
Universal Pacemaker of Genome Evolution
Sagi Snir1, Yuri I. Wolf2, Eugene V. Koonin2*

1 Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa Mount Carmel, Haifa, Israel, 2 National Center for

Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of
orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria
to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative
evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly
correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal
PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across
genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates
of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM
models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant
trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models.
The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance,
although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-
wide pacemaker of evolution that could have been in operation throughout the history of life.
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Introduction

Genome-wide analysis of distances between orthologous genes

in pairs of organisms from a broad range of taxa belonging to all

three domains of life (bacteria, archaea and eukaryotes) revealed

striking similarity between the distributions of these distances. All

these distributions are approximately lognormal, span a range of

three to four order of magnitude and are nearly identical in shape,

up to a scaling factor [1–3]. Although many different explanations

are possible of this remarkable conservation of evolutionary rate

distribution across the entire spectrum of life, the simplest

underlying model is that all genes evolve at approximately

constant rates relative to each other, i.e. the changes in the

gene-specific rates of evolution are strongly correlated genome-

wide. This general model of evolution can be denoted Universal

PaceMaker (UPM) of genome evolution: all genes in evolving

genomes, in each evolving lineage, change their evolutionary rate

(approximately) in unison although the pacemakers of different

lineages need not to be synchronized.

The existence of UPM is compatible with the considerable

amount of available data on fast-evolving and slow-evolving

organismal lineages, primarily different groups of mammals [4,5].

Conceivably, lineage-specific accelerations and decelerations of

evolution can be caused by changes in the effective population

size, and such rate changes are indeed expected to equally affect all

genes in evolving genomes. The evolutionary rate has also been

linked with other biological features of animals that are collectively

denoted life history [5]. For instance, a genome-wide comparison

of the evolutionary rates in the human and mouse lineages has

shown that the number of fixed mutations per unit time is about

twofold greater in rodents than it is in primates, with the

implication that a lineage-specific, genome-wide change of

evolutionary rate occurred after the separation of these lineages

[6]. In the same vein, a genome-wide analysis of ratios between the

evolutionary rates of orthologous genes in triplets of related

bacterial, archaeal and mammalian species revealed near

constancy of these ratios, with only a small percentage of gene-

specific deviations that were attributed to functional diversification

of individual genes [7]. A systematic study of densely populated

phylogenetic trees for 44 mammalian genes has demonstrated

clade-specific slowdown of evolution occurring independently in

several orders including primates and whales [8]. Multiple studies

of mitochondrial DNA evolution that used extensive samples from

numerous taxa also detected consistent lineage-specific rates that

differed by as much as an order of magnitude between animal taxa

[9,10]. However, in other analyses, striking differences between

lineages in the relative rates of evolution of different genes have

been discovered, casting doubt on the universality of lineage-

specific rates, leading to the idea of ‘erratic evolution’ [11,12].

The plausibility of the UPM notwithstanding, the genome-wide

correlations between the evolutionary rates of individual genes also

could be explained within the concept of molecular clock which is

one of the central tenets of molecular evolution. In 1962

Zuckerkandl and Pauling discovered that the number of differ-

ences between homologous proteins is roughly proportional to the

divergence time separating the corresponding species [13,14]. This

phenomenon became known as Molecular Clock (MC) and has

been validated by multiple independent observations [15–18]. The
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MC is the basis of molecular dating whereby the age of an

evolutionary event, usually the split between lineages (such as for

example humans and chimpanzee), is estimated from the sequence

divergence using calibration with dates known from fossil record

[19–22]. From the phylogenetic point of view, when genes evolve

along a rooted tree under the MC, branch lengths are

proportional to the time between speciation (or duplication) events

and the distances from each internal tree node to all descendant

leaves are the same (ultrametric tree) up to the precision of the

estimation (the latter being determined by sampling error which is

inevitable in comparison of finite-length sequences).

