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Abstract

Out of all the complex phenomena displayed in the behaviour of animal groups, many are thought to be emergent
properties of rather simple decisions at the individual level. Some of these phenomena may also be explained by random
processes only. Here we investigate to what extent the interaction dynamics of a population of wild house mice (Mus
domesticus) in their natural environment can be explained by a simple stochastic model. We first introduce the notion of
perceptual landscape, a novel tool used here to describe the utilisation of space by the mouse colony based on the
sampling of individuals in discrete locations. We then implement the behavioural assumptions of the perceptual landscape
in a multi-agent simulation to verify their accuracy in the reproduction of observed social patterns. We find that many high-
level features – with the exception of territoriality – of our behavioural dataset can be accounted for at the population level
through the use of this simplified representation. Our findings underline the potential importance of random factors in the
apparent complexity of the mice’s social structure. These results resonate in the general context of adaptive behaviour
versus elementary environmental interactions.
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Introduction

In a famous passage of his book The Sciences of the Artificial [1] the

sociologist Herbert Simon considers the winding, weaving path of

an ant as it makes its journey home across the rugged landscape of

a wind- and wave-beaten sandy beach. He notes that, whilst the

homebound ant has a clear destination, its progression along the

path that leads to it is far from a straight line, due to the numerous

obstacles encountered on the way. The example inspires in him

this startling observation:

An ant, viewed as a behaving system, is quite simple. The apparent

complexity of its behavior over time is largely a reflection of the complexity of the

environment in which it finds itself.

More than fifty years after the first mention of the parable of the

ant, the general question is still very much alive. There is indeed an

ongoing debate today as to what aspects of the behaviour, and

especially the social behaviour, observed in an animal species can

be explained as a specific adaptation versus an emergent property

of simple behavioural rules when individuals interact with their

environment. If some emerging properties of a group’s social

structure result from more simple behavioural mechanisms, it may

be that what is thought to be an explicitly social behaviour does

not require specific selective adaptations.

Although animal groups often display astonishing emergent

patterns in their collective behaviour [2], recent research has shown

that much of the complexity of some natural phenomena can be

directly attributed to the collective dynamics of simple, self-

organised processes and individuals [3–5]. In recent years,

assumptions of random behaviour have been discussed at length

in contexts such as animal movement and foraging [6]. There have

also been specific investigations on the description of collective

motion in biological systems based on stochastic processes, as

exemplified by the concept of Brownian agents [7,8]. This framework

has proven to be a versatile and practical approach to describe

collective patterns of movement at different organisational levels, for

systems ranging from bacteria [9] to crustaceans [10] and social

insects [11]. However, clearly the behaviour of animal groups is not

limited to collective motion, but also includes complex social

interactions between individuals within the group. These interac-

tions are often of a high-order and individually-differentiated

nature, as illustrated by the long history of studying social

relationships in animal species with high levels of cognitive

development [12,13]. Despite the efforts mentioned above to

describe collective behaviour by means of stochastic forces, little

attention has been paid to the importance of randomness for the

emergence of complex social patterns in animal groups.

Here we use as a case study data from a population of wild house

mice (Mus domesticus), social rodents characterised by cooperative

breeding, polygynandry, territorial defence against non-group

members, high skew in reproductive success and rather short mean
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life expectancy in both sexes [14–16]. This may have led to high

flexibility in behaviour and social organisation. Yet exactly what

aspects of the social structure of house mice can be explained by the

self-emergent properties of collective random behaviour is unknown.

In this paper, we first develop the assumption of random behaviour

by creating a perceptual landscape that mixes purely diffusive

motion and advective-diffusive Brownian bridges to describe the

movement of individual animals. We then proceed to build a simple

stochastic model that implements the assumed movement dynamics,

and discuss its accuracy in accounting for specific characteristics of

the social structure of a population of house mice. The novelty of our

approach lies in the application of a dynamical perspective on

habitat use to the investigation of social structure in animal groups as

an emergent property of random interactions.

Methods

Ethics Statement
Animal experimentation was approved by the Swiss Animal

Experimentation Commission (Kantonale Tierversuchskommis-

sion, no. 26/2002, 210/2003, 215/2006).

Behavioural data
We study an established free-living population of wild house

mice in a barn outside of Zurich, where mice can freely emigrate

and immigrate. In the barn, the mice nest in artificial nest boxes,

and are provided with straw as nesting material, and food and

water outside the boxes. At four to six week intervals, compre-

hensive trapping is conducted to monitor the population, and

adult mice are implanted with a transponder (RFID tag) so that

they are individually identifiable. Transponder readers are

installed in the tunnels that provide entrances to the nest boxes

(two readers per nest box make it possible to distinguish a mouse

that leaves a box from a mouse that enters a box); these readers

connect to a computer and continuously track movements into

and out of nest boxes. This provides 24-hour information on

movements and social affiliations of adult mice (for a detailed

description of the barn population and the methods used, see [17]).

Data collection started in May 2007 and totals around 29 million

individual recordings as of June 2012. Here we analyse the period

ranging from Jan. 1, 2008 to Dec. 31, 2009.

