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Carpio5, Fernando S. Málaga Chavez5, César Náquira4, Michael Z. Levy1*
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Abstract

With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are
needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial
unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban
grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets
on vector infestation based on a decomposition of Moran’s spatial autocorrelation index; and second, develop a Gaussian
Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of
vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in
the city of Arequipa, Peru. Our Moran’s decomposition test reveals that the distribution of T. infestans in this urban
environment is significantly constrained by streets (p,0.05). With the Gaussian Field Latent Class model we confirm that
streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the
probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely
to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid
can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies.
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Introduction

In the context of increasing urbanization worldwide [1–4],

vector-borne diseases, a significant burden to human and animal

populations [5], are quickly emerging in cities [6] and require the

adaptation of control strategies to densely populated and highly

interconnected environments. Notable examples include Dengue

[7–9], Malaria [10–12] and Chagas disease [13–15].

Prevention of vector-borne diseases relies heavily on vector

control [8,16,17]. Given the substantial resources needed to

control vector populations on the city scale, well-managed control

strategies based on understanding of vector spatial dynamics can

potentially increase cost efficiency [18–20]. A central feature of

cities is the grid of streets which fractures the environment. Such

disjoint landscapes can affect patterns of occurrence and

transmission of diseases, both communicable and non-communi-

cable. Assessing the impact of the urban grid on the spatial

distribution of diseases could lead to more effective design of

surveillance and control programs in cities.

Arequipa, Peru, a city of nearly 1 million inhabitants, is

currently experiencing an epidemic of infestation by Triatoma

infestans [21,22], the principal vector of Trypanosoma cruzi [23], the

etiological agent of Chagas disease [24]. The spread of T. infestans

in Arequipa is accompanied by micro-epidemics of T. cruzi

transmission to humans [25,26]. Control of the vector in the city

through insecticide application in households is challenging

[20,27]. Previous work on T. infestans and other Chagas disease

vectors have used non-spatial [28,29] and spatial modeling

techniques [19,30–33] to characterize vector population dynamics

and propose improvements in control strategies. However, these

studies have not considered the impact of an urban grid on vector

populations.

The impact of known boundaries such as roads or rivers on

epidemics or population dynamics has occasionally been assessed

using spatio-temporal modeling to describe spatio-temporal

presence-absence data [34]. Using only spatial data, kriging

approaches integrated in well known GIS softwares may take into

account the presence of known landscape features as impenetrable

barriers [35] but do not assess the resistance of these barriers. In

landscape genetics, the quantification of the effect of barriers is a

central aim of a large and growing field [36–38]. These

approaches benefit from the complex information present in

DNA to infer the impact of barriers. Some of their results,

however, depend on the assumption of migration-drift equilibrium

which is typically violated in epidemics and highly dynamic

human influenced landscapes [39]. In social sciences, disparities

among spatially well circumscribed census tracts are commonly

quantified using indices of segregation [40], but the borders
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between such tracts are not usually considered as barriers

themselves [41].

Here we propose to quantify the impact of known boundaries

by measuring their effect on spatial autocorrelation in presence-

absence data. Variations of the autocorrelation over distance have

been measured and presented in autocorrelograms [42,43].

Another approach has been to parameterize kernels describing

these variations, notably to produce Bayesian disease risk maps

[44–46]. We extend both of these approaches to assess the impact

of known barriers such as streets on the spatial distribution of

binary data, in our case the presence of T. infestans in households of

the city of Arequipa. First, we provide a global assessment of the

effect of streets on vector infestation using a decomposition of the

commonly used Moran’s I statistic and corresponding autocorre-

lograms [47,48]. Second, we capture the effect of streets on a finer

scale and control for cofactors and imperfect detection of vectors

by designing a Gaussian Field Latent Class model. Taking into

account streets, the kernel of this model describes the spatial

correlation through precision matrices [49,50] in the framework of

a spatial Bayesian Generalized Linear Model [51]. Finally, we

discuss how surveillance and control of Chagas disease in cities can

be better informed by taking into account the impact of streets on

infestation.

Materials and Methods

Entomological Data Collection and Mapping
We conducted our study in Paucarpata, the largest district in the

city of Arequipa, Peru. The Ministry of Health of Arequipa

applied insecticide to 13,917 households in Paucarpata between

November 2006 and April 2009. During the insecticide applica-

tion campaign, household-level data on the presence or absence of

T. infestans and relevant risk factors for vector infestation were

collected. Risk factors included a description of construction

materials in each house and the presence of guinea pigs, dogs, and

other domestic animals.

