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Abstract

Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into
how those interactions are organized into functional modules, or how information flows from one module to another. In
this work we introduce an approach that provides this complementary information and apply it to the bacterium
Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the
essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population
of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a
phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow
from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a
phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate
autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight
temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general
approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).
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Introduction

The regulatory network that coordinates oscillating periods of

growth, chromosome replication, and division is among the most

important in a cell [1]. It is emerging that the cell cycle network,

like others, is organized into functional modules [1–5]. Each

module is sequentially activated or inhibited by key cell cycle

regulatory proteins, whose concentrations oscillate with the same

period to ensure irreversibility and a ‘‘once-per-cell-cycle’’

occurrence of each process [1,2]. However, in both prokaryotes

and eukaryotes there is increasing evidence that internal regula-

tory modules (i.e., a set of chemical reactions associated with a key

sub-function of the overall cell cycle) can run autonomously. For

example, in the bacterium C. crescentus several rounds of

chromosome replication can occur under conditions where activity

of the master cell cycle regulator CtrA is largely suppressed [6],

and certain C. crescentus mutants can undergo multiple cell

constrictions within one cell cycle [7–9]. In budding yeast, cell

cycle modules such as budding [10], transcription [11], centro-

some replication [12], and Cdc14 localization [4,13] can run

independently of Cdk activity. This raises the question of how

individual modules interact to generate robust sequences of events.

The interactions defining the connectivity of a regulatory

network, such as that controlling the cell cycle, can be dissected in

a traditional manner by functional reconstitution [14]. However,

this does not provide information about the integrated dynamics of

the interacting network as a whole. Alternatively, by applying

appropriate perturbations to an intact network, one can determine

the dynamics of the response of one or more measureable

parameters and infer global properties of the network that underlie

a given process. We refer to this as probing the topology of the

functional relations of the network. Such an approach is analogous

to circuit analysis in electrical engineering and time-resolved

spectroscopies employed in chemistry and physics [15,16]. Here

we report a periodic perturbation approach that provides insight

into the systems-level control features of a bacterial cell cycle.

Specifically, we study Caulobacter crescentus because its cell cycle

regulatory network has been well-characterized both genetically

and biochemically [17] and quantitative models have been

reported [18–20]. The life cycle of C. crescentus begins as a non-

reproductive motile swarmer cell, with chromosome replication

inhibited by the cell cycle master regulator CtrA [21] binding to

the replication origin [6]. The C. crescentus swarmer cell then

differentiates into a reproductive sessile stalked cell (i.e., the

mother); this cell differentiation event is concomitant with

proteolytic clearing of CtrA from the cell. The stalked cell then

commences DNA replication, cell growth, FtsZ ring formation,

and membrane fission to yield a daughter swarmer cell and

regenerate the mother stalked cell [22] (Figure 1A left). While

swarmer progeny remain in a gap-like phase prior to differenti-
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ation, the stalked progeny can continue to reproduce for tens of

generations [20,23]. Thus the stalked cell behaves as a self-

sustained oscillator. The CtrA concentration profile during the

stalked cell cycle, shown schematically in Figure 1A, is low in the

early stalked cell, reaches a maximum at the late-predivisional

stage, then decreases rapidly in the stalked compartment (post-

constriction) prior to initiation of a successive round of reproduc-

tion [17,24,25]

The design of our experiment is as follows (Figure 1B). In

contrast to knockout experiments that completely eliminate an

element of a regulatory network, we seek to quantitatively perturb

the expression of a molecule and analyze the resulting change in

system dynamics. To this end, we engineer a mutant strain that

lacks ctrA and then introduce a xylose-inducible ctrA on a plasmid

[26]. It is important to note that this strain (with the plasmid)

grows and divides in an essentially normal fashion in the presence

of constant xylose concentration ($0.961024%, w/v; Figure S1 in

Text S1). This is made possible by the fact that the active form of

CtrA is the phosphorylated protein [24,25], which can still

oscillate even though the gene is transcribed at a constant rate. We

then use a microfluidic device to toggle between low and high

levels of xylose. Although the inducer concentrations are such that

the protein should always be present at levels that permit division,

the periodic pulses of expression must indirectly increase the

amount of phosphorylated protein because they cause division to

synchronize. We measure division times of single cells and use

them to determine the advance or delay of the cell cycle as a

function of its phase when a pulse arrives. This response defines

the phase resetting curve (PRC), which informs a mathematical

analysis that reveals two important insights into the cell-cycle

network: (i) it comprises functional modules that oscillate

autonomously and (ii) the coupling between these units is highly

asymmetric such that CtrA acts to brake rather than drive the cell

cycle. We validate this model by quantitative comparison with

independent experimental data. We discuss molecular mecha-

nisms for realizing the elucidated functional features and their

potential biological advantages.