Our 2-year dataset covers 11’259’557 location records for 508

mice, accounting for 1’376’720 stay events in 40 nest boxes, and

leading to 1’064’695 one-to-one encounters inside nest boxes, whose

frequency, context and duration we use as a proxy for the

characterisation of social interactions (the full Dataset S1 is available

to download from the Supplementary Material page). Figure 1 shows

the geographical positioning of the nextboxes, as well as the

heterogeneity of their occupation pattern: indeed, the total occupa-

tion duration per box ranges from 264 to 22’332 hours (the lowest

figure may, however, be attributed to a malfunctioning RFID

antenna; the maximum value is longer than our study period because

some stays can overlap when two or more mice stay simultaneously in

the same nest box). This aggregated view allows to identify the ‘‘hot

spots’’ of the barn and the busiest routes between nest boxes, from a

static perspective on the behavioural data. It also shows how

geographically clustered the traffic between nest boxes is, as a result of

the partitioning and the obstacles of the barn. Evidently the physical

environment of the mice affects their movement, which in turn has an

impact on their social contact patterns. However, the view presented

in Figure 1 is insufficient to characterise the dynamics of movement of

individual mice, and the link between these dynamics and their social

behaviour. Indeed, it focuses on aggregated properties of the study

system rather than dynamical ones.

Construction of a probabilistic landscape to describe
animal movement

Objective of the approach. As Lima & Zollner put it [18],

‘‘we know remarkably little about the sorts of information

available to animals at the scale of ecological landscapes, and we

know even less about how such information is used in decisions

regarding movement’’. Our goal here is to use the movement

dynamics (successive sampling events) of mice to reconstruct the

perception they have of their environment, and create a landscape

object describing this perception. We call this object perceptual

landscape; it is shaped by the deviation of individual mice from a

null assumption about their movement across the environment.

The perceptual landscape approach departs from the static

perspective presented above, and constitutes a null model to

understand to what extent certain social patterns can be explained

by the inter-independent movements of individual mice. In the

following two sections, we detail the construction of the perceptual

landscape. Note that, in addition to the technical details developed

Figure 1. Box occupation pattern and traffic between nest
boxes. The colour of the boxes represents their cumulated stay
duration in seconds, whilst the darkness and thickness of the interbox
edges represent the intensity of the bidirectional traffic between the
boxes (for clarity, only edges with a traffic §50 trips are displayed).
doi:10.1371/journal.pcbi.1002786.g001

Author Summary

From the synchronised beauty of fish schools to the
rigorous hierarchy of ant colonies, animals often display
awe-inspiring collective behaviour. In recent years, princi-
ples of statistical physics have helped to unveil some
simple mechanisms behind the emergence of such
collective dynamics. Among the most elementary tools
used to explain group behaviour are random processes, a
typical example being the so-called ‘‘random walk’’. In this
paper, we have developed a framework based on such
random assumptions to study the spatial and social
structure of a population of wild house mice. We introduce
the concept of perceptual landscape to describe the
spatial behaviour of animals, whilst including all sensory
and social constraints they are subject to: the perceptual
landscape effectively maps the environment of animals as
they perceive it. By applying our assumptions to a multi-
agent model, we are able to reveal that much of the high-
level social behaviour observed in the mouse population
can indeed be explained through the many interactions of
randomly moving individuals. This raises the question of
how much of what we often regard as complex natural
phenomena may, in fact, be the result of exceedingly
simple forces.

How Random Is Social Behaviour?
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here, an abridged description of the complete method is presented

in Table 1.

Movement between sampling locations. Drawing from

the now well-developed argument that the notion of animal home

range is ill-defined when only derived from a static perspective on

animal position [19–21], we use superimposed Brownian bridges

[19] to characterise the expected spatial behaviour of an animal

between two locations at which its position has been sampled.

Let us first start with the case of an animal being sampled

consecutively at two different locations X0 and X1 at times t0 and

t1, respectively. Without any further information on the nature of

the motion between the two locations, we may only assume that

the animal can be considered as a particle a constant drift Vd ,

taking it from X0 to X1 during the time t1{t0. Let x be an axis

parallel to the general direction of motion, X1{X0, and y an axis

perpendicular to x.

With these assumptions, the motion of the animal can be

described by a Langevin [22] equation,

dx(t)~Vd dtzdWx(t), ð1Þ

dy(t)~dWy(t): ð2Þ

The two independent Wiener processes Wx(t) and Wy(t) describe

the diffusion process along both axes. We assume that the

fluctuations of the particle are described by an isotropic diffusion

coefficient D. Thus, over a small time interval dt, the increments of

these processes, dWx and dWy, are drawn from a Gaussian

distribution with mean 0 and variance 2Ddt. Because the

increments are not correlated over time, these processes are

completely defined by their mean and variance:

Wx(t)~Wy(t)~0, W 2
x (t)~W 2

y (t)~2Dt:

The expression of x(t) and y(t) can be obtained by direct

integration (see Text S1 from the Supplementary Material). At any

time, the distance travelled from the initial point, r(t), is simply

given by r2(t)~x2(t)zy2(t). The fluctuations of the particle are

described by a linear and isotropic diffusion coefficient D. Under

these conditions (for a detailed development of this derivation,

refer to Text S1), the mean distance travelled at time t is given by

r2(t)~V2
d t2z4Dt: ð3Þ

We now consider a single excursion in which the particle starts

in X0 at t0~0 and ends in X1 at t1~T , with a constant diffusion

coefficient D. The transit time T and the linear path length

L~DDX1{X0DD between the starting and ending locations allow us

to estimate the drift coefficient as Vd:L=T . In the following, it is

convenient to introduce an additional effective velocity measure for a

transit. To define it, we first note that the animal has a motion

that, whilst intrinsically fluctuating, does not reach the infinitely

small granularity of an ideal random walk. We denote the average

effective velocity of this motion as Vs. Thus, we can write upon

arrival r2(T)~V2
s T2, which together with Eq. (3) yields the

following expression for the diffusion coefficient D for this trip:

D~(V2
s {V2

d )
T

4
: ð4Þ

A Brownian bridge [19–21] describes the Brownian motion of a

particle whose position is known at two different points in time.

