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Abstract

Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the
pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level
eventually affects a cell’s behavior. This is because complex information at both the protein and pathway level has to be
integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of
missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by
formulating mathematical models and comparing them with experimental data to study missense mutations. We present
two case studies: (1) interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to
mitosis transition) for yeast; (2) phenotypic classification of neuron-related human diseases associated with mutations
within the mitogen-activated protein kinase (MAPK) pathway. We show that the application of simplified mathematical
models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that
the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and
pathway perturbation.
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Introduction

How one links genetic information to physiological outcomes is an

important issue in the current ‘post-GWAS’ (genome-wide association

studies) era [1]. One specific topic regarding this problem is the

functional annotation of non-synonymous single nucleotide polymor-

phisms (nsSNPs) that cause amino acid changes in proteins. However,

the difficulty of annotating nsSNPs has slowed down the pace of

investigating their molecular consequences. Therefore, as the speed of

identifying new SNPs is high, there is now a distinct sense of urgency to

resolve this problem – an immediate focus is the 1000 Genomes Project

(http://www.1000genomes.org/) that has identified approximately

100,000 nsSNPs in need of further analyses. Indeed, the urgent

requirement for SNP annotation has also motivated the CAGI

experiment (Critical Assessment of Genome Interpretation; http://

genomeinterpretation.org/) that encourages community-wide efforts in

predicting the phenotypic impacts of genome variation.

Interpreting the physiological effect on cells due to missense

mutations in proteins is not a simple task. This is partly achievable

through analyzing the increasing number of protein structures

deposited in the Protein Data Bank (http://www.rcsb.org/) and

through functional annotation of proteins [2]. Investigating protein

structures allows for a qualitative view of pathway dynamics; a more

quantitative approach is to use mathematical modeling. Indeed, our

understanding of cellular behavior during the last two decades has

been significantly improved through the application of mathemat-

ical modeling methods such as ordinary differential equations

(ODE) and rule-based simulations [3,4,5,6,7,8]. However, the idea

of integrating the dynamical aspects of proteins and their associated

pathways to investigate the systemic impact of missense mutations is

still in an early stage of development. In 2007 Stein et al. proposed

the idea of integrating structural and pathway information for

estimating key kinetic constants associated with biochemical

pathways [9]. More recently, Kiel and Serrano [10] studied how

missense mutations in the Ras-binding domain of c-Raf (RafRBD)

affect the expression of the downstream protein Erk by investigating

the structure of RafRBD and constructing an ODE model

describing Erk signaling pathway [10].

The work of Kiel and Serrano suggests that integrating protein

structural analysis with pathway modeling can be a useful method to

facilitate the physiological annotation of missense mutations in

proteins. However, the effectiveness of this approach at quantifying

missense mutations located in different proteins remains unex-

plored. Also unexplored is the utility of this approach with simpler

mathematical models, considering only the dynamics of key proteins

while the remaining proteins in the pathway are omitted – this is
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potentially a more practical approach for achieving an improved

inference of the parameter space, thereby increasing the reliability

of the analysis (current ODE models describing biological pathways

often contain tens or hundreds of parameters that can neither be

easily measured nor calibrated experimentally). Furthermore,

extensive investigation is required to determine how the approach

performs when annotating missense mutations whose physiological

outcomes can be clinically defined and examined.

These issues are discussed in this work by gauging the systemic

impacts of missense mutations through integrating protein and

pathway behavior via reduced ODE models. Here we present and

discuss the measurement of a ‘systemic impact factor’ (SIF),

defined as a function of free energy change (DDG) and systemic

control (CS
pi, see Methods section ‘Control coefficient’), as a

practical approach for evaluating the relative effects of missense

mutations in a specific system. For mutations appearing in proteins

whose complexed and uncomplexed states are both considered in

the model, we calculate their maximum SIFs by taking the

maximum DDG between the two states. This is because the

average score of the two protein states does not necessarily have a

clear biophysical meaning in terms of describing the overall

stability change of a mutation. Although summing the DDGs

calculated in the two protein states may have biophysical meaning,

complications will be incurred when comparing the SIFs to other

proteins that only have one conformational state analyzed in the

model (either complexed or uncomplexed). Therefore, by using

the maximum DDGs we do not compromize the biophysical

meaning of SIF and at the same time make the SIF scores more

comparable across different proteins that may or may not have

two states.

The benchmark includes two biological systems: (1) the fission

yeast G2 to Mitosis (G2-M) transition and (2) the human MAPK

signaling pathway. The first system is a well-defined system for

studying the genotype-phenotype relationship as the systemic

perturbation of missense mutations can be directly benchmarked

to the length change of yeast cells. We use the temperature-

sensitive yeast strains as experimental models, each of them

containing a single missense mutation in protein Cdk1 or Cyclin B

(CycB), and we measure their cell lengths at septation (septation is

immediately followed by mitosis). Finally, the practicality of the

SIF score in quantifying the systemic effect of missense mutations

is evaluated by the correlation between the calculated SIF scores

and in vivo cell lengths. The second benchmark system represents a

more complex example in which the target mutations are spread

within four different proteins (H-Ras, Raf-1, Braf and Me) and

lead to clinical symptoms (in this case the neuro-cardio-facial-

cutaneous syndrome) that have different prognoses and risk of

complication. To determine whether or not a simple ODE model

can be used to infer the systemic perturbation of missense

mutations, we construct a reduced ODE model that includes only

12 parameters for the calculation of SIF values. We then place the

mutations into subgroups according to their predicted SIF scores,

and record whether our classification reveals the underlying

difference between disease mechanisms.

Results

In silico model of the G2-M transition in yeast
The G2-M transition controls when a cell enters mitosis and

determines the size of a cell at the point of division into two

daughter cells. In fission yeast, Schizosaccharomyces pombe, this

involves Cdk1, CycB, Wee1 and Cdc25. In the G2 phase, Cdk1

and CycB form a complex known as the mitosis promoting factor

(MPF), which brings about the G2-M transition [11]. The activity

of MPF is regulated by the protein kinase Wee1 [12] and the

protein phosphatase Cdc25 [13,14]: Wee1 inhibits the activity of

MPF by phosphorylating Cdk1, and Cdk1 also exerts negative

feedback on Wee1 by phosphorylating it. In addition, Cdc25

activates MPF by dephosphorylating Cdk1 and vice versa [15].

The Wee1-MPF-Cdc25 control system increases the ratio of active

MPF over its inactive state and eventually promotes a cell into

mitosis (Figure 1A).

The model we present here (Table 1) is based on the first

realistic model of MPF activation published by Novak and Tyson

[16]. Two basic assumptions of our model are 1) the total amount

of Cdk1 (Cdk1T) present in the system is constant and in excess (far

greater than the initial concentration of CycB) [17], and 2) all

CycB forms a complex with Cdk1 immediately after it is

synthesized since Cdk1 binds to CycB strongly and is in excess

of CycB: that is, CycBT = MPF (active form of MPF)+preMPF

(inactive form of MPF).