Results/Discussion

Validation of the experimental construct
As discussed in the Introduction, we examine the quantitative

change in division times in response to pulses in CtrA in a C.

crescentus ctrA mutant strain with a xylose-inducible copy of ctrA.

Unless otherwise indicated, we switch between xylose levels of

0.961024% (w/v) and 0.03%. To ensure that CtrA was not

limiting, we first measured inter-division times for fixed xylose

levels. The strain is viable for xylose concentrations $0.961024%.

The mean inter-division time at 0.961024% xylose is

68.1615.6 min (N = 5160 cell division events; tempera-

ture = 32.0uC), which is comparable to the wild-type, although it

should be noted that the noise (standard deviation/mean) is larger

(Figure S1 in Text S1).

In the periodic experiment, we stimulate a population of surface

attached stalked cells cultured in a Y-shaped microfluidic device

[20] with a pulse train that alternates between low and high xylose

concentrations (Figure 1B left, Methods). We explored a range

Figure 1. Schematic for phase locking the stalked C. crescentus
cell division cycle by periodically perturbing ctrA expression.
(A) C. crescentus stalked cell cycle is driven by oscillating concentration
of the master regulator protein, CtrA. The cell cycle begins with low
CtrA concentration, allowing initiation of chromosome replication. CtrA
levels then rise gradually, accompanied by cell growth and division.
Cytoplasmic compartmentalization at the pre-divisional stage triggers
the rapid proteolysis of CtrA, initiating another round of stalked cell
division. (B) Schematic of phase locking. (Left) The expression of
exogenous ctrA (in a mutant lacking endogenous ctrA) is controlled by a
periodic inducer pulse train which oscillates between two discrete
levels (Low and High), which then phase locks the dividing stalked cells
on the surface of a microfludic flow channel (lower micrograph) as
schematized on the right.
doi:10.1371/journal.pcbi.1002778.g001

Author Summary

During the cell cycle, the cell progresses through a series
of stages that are associated with various cell cycle events
such as replication of genetic materials. Genetic and
molecular dissections have revealed that the cell cycle is
regulated by a network of interacting molecules that
produces oscillatory dynamics. The major cell cycle
regulators have been identified previously in different
species and the activity of these regulators oscillates.
However, the question of how cell cycle regulators
coordinate different cell cycle events during the cell cycle
remains controversial. Here, we investigate this question in
a model bacterial system for cell cycle, Caulobacter
crescentus. We perturb the expression of the master cell
cycle regulator ctrA in a pulsatile fashion and quantify the
response of the cell cycle to such perturbations. The
measured response is contradictory to the existing
mechanism of Caulobacter cell cycle control, which views
the cell cycle progression as a sequential activation/
inhibition process. We propose a new model that involves
coupling of multiple oscillators and show the quantitative
agreement between this new model and our measure-
ments. We expect this procedure to be generalized and
applied to a broad range of systems to obtain information
that complements that obtained from other methods.

Periodic Perturbation Reveals Network Coupling
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of external pulse periods that was centered about the mean

intrinsic cell-cycle time (i.e., 68.1 min). Figure 2 shows the results

obtained with pulses of 15 min high xylose (0.03%) and 50 min

low xylose concentration (0.961024%) (i.e., external oscillator

period is 65 min). The entrainment of the cell cycle to this external

periodic pulse train can be readily visualized in the growth curve

that is constructed from the measured single cell divisions, only

counting progeny of the original stalked cells (Figure 2A upper

panel; Methods). The linear growth of the initial portion of the

curve is due to asynchronous division, and the subsequent stepwise

growth corresponds to synchronous division [27]. Similar

synchronization was recently realized for synthetic genetic

oscillators [28]. Here, the synchronization confirms that the pulses

in (initially non-phosphorylated and thus inactive) CtrA are

sufficient to perturb the cell cycle and serve as the basis for phase

resetting. This observation is consistent with the idea that the

active form of CtrA follows the overall CtrA protein level closely

owing to rapid phosphorylation during the stalked cell cycle

[24,25,29,30].