The assumption of a Brownian bridge to describe a transit

between two successive locations is not strictly valid in the context

of animal movement data, as it implies that the particle’s position

is known with absolute certainty at both ends of the bridge. Not

only is this untrue practically when measuring the position of an

animal, but it also induces diverging probability densities around

the ends of the bridge. There is an error, inherent to location data,

that must be accounted for [21]. We thus extend the usual

definition of a Brownian bridge and assume that the variance s2 of

the associated Wiener processes [23] in each direction has finite

values at the start and the end of the bridge: s2
t~0~s2

t~T~s2
min.

Table 1. Abridged summary of the perceptual landscape method, with references to the corresponding parts of this article.

Rationale N Tool to map the environment of animals from their perspective rather than from the way we see it.

N Can be used as a null model of social behaviour, to transfer the complexity of many interacting individuals to a single
landscape object.

Landscape construction 1. Define a set of sampling locations (such as resting areas or nesting sites) and measure the time spent at those
locations by an animal or a set of animals, as well as the transit time between two locations (illustrated in Figure 1).

2. Construct a set of Brownian bridges between each pair of locations successively visited by an animal (Eqs. 1–9,
Figure 2A). The shape (depth versus width) of each bridge will be defined by the difference between the average speed
of the animal during that transit and its assumed maximum linear speed, i.e. its degree of meandering along the path.

3. Define the attractiveness of the static locations based on the time spent at those locations by animals, and construct
the corresponding ‘‘wells’’ in the landscape (Eqs. 10–12, Figure 2B–C). The deeper a well, the longer the periods spent
at the corresponding location.

4. Add both landscape components (Brownian bridges and wells) to obtain the full perceptual landscape (Eq. 13,
Figure 3).

Input data Animal location data (e.g. obtained from direct observation, GPS measurements, radio tag identification) and position
of the sampling events, with a timestamp on each of the successive locations visited. Large sample sizes allow for a
more accurate reconstruction of the landscape.

Parameters The method presented here includes only one user-defined parameter: Vs , the assumed moving speed of an animal
during a transit between two locations. All the other parameters can be measured from the input data. Additionally, we
detail (see last paragraph of the Methods section) a way to calibrate Vs against the observation data, by assuming no
diffusion (i.e. a straight trajectory) for the fastest measured transit.

Output format A matrix of discretised height values for the landscape, describing either a three-dimensional structure (Figure 3A) or a
heat map (Figure 3B–C).

doi:10.1371/journal.pcbi.1002786.t001
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During the transit, the variance of the Wiener processes is given by

the following time-dependent expression [19]:

v(t)~s2
minz2D

t(T{t)

T
: ð5Þ

This means that the variance of the expected position of the

particle is maximum at half the transit time T . Along the

Brownian bridge, the average position of the particle at time t is

simply Xd (t)~X0zVd t, i.e. on average the particle moves

towards the end of the bridge pushed by its constant drift Vd .

We can now write the probability density function (PDF) of the

particle’s position X as a function of time:

F (X ,t)~
1

2
ffiffiffiffiffiffiffiffiffiffiffi
pv(t)

p
exp {

X{Xd tð Þ½ �2
2v(t)

� �
:

ð6Þ

F (X ,t) is a time-dependent PDF. A time-independent represen-

tation of the density F(X ) can be obtained through direct

integration:

F (X )~
1

T

ðT

0

dtF (X ,t): ð7Þ

F (X ) is the static Brownian bridge representation of one transit

between two locations. A set of bridges can be computed for all

sampling events associated to one animal, a set of animals, or a

whole population, depending on the application. In our case, we

define the set of n bridges connecting any pair of locations where

an animal has ever been sampled (the 40 nest boxes). By summing

up all these bridges, we obtain a global PDF defined on the whole

domain studied (the complete barn):

F (X )~
Xn

i~1

Fi(X ): ð8Þ

F (X ) is the global stationary occupancy function of the system. As

a stationary PDF, it has an associated bivariate potential landscape

U(X ), linked to it by the relation F (x)~N exp {U(X )=DSð Þ
[22], with N a normalisation constant for FS(X ) and DS

associated with the temperature of this newly-defined system (Ds is

independent from the D previously associated with each Brownian

bridge). As DS acts here simply as a scaling constant for the

landscape, we can set DS~1 and obtain the canonical form of the

landscape associated with this dynamical regime:

UD(X )~{log F (X )ð Þ: ð9Þ

Exit from a nesting site. In a second step, we include in the

landscape the influence of those periods in which the position of

the animal is roughly constant, corresponding typically to a period

of rest in a nest box. We further our previous comparison of the

animal to a particle performing a stochastic motion, this time

without adding the drift component. Its behaviour can thus be

described by a purely diffusive motion.

However, one needs also to consider that the nest box possesses a

certain attraction, making it unlikely for the animal to exit it shortly

after entering it, as would be the case for any other place visited

when on the move. In this stochastic setting, these nesting sites can

be described as wells of potential, with a circular boundary that the

particle has to overcome to exit. In such a system the escape time –

or mean first passage time (MFPT) of the particle through the

boundary – �tt is well-known from theoretical studies on stochastic

dynamics [24,25]. We consider the simple case of a single-well

paraboidal potential [24], with radius rC (see Figure 2). We set the

escape potential U(rc)~0, and represent the minimum potential by

U(r0~0)~U0v0. As discussed in [22], the escape time of the

particle from the well is rather insensitive to the actual location of

the boundary rC , but depends mostly on the height DU0D of the

potential barrier, and the diffusion D of the particle inside the well.