Investigation of the parameter space through the replica

exchange Monte Carlo algorithm (see Methods section ‘Replica

exchange Monte Carlo method’) shows that the parameters in our

in silico model are confined to a small range (Figure S1A) and

parameter variations do not change the general trend of the

relation between the various rate constants (Figure S1B).

Here we consider each missense mutation as a perturbation to the

wild-type status as described in the in silico model mentioned above,

and the systemic impact of each mutation is projected as the extent

that a mutation is likely to deviate from the wild-type state. In our

model, entry into mitosis occurs when CycB reaches a concentration

(dimensionless) equivalent to an active MPF concentration of 2.0.

Assuming cells grow continuously and linearly in time during

interphase, the systemic impact of perturbing each rate constant can

be gauged through the change of CycB concentration when active MPF = 2.0:

the higher (lower) the CycB concentration, the longer (shorter) the cell

size at mitosis (Figure 1C). Mathematically, this is implemented by

calculating the control coefficients CS
pi that indicate the change of

CycB concentration under a consistent amount of perturbation to

each rate constant (Methods section ‘Control coefficient’). The sign of

CS
pi shows the direction of CycB concentration change: positive CS

pi

Author Summary

Small changes in protein sequences, such as missense
mutations resulting from genetic variations in the genome,
can have a large impact on cellular behavior. Consequent-
ly, numerous studies have been carried out to evaluate the
disease susceptibility of missense mutations by directly
analyzing their structural or functional impact on proteins.
Such an approach has been shown to be useful for
inferring the likelihood of a mutation to be disease-
associated. However, there are still many unexplored
avenues for improving disease-association studies, due to
the fact that the dynamics of biological pathways are rarely
considered. We therefore explore the practicality of a
structural systems biology approach, combining pathway
dynamics with protein structural information, for project-
ing the physiological outcomes of missense mutations. We
show that stability changes of proteins due to missense
mutations and the sensitivity of a protein in terms of
regulating pathway dynamics are useful measures for this
purpose. Furthermore, we demonstrate that complicated
mathematical models are not a prerequisite for mapping
protein stabilities to network perturbation. Thus it may be
more feasible to study the systemic impact of missense
mutations associated with complex pathways.

Quantifying Systemic Impact of Missense Mutations
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Figure 1. The procedure of calculating SIF scores. (A) Identifying the target system for study. In this case we show the scheme of the G2-M
model that regulates the G2 to mitosis transition in the cell cycle. (B) Mapping mutations onto their 3D structures (Cdk1 and CycB in this example)
and associating them with the ODE parameters. Mutations located at or close to the active site (colored in blue) are considered to perturb the ODE
rate constants that describe interactions between MPF and their regulating kinases wee1 and cdc25 (shown with blue circles). Mutations that are not
in the functional sites (colored in red) are considered to perturb the ODE rate constants describing the rate of protein degradation (shown with red
circles). Also, for each mutation we evaluate its DDG that is considered as the perturbation of ODE parameters. (C) Calculating the CS

pi that reflects
the sensitivity of perturbing ODE parameters in terms of regulating the downstream reporter protein (MPF in the G2-M model). Here we show the
perturbation on the degradation rate of MPF as an example: The green arrows mark the effect of perturbation on CycB concentration when cells
enter mitosis, which is a result of MPF curve shifts (the red line represents wild type whereas orange and purple lines are mutant types). (D) Inferring
the systemic consequences of mutations based on DDG and CS

pi. Mutations that have smaller or larger SIF scores are likely to have smaller or larger
sizes at septation, respectively. The scale bars shown in the microscopic photos represent the average length of wild-type yeasts.
doi:10.1371/journal.pcbi.1002738.g001

Quantifying Systemic Impact of Missense Mutations
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values correspond to an increase of CycB concentration, whereas a

negative CS
pi indicates the opposite. An overall view of CS

pi

calculated for the G2-M mechanism shows that perturbing the

Cdc25-related rate constants has a larger impact on the shift of the

MPF curve compared to perturbations to the Wee1-related rate

constants (Figure S2). This suggests an asymmetric relationship

between the positive and negative feedback loops on MPF activation

controlled by Cdc25 and Wee1 respectively, which is in agreement

with the recent paper by Domingo-Sananes and Novak [18].

Although the unequal impact between Wee1 and Cdc25 has not been

confirmed, previous experimental evidence in Xenopus egg extracts

[19,20] suggests this may be the case.

Mapping missense mutations onto the 3D structures of
Cdk1 and CycB

The systemic perturbation of the G2-M transition (Table 2) is

studied by examining the effect of four temperature-sensitive

mutations in Cdk1 (all mutations except C67Y and G183E) and

two temperature-sensitive mutations in CycB that attenuate the

function of MPF. The effect of these mutations on protein stability

or function is more pronounced when the temperature increases (as

proteins are allowed a greater degree of movement). Phenotypically,

these mutations allow cells to divide at a greater length than their

wild type states when the temperature increases. The cell does

divide with the non-temperature sensitive mutant in Cdk1 (C67Y

and G183E), but at a smaller cell size.

The modeled structure of MPF shows that mutation G43E in

Cdk1 is located at the interface of MPF subunits and thus is likely

to have a significant effect on the stability of the MPF complex (see

Methods section ‘Homology modeling of Cdk1, CycB and MPF

structures’ regarding structural modeling). Mutations A177T,

G183E and P208S in Cdk1 are located at or close to the active

site and hence are likely to cause functional effects; C67Y and

G227C in Cdk1 and W395R in CycB are at the periphery of the

proteins and thus are mainly structurally related. Mutation C379Y

in CycB is within a hydrophobic core and is likely to have a

considerable impact on the MPF complex by destabilizing the

structure of CycB (Figure 1B).

SIF values of Cdk1 and CycB mutations correlate to in
vivo cell lengths

The link between SIF and systemic perturbation (SP) can be

statistically established through regression:

SP*SIF!DDG:CS
pi

where DDG is the free energy change caused by a mutation to a

target protein (here FoldX [21] is applied to approximate the DDG

of the mutations studied), which approximates the change in a

specific rate constant of the target ODEs (see Text S2 for further

information regarding the application of DDG as an evaluation for

systemic perturbations); CS
pi is the control coefficient (Methods

section ‘Control coefficient’) that reflects how sensitive the

concentration change of the reporter protein (in this case protein

CycB) is to the specific parameter.

Hence for the G2-M model the magnitude of each SIF value

indicates the degree of impact a mutation can have on the quantity

of CycB, which determines when a cell enters mitosis and

therefore the length of the cells.