The phase resetting curve is sufficient to capture the
statistics of division

Many (,20) divisions were followed for each cell. Each division

event is indicated by a dot in Figure 2A (lower panel), with the

timing of the event on the horizontal axis and its lineage on the

vertical axis (labeling each original stalked cell by its cell-cycle

phase immediately prior to the first pulse). By construction, the

initial condition is a diagonal line in this representation; it reflects

an asynchronous population with a large dispersion in phase over

the cell cycle immediately before perturbation. The dispersion

from a line for divisions at negative time in this reference frame

(i.e., reading to the left in Figure 2A) shows the intrinsic noise in

the cell cycle. After the pulse train starts (positive time), the

population gradually evolves to a distribution about a vertical line,

indicating synchronous division. The distribution narrows and the

synchronization, as quantified by an information theoretic

measure, the synchronization index [31] (see Methods), increases

as more pulses are delivered (Figs. 2B and 2C). Thus

quantitative metrics support phase-locking of the cell cycle.

Figure 2. C. crescentus cells can be phase locked. (A) Phase locking a population of single cells. The upper panel shows the cell growth
trajectory overlapped with the external inducer pulse train (Text S1). The inserts are magnified views from 0 to 260 min and from 520 to 780 min.
The lower panel shows the divisions of single cells (261 cells at pulse start) that were monitored for over 20 hrs. The timing of division events for
individual cells are plotted (black dots) along lines parallel to the Time axis. Cells are arranged along the vertical axis according to their phases prior to
the first perturbation (i.e., the diagonal line immediately before time zero). Inducer profile along experimental time is indicated in red, where high and
low xylose levels are 0.03% (w/v) and 0.00009% (w/v) respectively. (B) Phase difference distribution. Phase difference (in minutes) between the
internal cell cycle oscillator and external oscillator is analyzed. The distributions of phase difference after 2nd and 10th pulses are shown. (C)
Quantification of phase evolution and division synchrony. The distributions in (b) are used to quantify the mean phase difference and
synchronization. Both quantities are plotted with respect to the number of pulses delivered.
doi:10.1371/journal.pcbi.1002778.g002

Periodic Perturbation Reveals Network Coupling
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The phase-locking efficacy varies across the range of external

pulse frequencies (i.e., inverse periods) explored (Figure 3A and
Figure S5 in Text S1) owing to the intrinsic noise in the cell

cycle. Stronger entrainment occurs when ctrA is induced for

15 min than 10 min for the same overall pulse frequency. The

synchronization index peaks when the pulse frequency equals the

intrinsic cell-cycle frequency and decays more rapidly at higher

frequencies than at lower frequencies. The asymmetry of the

response can be seen much more clearly by using the single-cell

data to construct a phase resetting curve (PRC) [32]. The PRC is

the deviation of the division time for each event from the

unperturbed cell cycle period plotted as a function of the start

time of the pulse (relative to the previous division; Figure 3B;

Figure S2 in Text S1). In constructing Figure 3B, we assume

that the responses to successive pulses are independent and pool

their phase shifts. This assumption is confirmed by our data

(Figure S3 in Text S1) and is also justified by the fast turnover

rate of CtrA [24].

Return map analysis (Figure S4 in Text S1) reveals that

stable phase-locking corresponds to portions of PRCs with

slopes between 0 and 22 (see Eqs. (S1)–(S6) and Figures S5–
S8 in Text S1). The experimental PRCs (Figure 3B) are further

employed in Langevin equation simulations to recapitulate the

measured synchronization responses of cell population to

external periodic (Figures S6–S7 in Text S1) and non-periodic

(Figure S8 in Text S1) pulse trains. These results together

indicate that the constructed PRCs, which are average

responses, are sufficient to capture the division statistics of

interest.