This approximation holds whenever the particle diffuses fast enough

in both directions, so that the escape time is governed by the time it

takes the particle to climb the potential barrier.

Because of the radial symmetry of this system about the axis of

the well, we focus now on the radial motion of the particle. The

radial diffusion coefficient is given by the composite of the

diffusion terms in both directions, i.e. Dr~
ffiffiffi
2
p

D. Writing the

Taylor series approximation of U(r) around r0 and rC lets

U(r)~U0z
U0’’
2

r2 near r~0 and U(r)~{
UC’’
2

(r{rC)2 near

r~rC , since in both points the first derivative of the potential is

null: U ’(r0)~U ’(rC)~0. The escape time obtained by imposing a

reflecting barrier at r0 [24] is

�tt~
pc

U0’’UC’’
exp {U0=Drcð Þ: ð10Þ

In behavioural studies, what is generally measured is the time an

animal spends at the nesting site or nest box, here �tt. By setting

U0’’~UC’’~1=
ffiffiffi
p
p

for simplicity, we derive from Eq. (10) the depth

of the corresponding well in the landscape as

Figure 2. Brownian bridge and potential well used in the
construction of the perceptual landscape. A. 3D representation of
the probability density function (PDF) associated to a Brownian bridge
starting in X0~ x0 y0½ � at t~0 and ends in X1~ x1 y1½ � at t~T . B. 3D
representation of a potential well used to describe the motion of an
animal when in a static location (here a nest box), and C. cross-section
through the middle plane of this well, with xc the radius of the well, and
U0 its maximum depth at x~0 (its minimum depth being 0 at x~xc).
The complete well between the approximations near x0 and xc is
constructed using a continuous approximation (here a spline), but its
shape has little influence on the escape time of a particle from the well.
doi:10.1371/journal.pcbi.1002786.g002
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U0~Drc log
c

�tt

� �
, ð11Þ

where c is the friction constant, which we can conveniently set to

D{1
r , or use as a scaling constant for the height of the landscape. It

should be noted that, whilst they have disappeared from Eq. 11,

U0’’ and UC’’ represent the curvature of a well at its bottom and

boundary, and thus the scale of the landscape (set by the value of

Dr) should be chosen accordingly to allow for a smooth shape of

the well (for a small xC , the curvature is high). The rest of the well

can then be built from a continuous approximation (typically a

spline).

We have made here a spatially-explicit description of the well to

allow for its inclusion in the three-dimensional landscape (see

Figure 3). In spite of the number of parameters involved in this full

spatial description, the construction of the well is fully governed by

one parameter only, namely its depth U0, which can be obtained

from the escape time �tt. The construction of the complete well from

the quadratic approximations is depicted in Figure 2. The global

potential associated with the animal’s nesting behaviour is then

simply the sum of all the potential wells Ui associated with

individual resting locations i,

US(X )~
X

i

Ui ð12Þ

Considering the motion of the particle within the well is equivalent

to setting an absorbing barrier at rC , upon crossing of which the

particle returns to a stochastic motion with added drift. This

corresponds to the moment when the animal exits the nest box to

travel towards a new location.

Perceptual landscape. The complete landscape is obtained

by adding together (i) the dynamical landscape, extracted from the

sum of all Brownian bridges and (ii) the landscape built from

nesting patterns, based on all potential wells around static

locations:

UP(X )~UD(X )zUS(X ) ð13Þ

This yields a global landscape UP which derives from both the

travelling and resting behaviours of the animals. This landscape is

shaped by the reaction of animals to their environment: indeed, an

accumulation of slowdowns or detours around a perceived

obstacle will result in the creation of a raised ‘‘mound’’ in the

landscape, and an area exterting particular attraction on the

animals will be signaled by a lower dip or trench. The elements

shaping the landscape include not only geographical features of

the environment, but also any factor that the animals perceive and

react to by modifying their movement (this is developped in the

Discussion section). Therefore, the landscape effectively describes

the perceived environment of the animal, hence the name of

perceptual landscape. This is a generalisation of the notion of

landscape of fear [26,27], which implies that the home range of an

animal depends to a great extent on the preying range of its

predators and the availability of resources. The perceptual

landscape includes not only the information the animal has about

its resources and predators, but also everything that influences the

way it moves about in its environment, such as social interactions

with other individuals. This therefore constitutes an integrative

tool to describe and analyse the movement of an animal and how

this movement is influenced by its complete physical and social

environment.

Application to the spatial dynamics of wild house

mice. We apply the technique described above to represent

the perceptual landscape of the population of wild house mice in

our dataset. When building the Brownian bridges, Vs is an

important parameter, as it scales the quantity of diffusion along

any bridge. There is a rather straightforward method to set Vs, by

assuming that there is no diffusion (D~0) along the path where

the drift speed is maximum. In the expression of D (Eq. 4),

constraining Dmin~0 on the ‘‘straightest’’ bridge yields Vs~Vmax
d ,

since T=0. In other words, along the straightest Brownian bridge,

we assume that the unique component of the motion is the drift. In

this case, we compute Vd as the distance between both ends of any

bridge divided by the mean transit time along this bridge (formally,

the computation of the landscape should be carried out

individually for each transit ever observed between two boxes.