The fundamental concept of our approach is to build a wild-

type model that faithfully reflects in vivo cellular behavior and then

considers each missense mutation as a perturbation to the wild-

type status. We do not intend to formulate a model that describes

the mutant-type states; we only project the extent that a mutation

is likely to deviate from the wild-type state. The procedure of

calculating SIF scores is shown in Figure 1. Firstly, a target

biological system (in this case the G2-M transition in the cell cycle)

is chosen and a reporter protein, whose expression profile can be

used to gauge the systemic behavior, is identified. The reporter

protein used here is the MPF protein complex. The mutations are

then mapped onto three-dimensional protein structures and linked

to the associated parameters in the ODEs. For each mutation, its

DDG is approximated as the size of perturbation introduced to the

associated ODE parameter. To improve the estimation of DDG

for each mutation, we applied molecular dynamic (MD) simula-

tions to sample the movement of the flexible regions in the

modeled Cdk1 and CycB structures, and then calculated an

average DDG based on the sampled conformations (Methods

section ‘Molecular dynamic simulations and free energy calcula-

tions’). Next, the sensitivity of the expression profile of the reporter

protein to each ODE parameter is explored by calculating the

CS
pi. Finally, the systemic consequence of each mutation is

inferred by calculating its SIF score based on DDG and CS
pi. In

the case of the G2-M model, a larger SIF reflects a greater delay

for a cell to enter mitosis. Hence a longer cell length should be

observed.

For the eight missense mutation studies presented here, their

SIF values are calculated (Table 3) and the length of their host

yeast cells are measured at septation (Methods and Material

section ‘Yeast strains and cell length measurement’). As shown in

Figure 2, the in silico SIF score generally reflects the in vivo cell

length well: at the semi-restrictive temperature (30uC) a medium-

to-strong correlation R2 = 0.69 (p value = 0.04; all the p values

shown in this study are based on the two-tailed model) is obtained.

Table 1. Differential equations of the G2-M model.

d

dt
CycB~kS{kd

:CycB

d

dt
MPF~V25

:(CycBT{MPF){Vwee
:MPF{kd

:MPF

d

dt
Wee1~

kawee
:(1{Wee1)

Jaweez1{Wee1
{

kiwee
:MPF:Wee1

JiweezWee1

d

dt
Cdc25~

ka25
:MPF:(1{Cdc25)

Ja25z1{Cdc25
{

ki25
:Cdc25

Ji25zCdc25

V25~k025
:(1{Cdc25)zk0 025

:Cdc25

Vwee~k0wee
:(1{Wee1)zk0 0wee

:Wee1

Initial conditions (dimensionless):

CycB = 0.01; MPF = 0.01; Wee1 = 1.0; Cdc25 = 0.01

kS = 0.2; kd = 0.008;

k925 = 0.008; k025 = 0.89; k9wee = 0.03; k0wee = 0.18;

kawee = 0.61; kiwee = 0.71; ka25 = 0.80; ki25 = 0.35

Michaelis constants (dimensionless):

Jawee = 0.90; Jiwee = 0.21; Ja25 = 0.19; Ji25 = 0.93

The parameters of the ODEs are: ks is the rate of CycB synthesis and is
associated with the concentration of Cdk1; kd describes the degradation rate of
CycB and the degradation rates of MPF. V25 and Vwee are the activation and
inactivation rates of MPF, respectively. Kawee and Kiwee are the rates of Wee1
being activated by a phosphatase (which is not explicitly formulated in our
model) and inactivated by MPF, respectively. Ka25 and Ki25 are the rates of Cdc25
being activated by MPF and inactivated by a phosphatase, respectively. Ja25 and
Jiwee are the Michaelis constants of MPF for Cdc25 and Wee1, and Ji25 and Jawee

are the Michaelis constants of a phosphatase for Cdc25 and Wee1, respectively.
doi:10.1371/journal.pcbi.1002738.t001

Quantifying Systemic Impact of Missense Mutations
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To validate the function of our temperature-sensitive yeast strains,

their lengths are also measured at the permissive temperature of 25uC:

a condition that allows all the mutants and wild-type cells to grow

normally, so the effect of mutation on cell length should be minimal. As

shown in Figure 2, there is indeed a much smaller effect of the

mutations on cell length at division and a weak correlation (R2 = 0.29)

between SIFs and in vivo cell lengths was observed.

In silico model of the human MAPK pathway
The MAPK pathway plays an essential role in cell survival,

proliferation, differentiation and development (Figure 3A). Its three-

tier MAPK cascade, i.e. Raf-Mek-Erk, is a highly conserved

systemic structure that regulates the switch-like behavior of the

pathway’s signal transduction mechanism [22]. The important

features of this cascade manifest themselves as representatives to

evaluate the behavior of the parental pathway, and previous studies

of the human MAPK pathway have shown analytical results which

support this [23,24]. To explore the effectiveness of a model that

focuses on the dynamics of the three-tier structure, a reduced model

is constructed here based on previous work that simulated the

signaling cascade from the epidermal growth factor (EGF) receptor

to the Erk reporter protein [25]. By omitting redundant terms

whose removal has little effect on the expression curve of the

downstream protein Erk, a set of succinct ODEs is derived as shown

in Table 4 (the derivation is presented in Text S3).

To benchmark the behavior of both the reduced and original

model, a sensitivity analysis is performed over three target

quantities of the reporter protein Erk (Methods section ‘Quanti-

fying the change of expression curves’): the amplitude (maximum

activation), duration (time until signal drops down to 50% of its

maximum activation) and peak time (time of maximum activa-

tion). For the test, the initial concentration of the key proteins in

both models is varied and their effects on controlling the target

quantities of Erk is compared (the key proteins include ShcGS

(Shc: Src homology and collagen domain protein), GS, Grb2

Table 2. In vivo length of the yeast trains in the G2-M model.

Cell Length (mm) Cell Length (mm)

Strain Number Strain Name Mutated Protein Residue Change 256C 306C

Mean Stdev Mean Stdev

275 M35 Cdk1 G43E 16.3 1.5 23.4 6.0

368 3w Cdk1 C67Y 11.1 1.1 9.8 1.4

8 33 Cdk1 A177T 15.2 1.2 18.2 1.8

154 56/130 Cdk1 G183E 10.4 1.0 12.2 1.9

274 L7 Cdk1 P208S 16.4 1.0 17.6 2.0

515 M63 Cdk1 G227C 16.2 1.3 19.9 2.1

6 NA CycB C379Y 14.5 1.4 19.3 2.2

4932 NA CycB W395R 18.2 1.0 18.9 1.0

972 WT NA NA 12.8 1.6 14.5 1.1

doi:10.1371/journal.pcbi.1002738.t002

Table 3. In silico measurements of the mutant cells in the G2-M model.