Over the 50 years that elapsed since the seminal finding of

Zuckerkandl and Pauling, the MC has been shown to be

substantially overdispersed, i.e. the differences between the root

to tip distances in many or most subtrees of a given tree usually

greatly exceed the expectation from sampling error, under the

assumption of a Poisson mutational process [23–26]. Notably, the

overdispersion of the MC has been shown to be lineage-specific:

the MC in lineages with large effective population sizes is

overdispersed to a greater extent than the MC in lineages with

small populations implying that deviations from the MC are

controlled by selection [27]. The demonstration of the over-

dispersion of the MC inspired the relaxed MC model which is a

compromise between an unconstrained tree with arbitrary branch

lengths and an MC tree [28,29]. Under the relaxed MC, the

evolutionary rate is allowed to change from branch to branch but

this change is presumed to be gradual so that related lineages

evolve at similar rates. The relaxed MC model underlies most of

the modern methods of molecular dating.

The strict MC implies that all orthologous genes present in a

group of organisms and sharing the same evolutionary history

evolve in a fully coherent manner even if at different rates. Indeed,

if the divergence between gene sequences is solely determined by

the divergence time and gene-specific evolution rate, phylogenetic

trees reconstructed from different genes will have the same

topology and nearly identical branch lengths up to a scaling factor

which is equal to the relative evolution rate. Under the MC model,

the differences between the corresponding branch lengths in

different gene trees are due solely to the sampling error which

arises from stochastic factors and is expected to be uncorrelated

between trees. The relaxed MC model allows greater, non-

random deviations in the lengths of corresponding branches but to

our knowledge, the possibility that these evolution rate changes are

correlated between genes has not been explicitly considered.

The MC implies the constancy of gene-specific relative

evolution rates, with deviations caused by overdispersion. How-

ever, the inverse is not true: the deviations of the absolute

evolution rates from the clock could be arbitrarily high (hence no

MC) but, if they apply to all genes in the genome to the same

degree, the relative evolutionary rates would remain approxi-

mately the same throughout the entire course of evolution and in

all lineages. In other words, the conservation of the evolutionary

rate distribution follows from a model of evolution that is more

general and less constrained than the MC, namely the UPM

model.

Here we sought to determine which of the two models of gene

evolution, the MC and or the UPM, better fits the empirical data.

To this end, we performed comparative analysis of phylogenetic

trees for a genome-wide set of prokaryotic gene families and

compared the goodness of fit for the two models. The results show

that the UPM model is a better fit than the MC model for the

evolution of prokaryotes. These findings are compatible with the

previously observed accelerations and decelerations of evolution in

individual evolving lineages. However, we show that synchronous,

genome-wide change of evolutionary rates is a universal trend of

genome evolution that appears to pervade the entire history of life.

Results/Discussion

Fitting individual gene trees to the supertree
Our data set consisted of the ‘‘forest’’ of phylogenetic trees

reconstructed for 6901 orthologous gene families representing 41

archaeal and 59 bacterial genomes [30] (see Supporting Text S1).

Although horizontal gene transfer is widespread in the evolution of

prokaryotes [31,32], the tree-like statistical trend is detectable in

the genome-wide data set and moreover dominates the evolution

of (nearly) ubiquitous gene families [30,33]. We encapsulate this

trend in a rooted supertree (ST) that reflects the prevalent vertical

descent in the evolution of archaea and bacteria (see Supporting

Text S1). Each individual original gene tree (GT) is compared to

the ST and reduced to the maximum agreement subtree (MAST),

i.e. the largest set of leaves whose phylogeny fits the ST topology.

Removal of discordant nodes and edges leads to collapse of several

edges of the original GT into a single edge (Figure 1); then, the

length of the newly created GT edge is the sum of the original

contributing GT edges. Likewise, when a GT is mapped to the ST,

several adjacent ST edges could correspond to a single edge in the

reduced GT, forming a composite edge.