We mapped the position of all households and the delimitation

of city blocks in the district comparing satellite imagery in Google

EarthTM [52] to field maps drawn by the personnel of the Ministry

of Health. Households were then snapped to their city block

according to their respective coordinates.

Statistical Analysis
Application of Moran’s I to an urban grid. We first

assessed the impact of streets on the global spatial autocorrelation

of vector infestation as measured by the Moran index (I) [47]. This

index reads:

I~
nP

i

P
j

Wij

:

P
i

P
j

Wij xi{xð Þ xj{x
� �

P
i

xi{xð Þ2

where n corresponds to the number of households, xi indicates the

presence (1) or absence (0) of insects in household i; x is the mean

of the observations over all households, and Wij represents the

weights describing the spatial relationship between households i
and j. Wij is set to 1 if the distance between point i and point j falls

within a given range; otherwise, it is set to 0. We calculated

autocorrelograms [43,53] for the occurrence of T. infestans in

Paucarpata for successive 15m-wide distance ranges.

To determine if streets affect the spatial autocorrelation of

infestation, we decomposed the autocorrelation into a within city-

block component and an across city-blocks component. We then

calculated separate autocorrelograms for pairs of households on

the same city block (IS ) and for pairs of households on different

city blocks (ID).

We then assessed the significance of the difference IS{ID using

the following random labeling permutation test [54]. For a given

distance range, each household has nt total neighbors, among

which ns are on the same city block. For each permutation we

randomly assigned ns of the nt neighbors as occupying the same

city block as the index house, and the remainder of neighbors as

occupying a different city block. We then calculated the

corresponding IS and ID. We repeated this process for 1000

permutations, creating a histogram of the values of IS{ID. We

determined the p-value of our observed value of IS{ID by

referencing this histogram. We applied this decomposition of

Moran’s I to all the households participating in the vector control

campaign.

The decomposition of Moran’s Index offers a fast, simple way to

obtain an estimate of how streets impact the autocorrelation of

observations. However, several factors could confound or obscure

this estimate. First, well-known risk factors for T. infestans presence,

such as construction materials or presence of domestic animals

[27], may be more common on some city blocks than others. Such

an aggregation of cofactors could contribute to the structure of

vector populations. Multivariate methods are needed to tease

apart the effect of such cofactors from that of city streets. Second,

due to the vast areas surveyed, multiple inspectors are employed to

search houses for vectors. These inspectors may vary in their

ability to detect insects. If some city blocks are examined by more

sensitive inspectors and others by less sensitive ones, the observed

spatial distribution of infestation may be structured, even if the full,

unobserved distribution of infestation is not.

Beyond these two considerations, there is a third, less obvious

limitation to the Moran’s I. As a pair-wise statistic, Moran’s I, as

well as its derivatives described here, measures indirect and direct

correlation together: measured correlation could result either from

a direct correlation between households or an indirect correlation

mediated by the in-between households that are strongly

correlated on a small distance scale. The effect of streets can be

important simply because streets create a gap in a chain of small

distance scale autocorrelations between households (hereafter the

‘‘gap effect’’). In contrast, streets may, above and beyond the gap

effect, serve as a barrier to vector migration (hereafter the ‘‘barrier

Author Summary

Chagas disease is a major parasitic disease in Latin
America. It is transmitted by Triatoma infestans an insect
common in Arequipa, the second largest city in Peru. We
propose a method to demonstrate that streets strongly
affect the spatial distribution of infestation by this insect in
Arequipa. The effect of streets may be due to several
external factors: 1) houses on different sides of a street
may not be equally welcoming to the insects due to the
presence of certain materials or animals, 2) people
inspecting houses on the two sides of a street may not
be equally efficient, and, 3) insects may disperse to
neighboring houses but rarely reach houses across a
street. We take these aspects into account in a second
analysis and confirm that streets are important barriers to
these insects. Our finding should allow for improvements
in the control of insects that transmit Chagas disease in
cities. More generally, our methods can be applied to
other pests and disease vectors to better understand and
control epidemics in cities.

Effects of City Streets on an Urban Vector
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effect’’). A spatial field-based measure of autocorrelation accounts

for the autocorrelation of neighbors at all distances simultaneously.

Such an approach can then detect a barrier effect linked to the

presence of streets and not only to the uneven distribution of

households induced by streets.