Amino acid
change

Target
Protein

Impact
Typea DDG (Cdk1/CycB)b DDG (MPF)c

Maximum DDG
(kcal/mol)d CS

pi SIF

kd(CycB)e kd (Cdk1)f Jwee+J25
g

G43E Cdk1 S 2.10 24.9h 24.9 - 0.011 - 0.27

C67Y Cdk1 S 3.17 1.31 3.17 - 0.011 - 0.035

A177T Cdk1 F 5.97 3.65 5.97 - - 0.011 0.066

G183E Cdk1 F 3.72 4.13 4.13 - - 0.011 0.045

P208S Cdk1 F 3.56 2.35 3.56 - - 0.011 0.039

G227C Cdk1 S 7.69 7.23 7.69 - 0.011 - 0.085

C379Y CycB S 31.92h 34.56h 34.56 0.004 - - 0.138

W395R CycB S 6.57 6.15 6.57 0.004 - - 0.026

aEach mutation is considered to have mainly functional (F) or structural (F) impact according to their locations in its target protein.
bDDG of the mutations in individual Cdk1 or CycB; each of them is an average value considering structures sampled from molecular dynamic simulations.
cDDG of the mutations in Cdk1-CycB complex (MPF); each of them is an average value considering structures sampled from molecular dynamic simulations.
dMaximum of DDG considering both complexed and uncomplexed states of the target protein.
ePerturbation on CycB degradation was weighted 0.3 for the degradation of monomeric CycB and weighted 0.7 for the degradation of complexed CycB (MPF).
fPerturbation on Cdk1 degradation was estimated through the degradation of MPF only since the amount of total Cdk1 is constant.
gPerturbation on the interaction between CycB and Cdk1 was estimated through Jwee and J25 with a weighting 0.9*Jwee+0.1*J25.
hThe high DDG is a result of van der Waals clashes when the target residue is mutated to a larger side chain.
doi:10.1371/journal.pcbi.1002738.t003

Quantifying Systemic Impact of Missense Mutations
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(growth factor receptor binding protein 2), SOS (son of sevenless

homologous protein), Ras, Raf, Mek and Erk). As a result, the

control coefficients in both models demonstrate a similar pattern

across all three-target quantities (Figure 4A,B), which indicate that

the reduced model does not sacrifice the overall dynamics of the

original model to achieve its simpler structure.

Mapping missense mutations onto the 3D structures of
H-Ras, Raf-1, B-Raf and Mek

Here 40 mutations associated with neuro-cardio-facial-cutane-

ous syndrome are collected and studied (Table S1). As shown in

Figure 3B, all the mutations can be mapped to crystal structures of

H-Ras, Raf-1, B-Raf and Mek, and each mutation is classified as

mainly functionally or mainly structurally important according to

its location in the target protein.

H-Ras mutations cause different systemic effect from
other mutations

Unlike missense mutations in the yeast G2-M model, there are

no quantitative measurements of the physiological outcomes for

the mutations in the MAPK pathway that can be used to calculate

the correlation with SIF scores. Hence, as an indirect way to

evaluate the relationship between mutations and clinical symp-

toms, each mutation is represented by three SIF scores calculated

according to the systemic impact on the wild-type Erk expression

curve: measured as amplitude, duration and peak time differences.

The trajectory of the SIFs corresponding to each mutation as a

function of these three target quantities shows that mutations in

Raf1, B-Raf and Mek are more likely to be overlapped in a similar

region, whereas mutations in H-Ras tend to distribute in a very

different trajectory to the direction of the other mutations

(Figure 5A). To determine if the different distribution of H-Ras

mutations is a robust feature, a different set of initial concentra-

tions that were measured experimentally in HeLa cells by Fujioka

et al. [26] is used to derive two new parameter sets: one produces

expression curves similar to those of the original model, whilst the

other one produces curves fitted to the in vivo FRET data measured

by Fujioka et al [26] (the parameters of both models are available

in Text S1). As shown in Figure 5B and 5C, both parameter sets

distribute H-Ras mutations in a trajectory different from other

mutations, which suggests that the separation of H-Ras is not

sensitive to variations to initial concentrations and parameter

space. As a benchmark, the three dimensional SIF scores from the

original model are also presented (Figure 5D). Consistently, H-Ras

mutations are distributed into a distinctly different group.

It has been demonstrated that using ensembles of simulated protein

structures, rather than a single conformation as represented by a crystal

or modeled structure, can improve the estimation of free energy

change [27]. In order to determine if the use of structural ensembles

affects the SIF distribution, molecular dynamic (MD) simulations are

also applied to sample the movement of flexible regions in the key

kinases. Eventually an average DDG, and therefore an average SIF

score, was calculated for each mutation based on the alternative

structures sampled by the MD simulations (Methods section ‘Molec-

Figure 3. The mutations studied in the MAPK model. (A) A scheme of the MAPK pathway. (B) Mapping the mutations onto the three
dimensional structures; mutations located at or close to the active site are colored in blue, otherwise colored in red.
doi:10.1371/journal.pcbi.1002738.g003

Figure 2. Correlation between SIF and in vivo cell length of
missense mutations in the G2-M model. The experimentally
measured cell lengths and the calculated SIF scores at 25uC and 30uC
are shown in grey and black, respectively. The x-axis error bars show the
standard error of cell lengths; the y-axis error bars show the standard
error of SIF scores, resulting from the evaluation of DDG.
doi:10.1371/journal.pcbi.1002738.g002

Quantifying Systemic Impact of Missense Mutations
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ular dynamic simulations and free energy calculations’). By using the

average SIF scores calculated over the conformation ensemble, a less

narrow distribution for B-Raf and Raf-1 mutations is observed in the

reduced model with parameters fitted to the experimental FRET data

while the distribution of mutations in other models remained largely

unchanged (Figure S4). Moreover, the overall distribution of the SIF

scores in all of the models is in agreement with the results using only the

crystal structures. This suggests that the SIF scores are not overly

sensitive to movements away from the experimentally determined

atomic positions.

A closer examination of mutant SIF scores reveals that H-Ras

mutations perturb the MAPK pathway in a distinctly different manner

from that of the mutations in Raf-1, B-Raf and Mek (Figure 5A–D): H-

Ras mutations tend to dominantly affect the duration of the Erk

expression profile whereas the other mutations mainly affect the

amplitude of the expression profile, followed by a smaller impact on

peak time and an even smaller effect on the duration of the Erk

activation. Physiologically, this indicates that the cellular response to H-

Ras mutations is different to the other mutations. Indeed, the duration

of Erk activation is known to be a critical factor for determining cell

fate: in PC12 cells, it has been shown experimentally that prolonged

activation of Erk is sufficient for cell differentiation whereas transient

activation is associated more closely with cell proliferation; in fibroblast,

a reverse relationship between duration and cell fate is observed [28].

Although the amplitude of Erk activation has also been experimentally

shown to be a determinant of cell fate, its effect is more complicated:

high level of Erk activation usually promotes cell-cycle progression but

sometimes it leads to cell-cycle arrest as well [28]. Also, the mutations in

Raf-1, B-Raf and Mek mainly reduce the amplitude of Erk expression

and hence it is likely that they have less effect on cell growth than H-

Ras mutations, which mainly increase the duration of Erk expression.

Discussion

Systemic impact is a result of protein stability change
and pathway perturbation

In this work we presented the SIF function as an effective

measure for the systemic impact of missense mutations. SIF values

reflect in a simple manner the fact that proteins are functional units

in the cell whose interaction networks regulate cellular behavior. It

is of particular interest to see that SIF scores reflect the in vivo

phenotype in the yeast G2-M model when there is no additional

parameter introduced to distinguish functionally and structurally

important mutations. This suggests that, although they change

protein behavior in different ways, functional and structural

mutations can perturb a pathway to a similar extent.