The cell cycle is more readily delayed than advanced
Consistent with the frequency response above, our experimental

PRCs demonstrate that the cell cycle response to CtrA pulsation

exhibits greater delay than advance. This asymmetry is our main

experimental result. Our finding is surprising considering the

measured CtrA temporal concentration profile, which has a slow

rise and a rapid fall (,70 min and ,10 min, respectively, under

conditions with a stalked cell period of ,80 min) [33]. Perturba-

tion pulses that occur during the rise will tend to advance the CtrA

oscillation, while pulses applied during the fall will tend to delay

the CtrA oscillation (Figure 3C). The slow rise and rapid fall

should thus favor advance over delay. A mathematical model that

is based on current molecular knowledge [19] also exhibits a much

more pronounced advance than delay, regardless of the choice of

parameters (Figure S9 in Text S1). The behavior of the

molecular model can be understood as follows. CtrA accumulates

during the stalked phase and peaks at the pre-divisional stage. This

accumulation positively feeds to a proteolytic system that rapidly

turns over CtrA within a short time. In this way, the different

modules function like gears in a machine—there is no clutch to

allow variable coupling between the ‘‘engine’’ and ‘‘transmission’’,

and cell division is locked to CtrA oscillation.

The CtrA-dependent PRCs that we obtained from our

measurements are inconsistent with an explicit gear-like mecha-

nism (see Figure 3D). Corroborating this idea, the strict

concentration dependence of a gear-like mechanism would predict

that a decreased amplitude of the regulatory signal should either

block or delay cell cycle events [4]. Indeed, in the above

mathematical model [19], a reduced ctrA induction level leads to

Figure 3. The phase is more readily delayed than advanced. (A) Quantification of synchronization index under various external pulse profiles.
The synchronization index ranges from zero to one as the population varies from asynchronous to synchronous. The synchronization indices (less the
initial value) from the eighth to twelfth pulses are plotted for a variety of external periods ranging from 56 min to 89 min (converted to frequency)
with 10 min and 15 min pulses (left vertical axis). The horizontal bars (right vertical axis) indicate the range for 1:1 phase locking of a noise-free cell
cycle oscillator (Arnold Tongues). Such frequency ranges are inferred from the phase resetting curves in (a) and (b). f0 is the intrinsic frequency. (B)
Phase resetting curve (PRC) for 15 min pulses. The data (open circles) are fitted with a real trigonometric polynomial of degree three (solid line) to
ensure periodicity. (C) Schematics for perturbations on CtrA oscillation by a single elevated ctrA expression pulse at two possible time points. (D)
Comparison between experimental and simulated 15-min-pulse PRCs based on the model of Li and Tyson [19].
doi:10.1371/journal.pcbi.1002778.g003

Periodic Perturbation Reveals Network Coupling

PLOS Computational Biology | www.ploscompbiol.org 4 November 2012 | Volume 8 | Issue 11 | e1002778



a reduced amplitude of its oscillation and a longer period.

However, we showed that C. crescentus cells yield similar

reproduction cycle time distributions for a wide range of constant

inducer concentrations [20] (Figure S1 in Text S1). Furthermore,

the fact that the functional modules of the regulatory network need

not all move forward at the same pace and can even run

independent of the cell cycle [6–9] suggests that coupling of

multiple (autonomous) oscillators is a fundamental feature of the

system.

Elucidation of the form of the coupling between
functional modules

Our point is not to argue for or against any particular molecular

model but to show that our systems-level measurements are

qualitatively inconsistent with extrapolations of behavior from the

known molecular interactions. To interpret our data, in particular

the PRC, we introduce a simple phenomelogical model that

reveals systems-level information and can guide future studies. It

comprises a core module (subscript 1 in Eq. (1)) that is coupled to

a peripheral division module (subscript 2 in Eq. (1)) (Figure 4A):

dQ1=dt~v1zZ1(Q1)D(t)

dQ2=dt~v2zC(Q1{Q2):
ð1Þ

Here, Q1 and Q2 are the phases of the CtrA oscillator and the cell

division oscillator respectively, v1 and v2 are the corresponding

intrinsic phase velocities, Z1(Q1) describes the response of the core

module to a time-dependent perturbation D(t), and C(Q1{Q2) is

the coupling from the core CtrA oscillator to the cell division

oscillator and is a function of the phase difference. The function

D(t) encodes the CtrA pulse train (i.e., it is 1 for the duration of

each pulse and 0 otherwise). We take for Z1(Q1) the derivative of

the PRC of an existing model of the CtrA oscillator [20] (Figure
S10 in Text S1and Text S1). To elucidate C(Q1{Q2) (Figure 4B)

we begin by noting that the perturbation never results in a stable

phase difference other than the original one (see Methods).