Under both the MC and the UPM models, we assume that the

lengths of the ST edges determine the expected lengths of the

corresponding GT edges. For the MC model, edge lengths

correspond to time intervals between speciation events, the ST is

strictly ultrametric, and gene-specific evolutionary rates are

measured in substitutions per site per time unit. Under the

UPM model, edge lengths represent arbitrarily defined ‘‘ticks’’ of

the universal pacemaker (internal time), and gene-specific evolu-

tionary rates are measured in substitutions per site per pacemaker

unit of internal time. Formally:

li,k~tjrkei,k

where li,k is the length of the i-th edge of the k-th GT, tj is length of

the j-th (possibly composite) ST edge corresponding to the i-th

Author Summary

A central concept of evolution is Molecular Clock accord-
ing to which each gene evolves at a characteristic, near
constant rate. Numerous studies support the Molecular
Clock hypothesis in principle but also show that the clock
is indeed very approximate. Genome-wide comparative
analysis of phylogenetic trees described here reveals a
distinct, more general feature of genome evolution that
we called Universal Pacemaker. Under this model, when
the rate of evolution changes, the change occurs
synchronously in many if not all genes in the evolving
genome. In other words, the relative rates of gene
evolution remain constant across long evolutionary spans:
if a gene is slow relative to the rest of the genes in the
given lineage, it is always slow, and if it evolves fast, it is
always fast. We show here that the Universal Pacemaker
model fits the available data much better than the
traditional Molecular Clock model. These findings are
compatible with the previously observed accelerations and
decelerations of evolution in individual lineages but we
show that synchronous, genome-wide change of evolu-
tionary rates is a global feature of genome evolution that
appears to pervade the entire history of life.

Genome Evolution Pacemaker
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edge of the k-th GT, rk is the gene-specific evolution rate, and ei,k is

the multiplicative error factor for the given edge. We further

assume that the error is random, independent for branches both

within and between GTs, and comes from a lognormal

distribution with the mean of 1 and an arbitrary variance,

translating to a model with an additive normally distributed

deviation in the logarithmic scale. Because the distributions of

evolutionary rates tend to follow symmetric bell-shaped curves in

log scale [3,34], the assumption of a multiplicative, log-normally

distributed deviation seems natural.

First, we seek to find the set of ST edge lengths t and gene rates

r that provides the best fit to the entire set of GTs. Under the

assumption of a normally distributed deviation, the likelihood

function for the set of GTs given t and r is

ln L(t,r)&{
n

2
(ln E2{ln nzln 2pz1)

where n is the total number of edges in the set of GTs and E2 is the

sum of squares of deviations between the expected and observed

edge lengths in the logarithmic scale:

E2~
X

k

E2
k~

X
k

X
i

(ln li,k{ln tjrk)2

where the summation for i is done over the edges of a given GT

and the summation for k is done over all GTs (see Supporting Text

S2). Thus, finding the maximum likelihood solution for {t, r} is

equivalent to finding the minimum of E2. For the MC model,

the ST edge lengths t are constrained by the ultrametricity

requirement, whereas for the UPM model, ST edge lengths are

unconstrained.

For the analyzed set of 100 genomes, there is a choice of several

possible ST topologies, produced using different methods (see

Methods and Supporting Figure S1). We mapped all original GTs

onto each of these STs and obtained reduced GTs that

corresponded to the respective MASTs. The GTs that yielded

MASTs with fewer than 10 leaves were discarded. The ST

topology derived from the concatenated alignments of ribosomal

proteins provided the maximum total number of leaves in the

resulting set of reduced GTs and accordingly was chosen for

further analysis. Altogether, we obtained 2294 reduced GTs with

MAST size greater or equal to 10 species including 44,889 leaves

and 82,896 edges. This set of trees was fit to an ultrametricity-

constrained ST (MC model) and an unconstrained ST (UPM

model) (Table 1, see Supporting Text S3 for details).

The goodness of fit between gene trees and the
supertree under the molecular clock and universal
pacemaker models of evolution

We then compared the MC and UPM models in terms of the

goodness of fit to the data. Obviously, the residual sum of squares

is lower for the UPM model because it involves independent

Figure 1. Gene trees and the supertree. A. A gene tree (GT). After
the comparison with the supertree (ST), the GT is reduced to the
maximum agreement subtree (MAST, highlighted in yellow). The
reduced GT edge highlighted in red corresponds to two edges in the
original GT. B. Supertree (ST). Mapping of the reduced GT onto the ST is
highlighted; two sections of ST that consist of multiple edges mapping
to a single edge of the reduced GT are highlighted in blue and green,
respectively.
doi:10.1371/journal.pcbi.1002785.g001

Table 1. Comparison of the Molecular Clock and Universal Pacemaker models of genome evolution.