A potential way to improve the current correlation between SIF

and systemic outcome is to consider an additional parameter l
that describes the amount of parameter perturbation caused by

free energy change. Now the SIF function becomes:

SIF~DDG:l:CS
pi

By assigning different l constants for functional and structural

mutations in the G2-M model, we found that using a larger l for

functional mutations consistently provides smaller correlations (less

than 0.68). This suggests that DDG in this case over-estimates the

systemic impact of functional mutations and thus should be scaled

down by a smaller l when used for analyzing mutations at

functional sites. This also indicates that functional mutations may

be better annotated by considering other protein-protein interac-

tions besides protein stability. However, this would make it much

more difficult to quantify the impact of protein interactions. Using

a smaller l for functional mutations may be suitable for the

mutations studied here; nevertheless further investigation is

Table 4. Differential equations of the reduced MAPK model.

d

dt
ShcGS~{c12

:Erk�:ShcGS 1{
RasGDP

c11zRasGDP

� �

d

dt
RasGDP~{

c10
:ShcGS:RasGDP

c11zRasGDP
zc1

:RasGTP

d

dt
RasGTP~

c10
:ShcGS:RasGDP

c11zRasGDP
{c1

:RasGTP

d

dt
Raf~{c2

:Raf :RasGTPzc3
:Raf�

d

dt
Raf �~c2

:Raf :RasGTP{c3
:Raf�

d

dt
Mek~{c4

:Raf�zc5
:Mek�

d

dt
Mek �~c4

:Raf�{c5
:Mek�

d

dt
Erk~{

c6
:Erk:Mek�

c7zErk
z

c8
:Erk�

c9zErk�

d

dt
Erk �~

c6
:Erk:Mek�

c7zErk
{

c8
:Erk�

c9zErk�

Initial conditions (molecules cell21):

ShcGS = 20,000; RasGDP = 20,000; RasGTP = 0; Raf = 10,000;

Raf* = 0; Mek = 360,000; Mek* = 0; Erk = 750,000; Erk* = 0

Rate constants (molecules21 cell min21):

c2 = 7.7?1024; c6 = 8.3; c8 = 4?105; c10 = 15; c12 = 4?1026

Rate constants (molecules cell21):

c7 = 9?104; c9 = 6?105; c11 = 1.53?103

Rate constants (min21):

c1 = 69; c3 = 14; c4 = 50; c5 = 0.78

c1 and c2 are the rate and Michaelis constant for RasGDP activation by the Shc-
Grb-Sos (ShcGS) complex, respectively; c3 is the rate for RasGTP to be converted
to RasGDP; c4 is the rate for RasGTP to convert Raf from an inactive to an active
form (Raf*); c5 is the rate for RasGTP to convert Raf* to Raf; c6 is the rate for Raf*

to convert Mek from an inactive to an active form (Mek*); c7 is the rate for Mek*

to be converted to Mek; c8 and c9 are the rate and Michaelis constant,
respectively, for Mek* to convert Erk from an inactive form to an active form
(Erk*); c10 and c11 are the rate and Michaelis constants, respectively, for Erk* to
be converted to Erk. Finally, c12 is the rate for the ShcGS complex to be
inhibited by Erk* (See simulated curves in Figure S3).
doi:10.1371/journal.pcbi.1002738.t004

Figure 4. The sensitivity of the key proteins in the MAPK
pathway in terms of regulating the Erk expression. (A) The
reduced G2-M model. (B) The original non-reduced (Brightman and Fell)
model.
doi:10.1371/journal.pcbi.1002738.g004
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required to determine if this is a general criterion that could be

applied for mutations in other biological systems.

When we considered only structural mutations in the G2-M

model, the correlation between SIF and cell length increases from

0.69 to 0.73 (p value = 0.026). This suggests that the current SIF

formula may perform much better in annotating the systemic

effect of mutations whose role is more structural than functional.

This could be due to the way we approximate the functional

impact of a missense mutation through Michaelis constants and

link its perturbation to DDG as an approximation of Kd (Text S2).

Although the current SIF function correlates linearly with in vivo

measurements, the data cannot rule out an exponential relationship

between SIF and phenotypic outcome. As described in Text S2, if we

broadly approximate the amount of perturbation in each rate constant

to be e{DDG
RT , SIF can be formulated as cell length*SIF!e{DDG

RT :CS
Pi

,To approximate the direct use of DDG, we may transform the SIF

function to ln cell lengthð Þ*ln SIFð Þ!{DDGzln CS
pi

� �
. Follow-

ing this formula, the correlation between ln(cell length) and ln(SIF) is

reasonable: 0.62. Further studies will be required to explore the optimal

correlation between SIF and systemic effects.

Simple models are beneficial for extrapolating systemic
impacts

A very intriguing result of this study is that systemic impacts can

be reasonably gauged through simple or reduced ODEs. This

indicates that it is possible to study the systemic perturbation of a

pathway when there is incomplete information about its compo-

nents – an important observation, given the fact that the majority

of biological pathways have missing components waiting to be

discovered or confirmed. Another import aspect of this work is

that, for the purpose of studying systemic perturbation, it is feasible

to study the missense mutations through ‘‘fuzzy’’ parameters – that

is, the systemic impact of a mutation can be extrapolated through

rate constants that account for general protein-protein interactions

rather than detailed enzyme catalytic reactions. Finally, the

Figure 5. (A)–(D) shows the SIF cores of the mutations studied in the MAPK model. (A) The reduced model; (B) the reduced model with
initial conditions from Fujioka et al; (C) the reduced model with initial conditions from Fujioka et al and parameters optimized by fitting to the time
course data in Fujioka et al; (D) the original non-reduced model. (E) A scheme shows the relationship between the key proteins and their clinical
syndromes.
doi:10.1371/journal.pcbi.1002738.g005
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advantage of using a simpler model is also reflected in facilitating a

lower chance of associating multiple parameters with a perturba-

tion, which means the difficulty of discussing the impact of a

missense mutation can be reduced.

The simplicity of the G2-M model lies in two aspects. First, it

has only four major component proteins (Cdk1, CycB, Wee1 and

Cdc25) used to simulate cell growth, and the model can be

considered to be linear, terminating when MPF reaches a certain

critical concentration. The second aspect is that, rather than

capturing their time-course data, the model reflects the relation-

ship between the component proteins. Normally this raises the

difficulty of parameter optimization, as it increases the chance of

converging to multiple parameter sets that all give simulation

curves satisfying a particular phenotypic outcome. Fortunately,

parameter inference is not a concern in this case, since the general

trend of the Cs
pi relation between parameters is conserved,

regardless of parameter variations (Figure S1B), i.e. the correlation

between the SIF values and in vivo cell lengths is not sensitive to

parameter variation.

In preserving the overall dynamics of the original model (Figure

S5), our reduced MAPK model is efficient in terms of parameter-

ization; it has only 12 rate constants, compared to the original 27.