Because of the high computational costs involved in this approach,

we compute the bridges using a unique value of Vd ). To avoid bias

due to small sample sizes, we only consider those bridges that were

crossed at least 50 times (10 times for the individual landscapes of

Figure 3), which still leaves us with 532’969 crossings of 280

different bridges. Then we set Vs as the maximum value of all Vd ,

so that the bridge that was crossed on average the fastest is

considered to have been crossed in a straight line. Here

Vs~2:1|10{3 m :s{1 (0:21 cm :s{1), which may seem like a

rather low value but illustrates the fact that mice spend a great part

of their time not moving (developed in the Discussion section). The

distribution of transit times from a box to another is highly skewed

and heavy-tailed (see Figure S3), which gives little significance to

its mean [28]. Therefore, when creating the Brownian bridge

between any two boxes we use the median rather than the mean of

all transit times to mitigate the influence of very large (and rare)

transit times. Following this, each bridge i is associated with a

different diffusion coefficient Di and a frequency of occurrence wi.

In order to reflect this general diffusive behaviour on the nesting

landscape (corresponding to the periods in which the mice stay

inside nest boxes), we use the weighted average �DD~
P

i Di wi of all

dynamic diffusion coefficients and use it to calculate the

corresponding radial diffusion coefficient Dr~
ffiffiffi
2
p

�DD. This, added

to the known average leaving time from each nest box, allows us to

compute the depth of each corresponding potential well. As the

nest boxes have a diameter of 15 cm, we set rC~0:075 m. The

resulting perceptual landscape, both for the whole population or

for individual mice (Figure 3), yields new insights into the way the

animals perceive their environment.

Results

Multi-agent implementation of the perceptual landscape
model

Through the description of the perceptual landscape, we have

developed the assumption of simplistic individual motion to

reconstruct the environment of a wild house mouse. We now test

this hypothesis by implementing the assumptions of the perceptual

landscape in an elementary model of collective behaviour, in

which all agents are governed by the principles of random motion

we have introduced previously. We make the assumption that

through the collective behaviour of those agents, whose complexity

lies far below that of real mice, we can reproduce some of the

global behavioural patterns we observe in the barn.

Model selection. The most intuitive way of implementing

the perceptual landscape’s assumptions would be to construct a

complete diffusion model, in which the movement of the agents

across the landscape is governed by the rules presented above.

However, the data set against which we are testing this model

How Random Is Social Behaviour?

PLOS Computational Biology | www.ploscompbiol.org 5 November 2012 | Volume 8 | Issue 11 | e1002786



contains information on the social interaction of mice inside nest

boxes only. Another equivalent (in this context), more parsimo-

nious modelling assumption thus comes to mind: a simpler

description of the collective dynamics of the stays in nest boxes and

the transitions between them, which can be fully described as a set

of simple stochastic processes, or Markov processes. Because we

simulate these dynamics across the landscape associated to the

whole mouse population, this approach amounts to discarding

interindividual differences and simulating the behaviour of many

identical agents. Each of these agents is a blend of all real

individuals, and therefore represents the ‘‘average mouse’’ from

the study population. The following section describes the

implementation of this parsimonious modelling assumption and

its calibration based on the experimental data. For illustrative

purposes, a simulation of the complete diffusion process across the

perceptual landscape is also shown in Video S1.

Agent-based simulation of the stochastic model. We use

a standard stochastic simulation technique known as the Gillespie

algorithm, [8] defined as follows: the system is composed of N
agents, each characterised by their current state (inside a nest box

or travelling between two nest boxes), and their own transition

time ti and transition rate fi~1=ti. We define the system’s mean

transition rate as fm~
PN

i~1 fi. This is the mean frequency at

which the system is expected to change (i.e. an agent in the system

Figure 3. Perceptual lansdscape for both the complete population and specific individuals. A. 3D rendering of the perceptual landscape
of the complete population of wild house mice, showing the discrepancies in occupation density of the different regions of the barn. The inlay is a
schematic representation of the barn, with the disposition of the nest boxes and the dividers creating 4 artificial territories. Interestingly, this physical
structure is represented accurately in the landscape, with high grounds following the dividers (except between segments A and B), and an elevated
plateau around the entrance to the barn, isolated from the rest of the structure. Some of the wells, corresponding to each of the nest boxes, can be
seen beneath the landscape. B. and C. The perceptual landscapes of a male (id 0006B8C03C) and a female (id 0006B9BAB9) with two very different
patterns of spatial activity, displayed as temperature maps; red areas denote a low elevation of the landscape (higher probability of finding the
animal), whilst blue areas correspond to higher regions of the landscape (lower probability); the color scaling is the same in both graphs. Despite the
two mice having the same core areas (Segment C of the barn), their home ranges differ vastly in that the male concentrates its activity around 4
boxes only, whereas the female’s home range extends well beyond this. It can be observed that most of the diffusive motion occurs within the core
nest boxes, as opposed to more advective motion outside this area. This may hint to behavioural differences when roaming within or without an
animal’s territory (part of the home range that is defended). Schematic map of the barn courtesy of Rico Leuthold.
doi:10.1371/journal.pcbi.1002786.g003
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either enters or leaves a nest box). The mean transition time is

tm~1=fm. The simulation time step Dt is a random variable which

depends on the current state of all agents: for each iteration, the

current time step is sampled from an exponential distribution with

mean value tm, so that p(Dt)~exp({Dt=tm). This fully represents

the stochastic dynamics of stays in nest boxes and the duration of

interbox transits which we have assumed in the construction of the

perceptual landscape.

Let Pi~fi=fm be the probability that agent i changes state

(
PN

i~1 Pi~1). We then select the agent k whose state changes by

mapping the set of transition probabilities P to a uniform

distribution, i.e.