MAST$30 MAST$20 MAST$10

MC UPM MC UPM MC UPM

Number of trees 246 967 2,294

Number of leaves 9,134 26,441 44,889

Number of edges 17,530 49,981 82,896

E2 10,656.3 10,197.8 36,139.7 35,065.0 68,260.8 66,626

r.m.s.d., ln units 0.7797 0.7627 0.8503 0.8376 0.9074 0.8965

r.m.s.d., factor 2.1808 2.1441 2.3404 2.3108 2.4780 2.4510

DAIC 573.0 0 1,310.8 0 1810.8 0

Relative likelihood
weight

102125 1 102285 1 102393 1

DBIC 2196.4 0 437.7 0 887.6 0

doi:10.1371/journal.pcbi.1002785.t001

Genome Evolution Pacemaker
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optimization of all 198 ST edge lengths, whereas under the MC

model the edge lengths are subject to 99 ultrametricity constraints.

To account for the difference in the numbers of degrees of

freedom, we employed the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC) to compare the MC

and UPM models. Under the assumption of normally distributed

deviations:

DAIC~AICMC{AICUPM~n ln
E2

MC

E2
UPM

z2Dd

and

DBIC~BICMC{BICUPM~n ln
E2

MC

E2
UPM

zln(n)Dd

where E2
MC and E2

UPM are the residual sums of squares for the

MC and UPM models, respectively, n is the total number of GT

edges and Dd is the difference in the number of parameters

optimized in the process of fitting (in our case Dd = 299). Because

lower AIC values correspond to better quality of fit, negative DAIC

would indicate preference for the MC model whereas a positive

DAIC would indicate support for the UPM model. The relative

likelihood weight of the suboptimal model can be estimated as 1/

exp(|DAIC|/2). The same calculations were repeated for smaller,

more conservative subsets of gene families with MAST.20 and

MAST.30 and also using BIC to compare the fit to the UPM and

MC models (Table 1).

Overall, the results presented in Table 1 reveal overwhelming

support of the UPM model over the MC model. The only

exception is the DBIC value for MAST.30 that weakly supports

the MC model. This outcome is predictable given the much larger

number of parameters in the UPM model, the small number of

trees in this subset and the heavier penalty that BIC imposes on

parameter-rich models [35]. Thus, the results show that the

evolutionary rates tend to change synchronously for the majority

(if not all) of the genes in evolving genomes although the rate of the

UPM relative to the astronomical time differs for different

lineages. The results of this analysis show that the apparent

genome-wide constancy of the relative rates of gene evolution

across vast spans of life’s history (Figure 2A) is not a trivial

consequence of MC but at least in part results from a distinct,

fundamental evolutionary phenomenon, the UPM (Figure 2B).

The difference between the UPM and MC models is highly

significant but small in magnitude. Root mean square deviation

(r.m.s.d.) of GT edges from the expectations derived from UMP

ST is large (a factor of 2.45) and only slightly less that the r.m.s.d

for the MC ST (a factor of 2.48). Thus, similar to MC, the UPM

appears to be substantially overdispersed. To assess the robustness

of the finding that UPM fits the GTs better than MC, we isolated

the contributions of individual trees to the E2
MC and E2

UPM (E2
MC,k

and E2
UPM,k respectively), took 1000 bootstrap samples of the set of

GTs and computed DAIC values for each sample. All 1000 DAIC

values obtained for the resampled sets were positive (in the range

of 1511 to 2147), providing 100% support to the superiority of the

UPM model and ensuring that this result is consistent for the

majority of the GTs and is not determined by a small number of

strongly biased trees (see Supporting Text S3 and Supporting

Figure S2 for details). The distribution of the E2
MC,k/E2

UPM,k ratios

(Figure 3) shows a strong bias toward values greater than unity

(73% of the GTs), supporting the robustness of this result.