The simplified ODEs allow us to conduct a straightforward analysis

on missense mutations, which may not be the case in a more

complicated model. For example, a mutation in the functional site

of Ras can affect two downstream interactions in the original model

(see Figure S5: one is between Ras and Gap; the other is between

Ras and Raf), whereas it can only affect the interaction between Ras

and Raf in the reduced model. Furthermore, without reduction we

would not be able to implement the robustness test on the SIF

projections shown in Figure 5, since it is most unlikely that one could

obtain robust parameters given the expression data profile from

Fujioka et al [26]. The practicality of a simpler model suggest that

the idea of using ODEs to model the dynamics of a pathway can be

more feasible than previously thought, as long as we can reduce a

complex pathway to smaller modules that account for the functional

core of a pathway.

Investigating systemic perturbation helps to understand
the phenotype or underlying mechanism of missense
mutations

It is generally non-trivial to infer cellular phenotypes from

studying pathway dynamics since many cellular functions have

complex underlying mechanisms. However, the medium-to-strong

correlation between the SIF values and in vivo yeast cell lengths in

the G2-M model shows that it is possible to estimate effectively the

phenotypic effect of missense mutations through gauging systemic

impacts. This is due to two essential factors underlying our G2-M

model. Firstly, cell length at septation (cell division) is a faithful

indicator for identifying cells at the beginning of mitosis. This is

because fission yeast grows only in length and thus it can be

positioned in its cell cycle simply by its length and does not grow

between entry into mitosis and septation. Secondly, the chosen

reporter protein, MPF, is closely linked to the initiation of mitosis.

A strong support for this is a recent discovery that MPF is a

necessary and non-redundant factor for triggering mitosis [29].

The SIF values simulated from the MAPK model, on the other

hand, reflect a more complex relationship with phenotype. We

expected that most of the mutations studied here should be projected

into similar regions, as they are associated with overlapping symptoms

under a broad term ‘neuro-cardio-facial-cutaneous syndrome’. How-

ever, H-Ras mutations are projected into distinctly different trajectories

from the other mutations with respect to their effects on the ERK

expression profile. This suggests that H-Ras mutations are likely to

have different characters in terms of the disease prognosis and risk of

complications depending more upon the genotype than on the

phenotype. Given the clinical symptoms of patients from which the

missense mutations studied here were identified (as shown in Figure 5E,

all the H-Ras mutations are associated with Costello syndrome (CS);

most of the Raf-1 mutations are associated with Noonan syndrome

(NS); most of the B-Raf and all of the Mek mutations are associated

with cardio-facio-cutaneous syndrome (CFCS)), the result in

Figure 5A–5D suggests that NS and CFCS may share some degree

of similarity in terms of disease development. Indeed, it is often difficult

to distinguish an infant with CFCS from NS, although the phenotype

becomes more distinctive with time [30]. Interestingly, current

knowledge of the genotype-phenotype correlations suggests that the

presence of mutations in the H-Ras gene is associated with a much

higher tendency of cancer compared to the other mutations [31],

indicating a potentially different system dynamic, as indeed demon-

strated in this study. As a whole, the MAPK model serves as a good

example to show how qualitative annotation of mutations (the

classification of mutations) can contribute to the understanding of

disease mechanisms. This is practically useful as it is often hard to

clinically quantify various disease phenotypes that lead to differences in

prognosis and drug response.

The two systems in our study show that SIF can reflect

phenotype or the underlying mechanism of missense mutations in

proteins. In general, we may confidently interpret systemic impacts

as an indicator for phenotype only if a reporter protein is strongly

and non-redundantly linked to a target phenotype; otherwise a

more reserved view would be appropriate.

Potential limitations of SIF
One confounding factor associated with the performance of SIF

is the relationship between DDG of a mutation and its actual

phenotypic effect. This is because different proteins may have

different stability states and hence they may respond differently to

the same amount of DDG caused by missense mutations. The issue

of benchmarking the effect of DDG on different proteins has been

an active topic in annotating nsSNPs. Previous studies show that

proteins belonging to different structural families can respond

differently to the same amount of DDG, but in general a small

margin of DDG (1–3 kcal/mol) can be approximately used to

define missense mutations that may not cause an immediate effect

on protein fitness [32,33,34]. On the other hand, for proteins that

share Immunoglobulin-like folds, a clearer phenotypic threshold of

DDG (2 kcal/mol) can be used to define missense mutations that

generally result in severe disease phenotypes [35,36]. Hence,

taking a more stringent view, this implies that proteins sharing

similar structures are more likely to react similarly to mutations

that cause the same amount of DDG.

For the proteins studied in this work, the concern of comparing

the effect of DDG across different proteins is likely to be alleviated

due to the above reasoning. In the G2-M model, CycB and Cdk1

form a complex and hence the uncertainty of comparing DDG in

two different proteins is reduced. In the MAPK model, all the key

proteins are kinases that share the same well-structured fold.

Another factor that may affect the performance of SIF is the

complication of assigning the role of a mutation as mainly

functional or structural. This issue is especially hard to deal with if

a missense mutation is likely to cause long-range structural effects

on its host proteins - for example, a mutation can exist far away

from a functional site (and thus is considered as a structural

mutation) but still affect the function of its host protein by inducing

long-range conformational changes. Hence additional attention

should be paid to calculating SIF for mutations located in proteins

that are not well studied or have versatile conformations. For the
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cases studied in this work, the problem of assigning functional and

structural mutations is not significant because most of the key

proteins are kinases that have well-defined functional sites (see

Text S2 for further information).

One other factor that is associated with SIF performance is the

accuracy of calculating DDG. So far most of the methods for predicting

DDG do not show a good correlation with the experimental DDG;

however, they do perform well when used to estimate the average effect

of mutations on protein stability [37]. This is likely to support the good

correlation between SIFs and the in vivo cellular phenotypic outcomes

measured in our study, since we calculated an average DDG for each

missense mutation based on the simulated structures and used it to

correlate with the experimental data.

Finally, it is worth mentioning that the performance of SIF can be

considerably compromised by mutations with largeDDG values. These

mutations can be too extreme to be considered a perturbation to a

target system, and hence the ODE model describing the wild-type

condition is not applicable. On the other hand, large DDG values can

also be the result of Van der Waals clash that are often heavily

penalized in DDG calculations (as likely the case for mutations G43E

and C379Y in the yeast G2-M model). All in all, in the cases where

DDG is large, caution should be taken when applying the SIF function.

Concluding remarks
Our study as a whole suggests that it is beneficial to combine multi-

level knowledge to investigate the effects of missense mutations on

cellular behavior. The advance in protein structure prediction

techniques will particularly make the calculation of SIF more feasible,

since it requires the structural information of proteins that host the

target missense mutations. Overall, there is sufficient reason for us to be

confident that future studies on integrating protein and pathway

dynamics will become increasingly viable, as there are constant efforts

across the scientific community in solving protein structures and

identifying new components in biological pathways.