Vp*U(0,1), A!k[f1, . . . ,Ng, p[
Xk{1

i~1

Pi,
Xk

i~1

Pi

" "
: ð14Þ

In other terms, Dt indicates when a change in the system happens

and k indicates what this change is, according to the transition

probabilities of each agent. In order to run the simulations, we set

a constant number of agents in the system, equal to the average

number of mice detected per day at the barn. We obtain the

leaving and transition rates as the inverse of the average leaving

and transition times (extracted from the data) from each box to

each other box. For sampling reasons (see Eq. 14), we normalise

those matrices so that their sum is 1. We initially distribute the

agents according to the occupation rate (inside or outside a box)

and the occupation preferences (described in Figure 1). The

simulation time range is set to a period of two years, the same

period as that covered by the empirical dataset.

The aggregated results of the agent-based simulation are in very

good agreement with the aggregated behavioural data. Indeed, the

correlation between real and simulated occupation rates and

transit counts is very high (Pearson’s correlation coefficients

r~0:975, P~2:4:10{26 and r~0:993, Pv10{50). This result is

developed analytically in the Supplementary Material (Text S1) by

developing a detailed Markov chain description of the model.

Beyond this stationary perspective, we compare the experimental

and modelling results for other metrics pertaining to the

behavioural dynamics of the agents, by testing whether the mean

value of the distribution of a synthetic metric may come from the

distribution of the corresponding one in the experimental data, as

summarised in Figure 4. This is proper practice as all metrics

considered in this table for synthetic data can be grouped in two

categories. The first category comprises the duration of a stay in a

nest box and the duration of a social contact, which are

exponentially distributed according to the model rules. All the

other metrics belong to the second category, and are normally

distributed (x2-test, P§0:05 always) with a variance much lower

than that of their experimental counterparts. Therefore, the

distributions of the synthetic metrics can simply be described by

their sample mean. We compare these mean values to the

distribution of experimental values by using a bootstrapping

approach [29], under the null hypothesis that the sample mean of

the synthetic metric belongs to the 95 central percentiles (95%

confidence interval) of the experimental distribution. Remarkably,

we find that our stochastic assumption produces results which are

not significantly different from the distribution of real values; this is

especially important when considering those metrics that pertain

to social behaviour, such as meeting duration or number of social

partners per day. There is however one factor that the model

significantly underestimates, namely the territorial behaviour of

the mice (expressed in the number of nest boxes visited per day).

Discussion

The perceptual landscape as a novel method to map
habitat use

In this paper we have developed the assumption of simple

stochastic processes as a driving force for social interaction in a

population of wild house mice. We introduced the notion of

perceptual landscape, which maps the patterns of movement of

mice between nest boxes in a barn into the motion of stochastic

particles within a potential field. We are well aware that our model

ignores the fact that such patterns have resulted from natural

selection and adapt mice to their environment. Instead, we are

interested in analysing whether and to what degree a general

movement pattern alone can reflect important characteristics of

the spatial and social behaviour of free-living mice.

Our approach integrates two important facts, often neglected

when mapping the home range or territory of wild animals: (i) the

movement from one sampled location to another ought not to be

thought of as a straight line, but instead may be better

approximated by planar diffusion, and (ii) when an animal is

resting in a safe area like a nest box (or generally visiting an area

with a strong potential of attraction) it is less likely to exit and

move on than if it were at another point within its home range.

The parameters defining the landscape were obtained from the

recorded data. The method has only one user-defined parameter,

namely the assumed travelling speed of an animal. However, we

detail a way to obtain this parameter from the data. Here we

assumed a constant speed Vs~0:21 cm :s{1 for a mouse moving

along a Brownian bridge between two nest boxes. This may seem

rather slow but is based on the fact that house mice spend a

considerable part of their time outside nest boxes not moving, but

instead feeding/drinking, marking their territory or partaking in

social activities or territorial defence. Moreover, the mean radial

diffusion coefficient Dr obtained from this value of Vs is

0:54cm2:s{1; this amounts to exploring an area of slightly less

than one centimeter per second in each direction, which is a

sensible figure in the case of small animals like house mice. As a

tool to study animal behaviour, the perceptual landscape method

scales linearly with the number of active paths, i.e. pairs of

locations with a large number of transits. Therefore we argue that

the method could scale properly to much larger systems, and

provide a new way to analyse the spatial behaviour of animals on a

large scale.

Behavioural implications
Interestingly, the perceptual landscape contains several of the

structural features observed in the real landscape of the mice.

This confirms previous observations [30,31] that house mice use

these structures to build up their own representation of the

environment and navigate across it. From a formal point of view,

it also reveals that the assumptions we made on the movement of

random particles across the landscape yield meaningful behav-

ioural patterns. Indeed, these patterns integrate important aspects

of the decision rules guiding mice when they use their

environment and defend their territory. Figure 3 illustrates the

use of such a perspective for the study of individual home ranges

(panels B and C), as well as the movement patterns of the whole

population studied (panel A). We observed that the perceptual

landscape is similar, but not identical, to the physical environ-

ment of the real mice. For example, the perceptual ‘‘wall’’

corresponding to the divider between segments A and B of the

mouse barn is only weakly expressed. This may indicate that

some mice regularly use nest boxes on both sides of the divider,

and travel between them. Conversely to some physical features of
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the environment disappearing, some are overly expressed. For