The E2
MC,k/E2

UPM,k ratio characterizes the degree to which the

k-th GT favors the UPM model. Linear model analysis shows that

this value is significantly and independently influenced by the

average goodness of fit to the ST (p-value %0.001; Figure 4), the

fraction of the original GT leaves remaining in the MAST with ST

(p-value %0.001; Supporting Figure S3) and the number of the

original GT leaves (p-value %0.001; Supporting Figure S3). Thus,

the GTs that retain a greater number of leaves in the MAST, fit

the ST better and are wider distributed among prokaryotes,

typically show the strongest preference for the UPM model over

the MC model. These three factors together explain ,9% of the

variance in ln(E2
MC,k/E2

UPM,k). Neither the relative evolution rate

nor the functional class of the gene significantly impact the degree

of preference of UPM over MC (see Supporting Text S3 and

Supporting Figure S3 for details). Interpreting these findings in

terms closer to biology, widely-distributed genes that are subject to

relatively little horizontal transfer or sporadic changes of evolution

rate that reduce the fit to ST appear to make the greatest

contribution to the UPM. These observations imply that the UPM

is indeed a fundamental feature of genome evolution, at least in

prokaryotes.

The distribution of estimated relative evolution rates (Figure 5)

spans values within a range slightly greater than an order of

magnitude (0.26 to 4.58). This range is considerably more narrow

than the range of rates measured over short evolutionary distances

[3,34]. Accelerations and decelerations of the UPM are likely to

average out over long intervals of evolution, reducing the observed

differences between genes.

How many pacemakers are possible?
A logical extension of the UPM is a Multiple PaceMakers

(MPM) whereby a number of uncorrelated pacemakers ‘guide’

their own sets of trees. In the extreme case, the number of PMs is

equal to the number of GTs so that the individual GTs would be

completely uncorrelated. We sought to explore this case in order

to determine how well such a degenerate MPM (dMPM) model fits

the data compared to the UPM and MC.

Formally, under the basic assumptions of this work, the log

likelihood of dMPM is infinite because the E2 value is estimated as

the sum of squared differences between the observed and the

expected edge lengths. Under dMPM, each edge is equal to its

own expectation sothat E2 = 0. However, this logic assumes that

the tree edge length is measured precisely and is not subject to any

error, whereas the E2 value is dominated by deviations of

individual GTs from the universal standard (MC or UPM). This

assumption is obviously unrealistic, so to assess the likelihood of

the dMPM, one needs to introduce the edge length estimate error

explicitly.

To obtain the lower limit on the E2 value induced by the

inherent sampling fluctuations, one should note that the sum of the

lengths of the 49,981 edges in 967 trees (MAST size $20) is

13,018.5 (substitutions per site), on average 0.26 per edge. With

the typical prokaryotic protein length being ,200 amino acids

[36], this translates into the average of ,52 substitutions per tree

branch. Assuming that substitutions are generated by a Poisson-

type random process, one expects the standard deviation of

approximately
ffiffiffiffiffi
52
p

and the ‘‘mean’’ error of the observed value

on the order of (52+
ffiffiffiffiffi
52
p

)/52 = 1.14 or 0.13 log units per branch.

Multiplying the square of this value by 49,981 edges, we obtain the

E2 value estimate of 843.0, much lower than 35065.0 for UPM. It

should be noted that the use of the average gene length and the

average number of substitutions per branch comprises the ‘best-

case scenario’ because variations in both would necessarily

introduce larger deviations which would increase the E2 value.

To calculate the DAIC value, one needs to obtain the difference

in the degrees of freedom between the UPM and dMPM models.

Genome Evolution Pacemaker
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The UPM model uses the estimates of 198 individual edge lengths

in one UPM tree plus 967 GT rates; the dMPM model requires

9676198 edge length estimates and no GT rates, yielding

Dd = 2190,301.