Simulating pathway dynamics through ODEs, as demonstrated

here, provides a convenient platform for utilizing the information

on protein structures. However, the application of ODEs implies

two major limitations. One is in the availability of time-course data

of protein expression in public resources; at the moment this is

relatively low and sparse compared to that of gene expression data.

This will be alleviated as more high-throughput time course data

becomes available. The other limit is in our knowledge of the

biological pathways – a majority of them have only been partially

uncovered. A feasible way to circumvent the problem is to develop

a simpler model by considering only key proteins that are essential

for preserving pathway behaviors, as we have demonstrated in the

case of MAPK pathway and G2-M transition.

The SIF function in its current form gives a good approximation of

systemic perturbation resulting from the missense mutations in the G2-

M and MAPK models. With further development on a larger dataset,

especially with the inclusion of more parameters to further characterize

protein function and structure, we are likely to obtain better

correlations with quantitative phenotypes. The process of refining the

SIF equation will tell us more about the relationships between protein

function and structure, and pathway dynamics, which is one of the

most important questions considered by structural biologists.

The advance of high throughput technology has enabled us to

identify mutations in a large number of inter-connected pathways. It

is becoming apparent that performing experiments to check the

impact of individual mutations on the pathway level will be

extremely time-consuming and costly, let alone monitoring all the

possible cross-interactions and combinatorial effect of multiple

mutations. From this perspective, multi-level mathematical model-

ing, such as that described here, will provide an efficient mechanism

for pre-screening systemic impact in a cost-effective way. This is

particularly useful for studying the etiology of complex diseases that

are usually the result of accumulating multiple mutations.

Materials and Methods

Yeast strains and cell length measurement
Yeast strains used in this study are listed in Table 3.

All the strains except strain 4932 were generated following our

protocol previously published by Nurse et al. [38]. Strain 4932 was

generated and identified as described in the work of Fong et al.

[39] with the following changes: Genomic DNA from a cdc13hph

tagged strain was used as the starting template. TaKaRa LA-Taq

polymerase (Takara Bio) was used for the first round of PCR and

Z-Taq (Takara Bio) for the mutagenic PCR reaction that was

supplemented with 10XdGTP. Mutation positions were identified

using Big Dye (Applied Biosystems) terminator cycle sequencing.

Cells were grown to mid exponential growth (,56106 cells/ml)

in rich media at 25uC and 30uC [40] and photographed using a

Zeiss Axioplan microscope. Cell lengths upon mitosis, by unbiased

sampling of 30 septated cells, were measured using ImageJ.

Replica exchange Monte Carlo method
Here we applied the replica exchange Monte Carlo method

(REM) – also known as parallel tempting (PT) – to implement

parameter inference. For a non-linear system, as represented by

the G2-M and MAPK model, the energy surface is normally

rugged and it is hard to ensure unbiased sampling along the

uneven energy space. Nevertheless REM has been shown to be

very useful for this purpose, especially at low temperatures, and

has been used extensively for finite-temperature simulation of

biomolecules [41,42]. The general idea of REM is to simulate a

number of subsystems {X(m)} with different inverse temperatures

bm (replicas) in parallel. At particular intervals, the sampling

trajectory is exchanged from one subsystem to the others (usually

adjacent replicas) with the following probability specified in [43]:

P X mz1ð Þ<X mð Þ
� �

~ min 1,eDb DE
� 	

where Db= bm+12bm is the difference between the inverse

temperature of the two replicas and DE = E (X(m+1))2E (X(m)) is

the energy difference between them (in our case the deviation of

the protein expression time course).

Practically, the exchange of replicas with different temperatures

effectively generates repeated heating and annealing cycles, which

avoids the parameter search from becoming trapped in a local

energy minimum.

For sampling the trajectories, PEPP used the Metropolis

algorithm [44] with modifications that allow uneven sizes of

sampling steps. This echoes the idea that the coexistence of large

and small changes in phase space is essential for sampling unstable

structures [45]. To determine the size of each sampling step (Dx),

PEPP adopted the method introduced in [45]:

Dx~s:d:10-e

where d and e are random integers uniformly distributed in

d[[1,9] and e[[Nmin
e , Nmax

e ] and s is a binary random number that

is either 1 or 21 with probability of 0.5. Nmin
e and Nmax

e determine

the logarithmic scales of the smallest and largest step move,

respectively. As a result, the overall sampling density is a mixture

of uniform distributions with different scales; it has a sharp peak

near zero and very long tails.
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The iteration of the Metropolis algorithm in our model is as

following:

1) Introduce a perturbation (Dx), whose scale is determined

according to the last function shown above, to the initial

parameter (X) in a target system.

2) Run the simulation with the initial X and the perturbed X9,

which generates the respective energy E and E9.

3) Draw a uniform randomly number R[[0,1]. Whether X9 is

accepted as the next move of sampling depends on

Rv

e(-bE(x0))

e(-bE(x))
:

4) Return to step 1)

Quantifying the systemic impacts of the mutations

Control coefficient (CS
pi).

CS
pi

~
pi

S
: LS

Lpi

~
LlnS

Llnpi

where pi is the parameters in the model and S is a downstream

reporter that is tightly associated with a specific phenotype.

In both G2-M and MAPK models, was calculated given

hpi = 0.1. For mutations that can be associated with two rate

constants, e.g. X and Y, hpi is defined as hpi
X+hpi

Y = 0.1.
Quantifying the change of expression curves. As men-

tioned above, is calculated based on hS that is the deviation between

wild type and mutant type curves of a reporter protein. In the G2-M

model, the deviation of the CycB curve is measured as the

concentration change of CycB when MPF reaches a dimensionless

concentration 2.0. In the MAPK model, the deviation of the Erk

curve is measured in three dimensions that are commonly

investigated in studying pathway behavior: (1) peak difference, i.e.

the difference of the maximum activation; (2) duration difference,

i.e. the difference of time until the signal drops down to 50% of its

maximum activation; (3) peak time difference, i.e. the difference of

the time that the curves reach its maximum activation (Figure S6).

Structural analysis of the target proteins
Homology modeling of Cdk1, CycB and MPF

structures. We modeled Cdk1 using human cyclin-dependent

kinase 2 (CDK2, PDB code: 1FIN, chain A, sequence identity shared

with Cdk1: 64%) as a template. Here we employed MODELLER

(version 9v2; set deviation = 4.0; number of models = 50; call

routine = ‘model’) [46] to construct the three-dimensional structure

of Cdk1, guided by a sequence to structure alignment between the

query and the template using the program JOY [47] (Figure S7A).