Consequently, we know that the system has a single stable point,

and we can choose the zeros of Q1 and Q2 such that it occurs at

Q1{Q2~0. Mathematically, C(0)~0 and C’(0)w0, where the

prime denotes differentiation. The slope of C(Q1{Q2) sets the

relaxation rate; the relaxation rate in turn sets the extent of the

advance when Q1{Q2§0 and the extent of the delay when

Q1{Q2ƒ0. We adjusted the slopes of line segments for Q1{Q2§0
and Q1{Q2ƒ0 separately to match the advance and delay

observed in the 15-min pulse experiment. In this model, the phase

advance of the CtrA oscillator is weakly coupled to the division

oscillator, while the delay is strongly coupled (Methods).

We test the model and the elucidated coupling function by using

it, without further modification, to compute the measured PRC

obtained with 10-min pulses (Figure 4C–D). This is a non-trivial

test since the 10-min-pulse PRC is not a simple scalar multiple of

the 15-min-pulse PRC. We see that the agreement is excellent.

Crucially, the model captures the fact that the asymmetry between

delay and advance is less pronounced for 10-min pulses. An

additional prediction of this coupled oscillator model is that the

cell cycle will become more gear-like with stronger coupling and

less gear-like with weaker coupling. Indeed, weakening the

coupling by lowering the amplitude of the first oscillator by

decreasing the ctrA induction level reduces the coherence of the

second oscillator output due to the presence of increased noise (i.e.,

the ratio of standard deviation of the cell inter-division time

distribution over mean inter-division time increases, Figure S1 in

Text S1). Meanwhile, multiple cell constrictions that occur within

a cell cycle [7–9] could be explained by ‘‘phase slip’’ between the

autonomous CtrA and division modules. This asymmetrically

coupled oscillator picture thus provides a theoretical foundation to

explain the experimentally observed bacterial cell-cycle defects.

Molecular interpretation
What molecular components could make up the autonomous

oscillator downstream of the core CtrA module? A self-sustained

oscillator requires negative feedback with sufficient time delay

[34,35]. Examination of the molecular details identifies the

existence of an appropriate motif in the FtsZ-FtsQA interactions

(Figure S11 in Text S1): i) the residual transcription activity of

ftsQ and ftsA from the Paq promoter (,25% of normal activity,

estimated from [36]) in the absence of CtrA may yield sufficient

expression of FtsQ and FtsA; ii) transcription of ftsA from the Pa

promoter is independent of CtrA [36]; iii) the time difference

between FtsZ expression and Z-ring formation may provide

sufficient time delay for the feedback loop; iv) the cell phase-

dependent proteolytic property of FtsZ provides a negative

feedback signal, i.e., the half-life of FtsZ decreases rapidly as Z-

ring constriction initiates [37]. Thus Z-ring formation contributes

to a time-delay while Z-ring constriction negatively regulates the

stability of the division proteins. These details are encapsulated in

the coupled oscillator scheme of Figure 4A.

Broader implications
The present study is an important step beyond the recent work

using simple synthetic biological oscillators [28] because we can

exploit the dynamics to learn about the natural organization of the

cell cycle and its design principles. Our findings are congruent

with the recent observation that DnaA activity, which controls

DNA replication, oscillates independently of CtrA [5], and, more

generally, the ‘‘phase-locking’’ model proposed by Lu and Cross

for budding yeast [4]. In the yeast model, the central cyclin/Cdk

oscillator entrains a series of autonomous peripheral oscillators

with intermittent coupling. Corroborating this picture, periodic

CLN3 expression indicates that certain checkpoints in the yeast cell

cycle can be abolished [38].

Given that the coupled-oscillator topology appears in the cell

cycle control of multiple organisms, it is important to consider its

implications and functional advantages. While the CtrA module is

often viewed as the ‘‘engine’’ of the cell cycle, our results show that

it cannot significantly accelerate division; rather, it appears to

function more like a brake, slowing downstream events. This could

be important for ensuring coordination of the many processes that

contribute to the cell cycle. The asymmetric, diode-like, coupling

function in Figure 4B will also affect the propagation of noise

from the upstream module to the downstream one. To show this,

we added white noise terms to both oscillators in Eq. (1). The

upstream (i.e., Q1) noise propagates to the downstream (observed)

phase through asymmetric coupling, giving rise to a skewed

distribution in the (unperturbed) division times (Figure S12 in

Text S1). To reproduce the experimental distribution, the

upstream noise needs to be ,10-fold greater than the downstream

noise (Figure S12 in Text S1and Text S1). Thus, the coupled-

oscillator topology filters perturbations/fluctuations that advance

the CtrA oscillator phase. This reduction in noise, in turn, would

prevent premature division. In addition, it would be also

interesting to investigate the robustness and stability of this

coupled-oscillator model through systematic non-equilibrium

theoretical frameworks [39–41].