Plugging these values into the equation for DAIC, one gets the

difference of 2194,269 in the UPM-dMPM comparison. Thus,

the dMPM model is less likely than the UPM model by 83,370

orders of magnitude, an obvious indication that the assumption of

completely uncorrelated rate changes does not fit the data. More

specifically, the data would support no more than 476 pacemakers

for 967 GTs under ideal conditions (each GT follows its PM

perfectly, so the E2 value remains to be solely determined by

Figure 2. The Universal Molecular Clock and Universal Pacemaker models of genome evolution. A. Under the Molecular Clock model,
gene-specific evolution rates (colored lines) remain constant; at any point in time (shown as dots), the relative rates of gene evolution are also
constant. B. Under the Universal Pacemaker model, gene-specific evolution rates can change arbitrarily but by the same amount across the entire
genome; at any point in time, the relative rates of gene evolution remain constant.
doi:10.1371/journal.pcbi.1002785.g002

Genome Evolution Pacemaker
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sampling fluctuations). Thus, the actual number of distinct

pacemakers is expected to be much lower.

Concluding remarks
The results of the genome-wide comparison of phylogenetic

trees of prokaryote genes described here show that the UPM

model fits the data substantially better than the MC model. These

findings have no bearing on the validity of the MC but show that a

more general conservation principle (the UPM) is sufficient to

explain the observed correlations between gene-specific evolution-

ary rates. It seems a natural possibility that UPM is instigated by

shifts in population dynamics of evolving lineages, with changes

affecting all genes in the same direction and to a similar degree. In

principle, UPM reflects the well-known phenomenon of lineage-

specific acceleration-deceleration of evolution. However, to our

knowledge, the previous studies on this phenomenon have focused

primarily on mammals and to a lesser extent other vertebrates

[4,5]. Here we show that the UPM can explain the correlations

between the evolutionary rates of prokaryote genes on the whole

genome scale and over time intervals that span effectively the

entire history of life on earth. The discovery of the UPM opens up

several areas of further inquiry. We show here that an

unconstrained model of evolution (dMPM) does not fit the data

but it remains to be determined whether or not distinct

pacemakers govern the evolution of different classes of genes.

The biological connotations of the UPM are of major interest.

Mapping UPM shifts to specific stages of the evolution of life,

changes in the life style and population structure of organisms as

Figure 3. The distribution of the E2
MC,k/E2

UPM,k ratios for 2294 gene families. The curve was smoothed using the Gaussian-kernel method.
doi:10.1371/journal.pcbi.1002785.g003

Figure 4. Relative goodness of fit for the UPM vs the MC model (dfit) plotted against the average goodness of fit (afit). dfit:
log10(E2

MC,k/E2
UPM,k). afit: 2(log10(E2

MC,k)+log10(E2
UPM,k))/2.

doi:10.1371/journal.pcbi.1002785.g004

Genome Evolution Pacemaker
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well as to the geological record could become an important

direction of future research.

Methods

Supertrees and Maximum Agreement Subtrees
Three distinct supertrees (STs) were tested for the purpose of

representing the vertical inheritance trend in the analyzed set of

GTs. The first supertree (ST1) was from [30] (originally computed

using the CLANN program [37]; the second supertree (ST2) was

computed using the quartet supertree method [38] for all species

quartets in the complete set of GTs the third supertree (ST3) was

derived from a tree of concatenated sequences of (nearly) universal

ribosomal proteins [39]. Maximum Agreement Subtrees (MAST)

between the supertree (ST) and any given gene tree (GT) were

computed using the agree program of the PAUP* package [40]. The

set of MASTs with the analyzed GTs was computed for each of

these STs, yielding a total of 43,068 MAST leaves for ST1, 43,411

MAST leaves for ST2 and 44,889 MAST leaves for ST3 (MAST

$10 for each ST). Accordingly, ST3 was used for all further analyses

as the topology that best represented the entire set of GTs.

To perform the LS optimization of the ST edge lengths and the

GT relative evolution rates, we used the function fmin_slsqp() that is

part of the scipy.optimize package of Python which minimizes a

function using sequential least squares programming. The function

also adopts a set of constraints that are necessary for the

calculation. In both the MC and the UPM models, both the ST

edges and the GT rates were constrained to positive values. For

the UPM model, the distances from a node to any leaf in a subtree

under that node were set equal for all subtrees. It can be shown by

induction that this constraint implies an ultrametric tree. Thus, we

have a constraint for every internal node; in a rooted binary tree

with m leaves, there are m21 such nodes.