Examination of the model by PROCHECK [48] shows 90% of the

Cdk1 model’s backbone angles are within the core region of

Ramachandran plot while only one loop residue (L37) is within the

generally allowable region (Figure S7B). For the case of CycB, it was

modeled by applying JOY and MODELLER using both human

Cyclin A (PDB: 3DOG, chain B, sequence identity shared with CycB:

36%) and human cyclin B (PDB: 2JGZ, chain B, sequence identity:

40%) as templates (Figure S8A). Evaluation of the model by

PROCHECK shows that 93% of the modeled CycB backbone angles

are within the core region and only one loop residue W249 is within

the generally allowable region (Figure S8B). For all constructed models,

there are no backbone angles, other than for the residue glycine, in

disallowed regions of the Ramachandran plot. Lastly, the MPF

complex was modeled by superimposing modeled Cdk1 and CycB

onto the human Cdk2-Cyclin A complex (1PDB: 1FIN).

Molecular dynamic simulations and free energy

calculations. AMBER10 is employed with the ff99SB force field

[49,50] to generate conformation ensembles for each mutation

studied. Each target protein is solvated by water molecules. For

proteins with surface charges, salt ions are included in the solution

for maintaining stable protein structures. Each protein is first

equilibrated by a 50 picoseconds heating phase to 300 K, and 50

picoseconds of density equilibration with weak restraints on the

structure. This is followed by a simulation at constant pressure at

310 K (300 K for the proteins in the yeast system) up to 100

picoseconds. All simulations are run with the shake algorithm

applied to hydrogen atoms, a 2 femtoseconds time step and

Langevin dynamics for temperature control. For the final phase of

equilibration and subsequent simulation up to 100 nanoseconds, the

following parameters were used: imin = 0, irest = 1, ntx = 5,

nstlim = 50000000, dt = 0.002, ntc = 2, ntf = 2, cut = 8.0, ntb = 2,

ntp = 1, taup = 2.0, ntpr = 50000, ntwx = 50000, ntt = 3, gam-

ma_ln = 2.0, temp0 = 310 (300 for the yeast system).

For each mutation, 100 simulated structures are sampled across

the total 100 nanoseconds simulation time. The average DDG is

then calculated based on the Boltzmann-Gibbs distribution as

discussed in [51]: SDDGT~
1

b
ln Seb:DDGi T
� �

, where b~
1

KBT
, KB

is the Boltzmann constant and T is temperature, and DDGi is

individual sampled structure. Finally, an average SIF score for

each mutation is calculated based on SDDGT.

FoldX (version 3.0) is employed to calculate the DDG for each

mutation. Prior to the calculation of DDG, the RepairPDB

command in FoldX is used on each sampled structure to fix non-

standard angles, distances and side-chain conformations. The

default setting of FoldX is used to calculate the DDG of each

mutation: Temperature = 298 K, pH = 7, IonStrength = 0.050,

VdWDesign = 2.

Supporting Information

Figure S1 Checking the robustness of parameters in the G2-M

model. (A) Error distribution of the parameter sets sampled 1,000

times with random starting points shows two major clusters of

parameters. The first cluster of parameters have chi-squared errors

,5 and the other have chi-squared errors between 5 to15 (the

error estimates the difference between the simulated curves and

experimentally observed ones). The cluster with smaller errors

produce curves similar to those from the original Novak and

Tyson (1993) model whereas the other with larger errors results in

a flat curve of CycB and MPF. Therefore, in this case only the

parameters with error ,5 are considered. (B) Control coefficients

(CS
pi) of parameter sets that are close to local minimum of

parameter inference, i.e. within the cluster that have smaller

errors.

(PDF)

Figure S2 Asymmetric control of Wee1 and Cdc25 on the G2-

M model. The absolute values of the control coefficients for

Cdc25-associated reactions are larger than those for Wee1.

(PDF)

Figure S3 Simulated curves for the MAPK model. (A) The

reduced model (solid lines) and the original Brightman and Fell

model (dashed lines). (B) The reduced model with initial concen-

trations measured by Fujioka et al. (solid lines) and the expression

data from Fujioka et al. (dashed lines). (C) The reduced model with

initial concentrations measured by Fujioka et al. plus parameter sets

optimized according to the FRET data measured by Fujioka et al.

(solid lines) and the expression data from Fujioka et al [26].

(PDF)
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Figure S4 The SIF scores of the mutations in the MAPK model

considering conformational ensembles. (A) The reduced model; (B)

the reduced model with initial conditions from Fujioka et al.; (C)

the reduced model with initial conditions from Fujioka et al. and

parameters optimized by fitting to the time course data in Fujioka

et al.; (D) the original non-reduced model.

(PDF)

Figure S5 An overall structure of the original and reduced

model. (A) The original non-reduced model and (B) the reduced

model.

(PDF)

Figure S6 The three measurements used to quantify the

difference between two proteins expression curves.

(PDF)

Figure S7 Structural analysis of Cdk1 model. (A) The alignment

of Cdk1 sequence and the template structure PDB: 1FIN. The

structure features of the template are shown in the JOY [52]

format: each alpha helix is indicated in red, beta strand in blue and

310 helix in maroon. Solvent accessible residues are shown in lower

case, solvent inaccessible in upper cases. Residues hydrogen

bonded to main-chain amide groups are shown in bold style; those

hydrogen bonded to main-chain carbonyl groups are underlined.

Positive phi torsion angle in italic style; disulfide bonds are

indicated with cedilla (B) Ramachandran plot of the Cdk1

modeled structure. Residues that have a less favorable but

generally acceptable backbone conformation are highlighted in

red.

(PDF)

Figure S8 Structural analysis of CycB model. (A) The alignment

of CycB sequence and the template structures PDB: 2JGZ and

3DOG. The structural features of the template are shown in the

JOY [52] format, as explained in the legend of Figure S7. (B)

Ramachandran plot of the CycB modeled structure. Residues that

have less favorable but generally acceptable backbone conforma-

tion are highlighted in red.

(PDF)

Figure S9 Simulated curves of the reduced and original models.

(A) Comparison of the relative activation of Mek, for the

Brightman and Fell model (solid lines), and the situation where

the Mek activation is replaced by Eqn. 21 (dashed line). Here note

[Mek*] = [MekP]+[MekPP]. (B) Comparison of the relative

activation (concentration of active form, divided by initial

concentration of protein) of ErkPP between the original Brightman

and Fell model (solid line) and the simplified version in which the

Erk activation is replaced by Eqn. 24 (dashed line). (C)

Comparison of the relative activation between the Brightman

and Fell (2000) model (heavy lines) and the equivalent simplified

model (light lines).

(PDF)

Figure S10 Three-dimensional structure of a kinase. The G-rich

loop is colored in green; the C-alpha helix is colored in magenta;

the catalytic loop is colored in orange; the activation loop is

colored in cyan. The N-lobe region is colored in black while the C-

lobe is colored in grey.

(PDF)

Table S1 Mutations and model parameters associated with

neuro-cardio-facial-cutaneous syndrome.

(DOC)

Text S1 Additional information of the in silico MAPK model.

This file describes the parameter values optimized based on the

FRET data measured by Fujioka et al.

(DOC)

Text S2 Characterizing structural and functional mutations.

This file discusses the separation of structural and functional

mutations studied in this work.

(DOC)

Text S3 Formulating the reduced ODEs based on the Bright-

man and Fell model. This file describes the steps of producing the

reduced model.

(DOC)
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