example, the entrance to the barn (see inlay of Figure 3A) is an

area that mice could use, as it is open, but that they tend to avoid

due to the presence of experimental equipment and the absence

of protected nesting sites. As a result, the whole area appears in

the perceptual landscape as a raised plateau, demonstrating little

effective utilisation of that space. Generally, such discrepancies

between the perceptual and the physical landscape may result

from differences in the micro-environment of the animals. In

practice, the mouse barn is not a homogeneous environment, but

differs locally in humidity and temperature, in the degree of

protection perceived by the mice (suitable hides or other spatial

structures outside the nest boxes), in the exposure to popular

traffic routes used by many individuals, in the availability of food

and water in close proximity to a nest box, or in the amount of

light (mice tend to avoid bright areas [14]), etc. In addition, the

movement of mice between nest boxes will be influenced by their

social environment. Since the perceptual landscape integrates all

such factors, it may be seen as a cartographic tool of a much

higher precision than a standard schematics or map of the

environment of an animal population. In other words, this

landscape is the combination of all dimensions that animals

perceive in their environment (be them physical boundaries,

temperature, humidity or presence of conspecifics). This is

especially important when considering that many animals view

their environment in a way that is different from the way we see

it. Indeed, house mice have poor visual acuity and their world is

‘‘dominated by smell’’ [14]. The representation of an animal’s

environment by simply mapping it as we would map our

environment may thus be misleading.

Figure 4. Results of the multi-agent simulation compared to metrics from the real population. Comparison of some behavioural metrics
between the experimental data and the simulation output. The experimental data is given as mean + standard deviation of the observations, the
simulated data as mean only (justification in the text). The p-value given is that of a bootstrapping analysis to determine whether the mean value of
the simulated metric may fall within the 95% confidence interval of the experimental distribution. These results are illustrated by the graph of the
density function estimate (smoothed using a Gaussian kernel) of the experimental distribution over which is superimposed (red dot) the mean value
of the simulation output. The mean number of agents in the system and mean encounter rate are single values, therefore no standard deviation or
density function is given. The encounter rate is computed by dividing the total ratio encounters/stays by the average duration of a stay, giving an
indicator or the social ‘‘activity’’ of the system as a whole.
doi:10.1371/journal.pcbi.1002786.g004
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Extension to an adaptive framework
It is interesting to note that the perceptual landscape we

described in this paper is a static construction, which represents

the collective behaviour of the animals from a quasi-stationary

perspective. As such, it results from the aggregate behaviour of the

individuals of a population rather than adapts to it. However, the

construction of this landscape by the animals is arguably a

dynamical process: house mice, for example, alter their home

range in response to the nearby presence of social partners [31]. In

order to account for this dynamical aspect of the formation of the

landscape, the Brownian agent framework [7,8] may be more

suitable than simpler stochastic particles: indeed, Brownian agents

move across an adaptive landscape, which builds up over time as a

result of their behaviour. The Brownian agent paradigm

constitutes a natural framework to study non-equilibrium systems,

such as a population of interacting individuals. As such, this

framework could be a logical extension to the perceptual

landscape technique.

Individual complexity versus emergent social structure in
our mouse population

In a second step, we tested the accuracy of the assumptions of

our landscape. To this purpose, we implemented an agent-based

model of the behaviour based on the landscape assumptions and

tested its results against real observational data. As we assumed a

very simple individual behaviour (stochastic motion) for the mice

moving across the landscape, a simple approach was sufficient to

reproduce it. We described the transitions between nest boxes by a

set of stochastic processes, or zero-order Markov processes,

effectively representing the set of nest boxes as a Markov chain

(this comparison is developed in Text S1). In this description, the

escape rates from each state (inside a nest box or moving between

two nest boxes) were calculated from the real aggregated data. The

underlying assumption of this Markov approach is that the process

has no memory, the transition probability being only dependent

on the current state. In this paradigm, individual mice are particles

travelling along the Markov chain and all follow the same rules of

motion. Each particle can be thought of as representing the

‘‘average mouse’’, an individual who behaves as a composite of all

the mice from the real population, without particular individual

characteristics. We aimed to study how such an approximation

performs in a social context, or how well it may reproduce the

observed patterns of social encounters in a wild house mouse

population. We used in our simulation as many average mice as

the average number of RFID-tagged mice in the barn over the

two-year study period. It should be noted that this approach

implies no a priori assumption on the importance of the social

interactions that can occur each time two mice meet inside or

outside of a nest box, although it is well-known that social aspects

play a crucial role in the behaviour of house mice, especially

female [30,32–35].

Remarkably, we found that this simplistic, randow walk-like

approach is sufficient to reproduce some features of the nest box

occupation patterns, both at the population and the individual

levels. In other words, the collective dynamics of the population as

a whole, with its intrinsic fluctuations (birth and death cycle) and

interindividual differences, may be well approximated by the

behaviour of the average mouse. This is obvious from the match

between experimental and simulated data in occupation density

and transit frequencies between nest boxes. This accurate match

should, however, come as little surprise: indeed, these features are

aggregated observations on the behaviour of the whole population,

and precisely those whose estimate we used to calibrate the

stochastic model. Of more interest is the comparison between the

model output and the observational data with regard to higher-

level social features. The statistical test we ran on the simulation

results amounts to asking whether the average mouse, moving

randomly across the perceptual landscape, has a social behaviour

(defined as its pattern of encounters inside nest boxes) consistent

with the social behaviour of a real mouse from our study

population. In agreement with the results obtained at the

population level, we found that at the individual level most of

the social features in the average mouse’s behaviour were

compatible with the behaviour of a real mouse, with the exception

of the territorial aspect (expressed in the number of nest boxes used

per day). This is especially interesting when considering that we

excluded any influence of conspecifics on an individual’s

probability to enter and/or stay in a nest box. Yet, the patterns

of social interaction (number of social encounters per individual,

number of social partners, or duration of a social encounter) did

not differ significantly from those observed in the population of

real house mice. It is important to note, however, that mice tagged

in the study population are only adults, which typically had

already established their territory and integrated in a social group.

