smooth transition from the no-

force zone to the force zone the viscous force was ramped up

linearly over the first quarter of the force zone and similarly

ramped down during the backward movement. There were three

force conditions: F0, FL and FR. In the F0 condition there was no

force, that is k(u):0. In the FL condition the strength

k(u)~auzb was a linear function with a~60
kg

cm:s
and

b~90
kg

s
, such that it increased linearly from left kmin~0

kg

s
to

right kmax~180
kg

s
over a 3cm range centered around the mean of

the target distribution. In the FR condition the slope was simply

inverted to obtain a linear function with a~{60
kg

cm:s
and

b~90
kg

s
that increased linearly from right kmin~0

kg

s
to left

kmax~180
kg

s
over the same 3cm range.

The experiment consisted of 2250 trials in total and was

subdivided in three blocks of 750 trials each corresponding to the

three force conditions F0, FL and FR. In every block of 750 trials

only the last 500 were used for analysis, as movement variability in

s0-trials had then stabilized— compare Figure S2 in Text S1.

Risk-neutral Decision-maker
Each trial a target with lateral position x is drawn from a

Gaussian distribution with mean zero and standard deviation sp.

Subjects receive noisy sensory feedback about the target position

given by the observation y. We model this noisy feedback by

another Gaussian distribution with mean x and standard deviation

given by si where i~f0,1,?g. Subjects report their estimate of

the presumed target position by a controlling the lateral response

u. In our experiments subjects’ response incurred a cost of the

form c(u)~aj uzbj with j~f0,R,Lg. The cost c(u) models the

experimental viscosity function k(u) described in the Experimental

Procedures. The parameters aj and bj depend on the force

condition, where a0~b0~0 in the F0-condition and aR~{aL

and bR~bL in the other force conditions. The risk-neutral Bayes

optimal decision-maker that trades off a quadratic cost for the

target hit and the linear response cost is then given by

uopt~arg
u
min

ðz?

{?
dxp(xjy) Q(x{u)2zc(u)

� �

~
s2

p

s2
pzs2

i

y{
aj

2Q
:

Importantly, the bias
aj

2Q
does not depend on the uncertainty level

and simply formalizes a trade-off between the importance of

reaching the target Q and the strength of the force aj . Since we did

not observe a constant bias in the s0-condition in our experiment,

it is Q&aj , that means we can safely neglect this term.

Risk-sensitive Decision-maker
A risk-sensitive decision-maker with risk-sensitivity parameter h

optimizes the following risk-sensitive stress function [24,25]

uopt~arg
u
min{

2

h

ðz?

{?
dxp(xjy)e

{h
2

Q(x{u)2zc(u)½ �

~
s2

p

s2
i zs2

p

y{
aj

2Q
{

s2
i s2

p

s2
i zs2

p

haj :

ð1Þ

Again the second term is constant and can be neglected, as Q&aj

in our experiment. The important part is the third term that

incorporates an interaction between cost aj and the uncertainty

given by si and sp. This predicts increasing biases for increasing

uncertainty. In the limit h?0 the risk-sensitive decision-maker

becomes the risk-neutral decision-maker.

Supporting Information

Text S1 Supplementary material including the supplementary

Figures S1 and S2.

(PDF)
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