The approach that is presented here builds on the basic

principle of linear response, which is central to spectroscopy and

engineering. In this sense, it is a chemical perturbation spectros-

Periodic Perturbation Reveals Network Coupling
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copy (CPS) [42,43]. The parameterless fit of the 10-min-pulse

PRC data with the model determined from the 15-min-pulse PRC

establishes its suitability in the present case. Our work transcends

recent linear response studies of cellular networks [44–48] by

going beyond the steady-state to determine the full cell cycle

response to pulsatile perturbation, as represented by the PRC. In

this sense, it is most similar to [49] but we focus on extracting

topological features of the regulatory dynamics rather than

discriminating between specific molecular models. This analysis

can be adapted to study oscillatory dynamics in other cellular

systems. In the future, we envision multiple chemical perturba-

tions, potentially with more complex waveforms, that could

directly probe the bidirectional information flux between func-

tional modules, in analogy to multi-dimensional (NMR and

optical) spectroscopies [50].

Methods

Construction and characterization of C. crescentus ctrA
mutant strains

FC1006 was constructed by substituting the defective holdfast

synthesis gene hfsA [51] in LS2535 (NA1000 DctrA+PxylX::ctrA)

with CB15 hfsA allele [26] by double-recombination. The CB15

hfsA allele-containing plasmid was introduced to LS2535 by tri-

parental mating from Top10/pNPTS 138-CB15-hfsA [26] and

was selected on a 20 mg/ml kanamycin PYE plate supplemented

Figure 4. Proposed coupled-oscillator model for C. crescentus cell cycle control. (A) Interactions between core cell cycle regulatory module
and cell division module. Cell division module is represented as looped connections of protein expression and interaction events. This closed loop is
established by both protein interaction causalities and temporally connected events. The color scheme is the same as Figure S9 in Text S1. The
interactions are schematized in the lower panel. (B) Derived coupling function C(Q1{Q2). See Text S1 for details. (C) Reverse-calculated PRC
overlapped with experimental PRC data for 15-min pulses. (D) Comparison between experimental PRC data for 10-min pulses and calculated PRC
based on the coupling function in (B) derived from 15-min-pulse data. See Text S1 for details.
doi:10.1371/journal.pcbi.1002778.g004

Periodic Perturbation Reveals Network Coupling
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with 0.3% xylose. Colonies were grown overnight without

kanamycin selection to allow recombination, counter-selected on

a sucrose containing plate, and then tested on a kanamycin plate

to ensure the loss of kanamycin resistance. The successful

recombinant was screened by the adhesion phenotype with the

96-well crystal violet assay [26], and confirmed by PCR

amplification (MEN-SNP-70 primers, TCCCGGTCCAGTTT-

CAGC and AAGTACGCGGTGGCTTCG) and restriction

enzyme digestion with AvaI and BstNI. The resulting FC1006

strain has ,30% of the surface adhesion ability of wild-type CB15

after 5 hrs of induction with $0.03% xylose as characterized by

the polystyrene binding assay. The FC1071 strain was constructed

by introducing the PxylX::ctrA plasmid [24] from LS2535 into

FC764 (NA1000 with CB15 hfsA allele [26]).

Cell culture
Individual colonies (FC1006 or FC1071) were picked from a

fresh PYE agar plate supplemented with necessary antibiotics and

xylose (1 mg/ml chloramphenicol, 0.03% xylose) and grown

overnight in PYE medium (1 mg/ml chloramphenicol, 0.03%

xylose) in a 30uC rolled incubator. The overnight culture was

diluted to OD660 = 0.1 with fresh PYE (with antibiotics and xylose)

and cultured for additional 2 hrs before loading into the

microfluidic device with a syringe [20].