The behaviour of young, dispersing individuals that still move

between groups or territories is thus underrepresented, although it

may differ. Once integrated in a social group, however, mice seem

to regularly meet with all group members, without pronounced

individual preferences. Nevertheless, many real mice had fewer

social partners and fewer social encounters than the average

mouse from our model (although the differences were not

statistically significant from the global population). These discrep-

ancies may, again, reflect territoriality, social preferences and

differences in reproductive dominance [17]. Indeed, from a

behavioural perspective, the assumption made for the average

mouse, whose behaviour is the average of that of all other

conspecifics, explicitly ignores any variability among individuals.

However, it is well established – not only for house mice – that

individuals within species and populations vary in their behaviour

according to their sex, age, dominance or reproductive status, or

personality. Even within individuals, behavioural performances

can change over time due to individual experiences and

modifications in physiology (hunger, hormones, etc.). All such

individual variability can explain differences in competitiveness,

aggressiveness, social tolerance, or boldness, which will affect

individual preferences towards conspecifics as well as towards nest

boxes or other spatial structures. Furthermore, hindering non-

group members from entering own nest boxes is very important

due to the tendency of mice of both sexes to kill non-offspring.

Evidently, the omission of all such factors in the model leads to

different movement and social interaction patterns, changing the

structure of the social network. Of course, it is highly implausible

that a random particle may faithfully mimic a living mouse, and

the simple modelling approach we have presented could not

pretend to fully reproduce the complex, dynamical social network

of a population of wild house mice. Yet, it points to the

fundamental importance of simple, universal processes in the

establishment of such a structure, and generally shows that the

collective dynamics of stochastic processes are sufficient to

reproduce some properties of a social system. This is clearly

encouraging in the search for a more advanced cross-species

model that could lead to a broader understanding of animal

sociality.

We proposed the perceptual landscape as a framework in

which the complexity of the individual interactions is transferred

to that of the environment (the landscape). In doing so, we

effectively simplified the analysis of collective social behaviour by

moving from the study of many interacting individuals to the
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study of a single landscape object, whose properties can be

quantified against those of the external environment (such as its

physical structure). Moreover, this approach provided us with a

null model for the social behaviour of the individuals in the

landscape, which we could use to characterise the social network

built by a population of average mice. In this regard, the results of

the simulations presented in Figure 4 represent a good null

assumption for sociality in animal groups. Notwithstanding the

apparent performance of such a simplifying approach, it should

be noted that there are key differences at the individual level

between the average mouse and an individual from the real

population. This points to the existence of more sophisticated

rules governing animal behaviour than merely random principles,

as can be expected from complex creatures such as social

mammals.

We have applied methods from statistical physics to the

understanding of the randomness underlying seemingly com-

plex spatial and social animal behaviour. It appears that at

least some elements of animal social behaviour can emerge

from the collective dynamics of independent random process-

es. This complements recent work [36] which showed that such

methods can be efficiently used to study the emergence of

territoriality in animal populations. Such findings ultimately

may parallel other examples of self-organisation in contexts as

diverse as evolution [37], speciation [38] and even human

economic behaviour [39].

Supporting Information

Dataset S1 Full experimental dataset; for more information,

refer to the complete description provided in the corresponding

document included with the archive. The archive file can be

downloaded at http://datadryad.org/handle/10255/dryad.43636

(doi:10.5061/dryad.c2b53).

(PDF)

Figure S1 Markov chain model: diagram of the states an

agent can occupy in the case where the number of nest boxes

B~2. b1 and b2 are the 2 nest boxes, to which are associated

B2~4 transit boxes corresponding to the intermediary states

between any box and any other box (including itself). Edges are

labeled with the transition rates from state to state. The dashed

lines represent the additional transitions from any state k back

to the same state.

(TIFF)

Figure S2 Box occupation pattern and traffic between nest

boxes obtained from a 2-year long simulation of the Markov chain

model, closely matching the pattern observed in Figure 1 (same

caption applies).

(TIFF)

Figure S3 Probability density function (PDF) of the distribution

of transit times from any box to any other. Due to the high

frequency of extreme events (very long transit times), the absolute

mean of the distribution does not carry much meaning and we use

the median instead.

(TIFF)

Table S1 Comparison of the experimental average occupation

density in the 40 nest boxes with the corresponding computed

values from an initial distribution where all the density is

concentrated in box 1, after a time t. r is the value of the

Pearson’s correlation coefficient between the measured occupation

density vector and the stationary one, p is the corresponding p-

value in a two-sample Kolmogorov-Smirnov test under the

assumption that the two distributions (instantaneous at time t
and stationary) of occupation density are different.

(PDF)

Text S1 Full derivation of the expression for the mean square

displacement of a particle. Additional information on the Markov

chain model and analytical approach to its stationary distribution.

(PDF)

Video S1 3D representation of the perceptual landscape of the

full study population (76 ‘‘average mice’’), with a visualisation of

their movement and interaction patterns. Yellow-filled dots are

individual mice and grey empty circles are nest boxes, overlaid

onto a 2D map of the landscape. The simulation is visualised with

a sped-up time scale, with one second in the video representing

five minutes of actual movement. The video is encoded using the

H.264 codec and can be used with tools player such as VLC media

player (http://www.videolan.org/vlc).

(MP4)
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