Maximum likelihood estimate for the supertree edge
lengths and gene evolution rates

Consider a rooted supertree (ST) with a fixed topology. The ST

encompasses a set of edges e defined by the ST topology and a set

of unknown edge lengths t. Consider a set of unrooted GTs

reduced to MAST with the given ST. Each GT encompasses a set

of edges with known edge lengths and an unknown gene-specific

evolution rate (bk, lk and rk for the k-th GT, respectively). Each

edge of each GT uniquely maps to an ST path ej, that is a subset of

adjacent edges in the ST (bk,i;ej where ej#e for the i-th edge of

the k-th GT).

Lettj~
P

x[ej
tx be the length of the path ej. We assume that the

length of the i-th edge of the k-th GT is related to the length of the

corresponding ST path ej:

li,k~tjrkei,k

where ei,k is the multiplicative deviation factor for the given edge.

We further assume that the deviation is random, independent for

branches both within and between GTs, and comes from a

lognormal distribution with the mean of 1 and an arbitrary

variance, translating to a model with an additive normally

distributed deviation in the logarithmic scale (i.e. ln

ei,k,N(0,s2)).

Given t and r, the expectation for the logarithm of the length of

the i-th edge of the k-th GT is:

mi,k~Sln li,kT~Sln tiTzSln rkTzSln ei,kT~ln tizln rk

and the likelihood of observing the length li,k is:

Prfli,k=t,rg~ 1

s
ffiffiffiffiffiffi
2p
p exp {

(ln li,k{mi,k)2

2s

 !

~
1

s
ffiffiffiffiffiffi
2p
p exp {

(ln li,k{ln tj{ln rk)2

2s

 !

~
1

s
ffiffiffiffiffiffi
2p
p exp {

E2
i,k

2s

 !

Figure 5. The distribution of the relative evolution rates (rk values) for 2294 gene families obtained by fitting gene trees to the UPM
(unconstrained) supertree. The curve was smoothed using the Gaussian-kernel method.
doi:10.1371/journal.pcbi.1002785.g005
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where E2
i,k = (ln li,k2ln tj2ln rk)

2. For all observed edge lengths in

all GTs (l), the likelihood function is

L(l=t,r)~P
k
P
i

Prfli,k=t,rg

In the logarithmic scale:

ln L(l=t,r)~
X

k

X
i

ln
1

s
ffiffiffiffiffiffi
2p
p exp {

E2
i,k

2s

 !

~{
n

2
ln s2{

n

2
ln 2p{

P
k

P
i E2

i,k

2s2

where n is the total number of GT edges (n~
P

k

P
i 1).

Designating the residual sum of squares E2~
P

k

P
i E2

i,k and

substituting the estimate for s2

ŝs2~
E2

n{1
&

E2

n

for large n, we obtain:

ln L(l=t,r)&{
n

2
ln

E2

n
{

n

2
ln 2p{

n

2

Because n is constant for a given data set, finding the maximum of

L(l | t,r) is equivalent to finding the minimum of E2.

Least squares optimization procedure
Least Squares (LS) is called linear if the residuals are linear for

all unknowns. Linear LS can be represented in a matrix format

which has a closed form solution (given that the columns of the

matrix are linearly independent). However, our formulation

requires taking logs over sums of unknowns in the case where a

GT edge corresponds to a path in ST (ln tj~ln
P

x[ej
tx). Then,

the problem becomes non-linear with respect to LS and can be

solved only using numerical algorithms where the solution is

obtained by iteratively refining the parameter values. This

approach requires supplying initial values for the parameters.

The goodness of the initial value estimation is critical for the

convergence time of the iterative method and the risk of being

trapped in local maximum points. We employed the following

strategy for determining the initial values: For each ST edge, we

computed the mean value of the sum over all GT edges that

uniquely correspond to the given edge. Therefore, if we assign one

gene a specific rate value (e.g. the length of some edge), we obtain

initial rate values for all genes. It can be easily shown that, if there

are no errors in rates (i.e. s2 = 0), the above procedure yields the

accurate (ML) values for all unknowns.
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