Microfluidic device and single-cell assay
Y-shaped microfluidic channels with rectangular cross-section

(150 mm width650 mm height) were fabricated by rapid photo-

typing in poly(dimethylsiloxane) (PDMS) [52]. The PDMS and a

microscope coverslip (No. 1.5) were plasma cleaned and then

pressed and sealed to form Y channels with inlet and outlet ports

in the PDMS. Each device contains multiple channels allowing

simultaneous measurements under different conditions. Teflon

tubing connectors (constructed with i.d. 0.0280/o.d. 0.0480 tubing

and i.d. 0.0450/o.d. 0.0620 tubing) plugged with i.d. 0.0120/o.d.

0.0300 tubing were connected to ports and used for solution

exchange. Before loading the bacterial cell culture, the channel

was sequentially rinsed with NaOH (2M), ethanol, and autoclaved

H2O. After thermal equilibration inside the heated microscope

enclosure and incubator, the channel was loaded with the bacterial

cell culture. Generally, ,1 hr incubation for FC1006 or ,30 min

incubation for FC1071 is necessary for a sufficient number of

single cells to become attached onto the glass surface of the

channel. Two computer-controlled syringe pumps (PHD2000,

Harvard Apparatus) that are also inside the heated (thermostated)

microscope incubator were used to pump two thermally equili-

brated PYE media with low and high xylose concentrations

through the channel at a constant flow rate (10 mL/min) [20].

Time-lapse microscopy
Time-lapse single-cell measurements were performed on an

automated inverted microscope (Olympus X70) equipped with a

motorized sample stage, an objective motor driver and a controller

(BioPrecision stage and MAC5000 controller, Ludl Electronics).

DIC microscopy was done with an Olympus UPLSAPO 1006oil

objective and a light-emitting diode (LED) light source which is

pulse-modulated (LEDC19 LED and LEDD1 driver, Thorlabs).

The control pulse for the LED was generated from a PCI-DAQ

card (PCI-6052E, National Instrument) through a BNC adaptor

interface (BNC-2090, National Instrument). The image was

collected on a charge-coupled digital camera (CCD, LCL-902C,

Watec) with total magnification of 1006. To ensure thermal

stability, most of the microscope (except for the observation ports)

as well as the syringe pumps were enclosed by a home-made

acrylic microscope enclosure (28062506180) heated with a heater

fan (HGL419, Omega), and the temperature was maintained at

32uC by a proportional integral derivative temperature controller

(the ‘‘incubator’’ mentioned above; CSC32J, Omega). A uniform

temperature profile inside the incubator is achieved by active air

flow from two small-profile heaters inside the enclosure.

DIC images of multiple fields-of-view were recorded at 2

frames/min and the focus was adjusted automatically by a total-

internal-reflection (TIR) based autofocusing control loop. The

back-reflected beam of a TIR-aligned 633 nm laser (LHRP-0081,

Research Electro-Optics) impinges on a quadrant photodiode

detector. The amplified difference signal is the error signal that is

used as a feedback for adjustment of the objective (motor) position.

A Virtual Instrument routine (LabView 7.0, National Instrument)

was used to control all the components (i.e., sample stage,

autofocus, pumps, CCD, and LED) and run the experiment for

extended (.20 hrs) periods of time.

Data analysis and construction of population growth
curves

The stack of acquired DIC images was loaded into ImageJ

(NIH) and the division events of individual cells were tracked

manually and recorded by a home-made plug-in. Cells that grew

into long filaments or stopped reproduction were excluded from

the analysis. The division event data was imported into Matlab

(MathWorks) and processed. A typical periodic perturbation data

set contained .200 cells. Note that only the original set of stalked

cells was used for the present analysis; we did not include cell

division data from any of the progeny cells that adhered to the

glass surface.

Growth curves were constructed from the division event data

for individual cells. Each observed division contributes to a unit

increase in the population size. Since we only followed continuous

reproduction of the initial population of stalked cells on the glass

surface, the total number of cells generated by this population of

cells can be represented by the differential equation

dN=dt~N0=Tdiv, where N(t) is the number of total number of

cells as a function of time, N0~N(0), and Tdiv is the division time

of cells. Therefore, linear growth behavior is expected for the

asynchronous division of a population of cells.

Construction of phase difference distribution and
characterization of synchrony

The phase difference is defined as the temporal difference

between the time of each cell division event (i.e., each dot in

Figure 2B) and the start time of the subsequent high inducer

pulse (depicted in Figure S3a inset in Text S1). Without

dispersion in the population, a single phase difference is present

for a phase locking condition [32]. However, the existence of noise

leads to a distribution of phases for the population under phase

locking. To construct this distribution, we included division events

between the start times of two successive high inducer pulses for

periodic perturbations with an external period longer than 65 min;

and for external periods shorter or equal to 65 min, we included

division events between the end times of two successive high

inducer pulses.

The synchronization index [31] is calculated based on the phase

difference distribution, which is based on the Shannon Entropy:

SI~(Smax{SE)=Smax, whereSmax~ln N, SE~{
XN

i~1
pi

ln pi, pi is the probability at each state and N is the number of

bins. SI ranges from 0 (uniform phase distribution) to 1 (singular

phase occupation). In all of our calculation, we use a constant bin

number of N = 20. The evolution of phase locking is characterized
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by the arithmetic mean of the phase difference distribution at

different multiples of the external period (Figure 2 and Figure
S5 in Text S1).

Construction of experimental phase response curves
from cell division times

With the assumption that phase responses of individual cell

cycle oscillators are independent of the pulse number (which is

validated in the Text S1), we constructed the phase response

curve from the data of all pulses in each constant pulse period

experiment. The scattered data (Figure S3B in Text S1) within a

chosen bin range (i.e., 2 min as represented by the gray bar) were

used to construct perturbed cell cycle time distributions (insets).

For the distributions which are obviously truncated due to data

sampling limitations, we used the center of the fitted Gaussian as

the perturbed cell cycle time; while for other distributions, the

arithmetic mean values are used instead as the reset cell cycle time.

By this approach, we obtained a set of phase response data (i.e.

phase vs. perturbed cell cycle time) for each tH. The results for

tH = 10 min and 15 min are shown in Figure 3B and Figure S2
in Text S1, where the perturbed cell cycle time is converted to

phase advance or delay and the phase difference in minutes is

scaled to be between 0 to 1 by the mean native cell cycle time at

low inducer concentration (68.1 min). The missing data points for

phase approaching unity are due to the finite width of high inducer

concentration pulse. The phase response data at the minimum

phase (i.e., phase = 0.011) are duplicated to indicate the periodic

nature of phase response curves (i.e., these data are duplicated at

phase = 1.011). These data are then fit with a trigonometric

polynomial of degree three to ensure periodicity:y~a1

sin(2px)za2 sin(4px)za3 sin(6px)zb1 cos(2px)zb2 cos(4px)
zb3 cos(6px)zc: The fit parameters (a1, a2, a3, b1, b2, b3, c) for

phase response curves at tH = 10 and 15 min are (5.58725,

1.05375, 20.03266, 1.585, 1.29886, 0.69753, 0.72275) and

(8.41916, 1.60012, 20.32122, 1.7194, 2.57242, 1.06958,

20.87352), respectively.

Assumptions underlying determination of the coupling
function

We derive the form of Eq. (1) in Text S1, starting from a classic

mathematical description of interacting oscillators [53]. We

estimate the sensitivity function Z(Q1) from the gene regulatory

network of the CtrA module [20]; more precisely, in numerical

practice, we approximate Z(Q1) as constant over the duration of

the pulse, with its value given by the published function at the

phase when the pulse begins. The specific choice of the model in

[20] does not significantly affect the result. In determining the

coupling function C2(Q1{Q2) as described in the Results and

Discussion, we first analyze the steady-state solution in the case

when there is a single pulse by assuming that: (1) v1 and v2 are

equal to each other and (2) the effect of a pulse on the first

oscillator is equally distributed throughout its duration. If the

response of the first oscillator to the pulse is small and the steady-

state is stable, the second oscillator will maintain the initial phase

difference d0. If the response of the first oscillator to the pulse is

large, the second oscillator can be displaced to a new stable

solution Q1(?){Q2(?)~di for i=0. The criterion for a solution

to be stable is dC2(Q1{Q2)=d(Q1{Q2) Q1{Q2~di
w0

�� . Because we

do not observe discontinuous responses in the experiments, we

conclude that the response of the first oscillator is not strong

enough to allow solutions other than d0. Rather than being

instantaneous, the time required for the second oscillator to relax

back to the initial state Q1(?){Q2(?)~d0 is set by the slope, with

steeper slopes leading to faster relaxation.
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