Application of a Gaussian field model to an urban grid. We

built a Bayesian generalized linear model describing household

infestation status as a discrete manifestation of a continuous predictor

of infestation. The predictor of infestation includes a spatial field

component [51], accounting for the street network, and a non-spatial

component, integrating local cofactors. Additionally, household

infestation status is considered as a latent class [55,56] to account for

the imperfect sensitivity of the inspectors surveying the households. We

refer to our model, shown in Fig. 1, as a Gaussian Field Latent Class

model. Hereafter upper case characters indicate matrices, lower case

characters vectors, and Greek letters scalars.

Spatial component. The spatial component u of the infestation

predictor w is an auto-regressive Gaussian Markov random field

described through its precision matrix [49,50]: for any household i,

the mean of the spatial component, ui, is a weighted mean of the

spatial components of its neighbors, weighted by the distance to

them. Normal variations around the spatial mean are allowed,

their variance increasing with the isolation of the household

(mathematical details on the Gaussian Markov random field are

provided in Section 1 in Text S1).

We introduce the effect of streets in a similar way as in the

decomposition of the Moran’s I – by distinguishing between

neighbors within a city block and proximate households separated

by streets. The spatial weight Wij between the households i and j is:

Wij~Lij
: h(d,Dij)

su

where Lij takes the value l if i and j are on different city blocks and

the value 1 if they are on the same block; h is a spatial kernel of

shape factor d applied to the distance Dij between the households

and su is a scale parameter for the spatial error.

We consider four one-parameter kernels describing a wide range

of shapes (Table 1). For computational reasons, when the distance

Dij is above a distance threshold D (set at 100 m) the households are

considered to have no direct influence on each other and thus their

weights are set to 0. A sensitivity analysis (Section 2 in Text S2)

shows that the choice of 100 m as a threshold provides in our case a

robust estimate of the parameters of interest.

To assess the relevance of the city-block as a spatial unit of

infestation we calculate the ‘‘Same Block Index’’ which we define as

the mean percentage of the spatial component of infestation

explained by neighbors on the same city block (Section 2 in Text S1).

Local component. We include in a local component v the effects

of known cofactors and a local error term E:

vi~
X

k

CikckzEi

with ck the risk coefficient for the presence of the cofactor k, Cik

the indicator of presence of the cofactor and Ei*N(0,sv) with sv

the scaling parameter of the local error (see Section 3 in Text S1).

Link function. We relate our outcome data, the observed

infestation, z, to the continuous infestation predictor w, in two

steps. A probit function links the infestation predictor w to the

latent infestation status y: P(y~1Dw)~W(w) where W is the

Cumulative Distribution Function of the standard normal

distribution. The latent infestation is then imperfectly revealed

by the inspection: an infested household is observed as infested by

an inspector k with a probability qk: the sensitivity of the inspector.

When infestation data are not available (non-inspected houses),

the sensitivity is set to 0 (see Section 4 in Text S1 for more details

on the implementation and Section 2 in Text S2 for an analysis of

the sensitivity of the results to this modeling choice).

Fitting and validation. We fit the Gaussian Field Latent Class

model on a fraction of the map consisting of all of the households

inspected between September and December 2007 (Fig. 2). We

used the remaining households as a validation dataset. For all

priors, we use flat or weakly informative priors [57]. Further

Figure 1. General structure of the Gaussian Field Latent Class model. Working backward, we consider the infestation data z to be the result
of a latent infestation status y, observed by imperfect inspectors of sensitivity q. The true infestation y is a binary manifestation of an underlying
continuous infestation predictor w. Cofactors and a local error term, E, form the local component. The spatial component u is modeled as a Gaussian
field. The fit parameters, d and l, respectively tune how distances between neighbors and the streets define the spatial dependency between
households in the spatial component.
doi:10.1371/journal.pcbi.1002801.g001

Effects of City Streets on an Urban Vector
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mathematical details on the implementation of the sampling are

given in Section 5 in Text S1.

We used the validation dataset to determine how well our

parameterized model predicted the presence of vectors in

unobserved households. To do so, we randomly selected 5% of

the houses in the validation set and removed them. We set the

sensitivity of inspectors and the spatial parameters to their

estimated means, remove the cofactors from the model and refit

the spatial component, predicting the observation of infestation in

the withheld households. We repeated the process 20 times,

without replacement, so that all houses had been selected for

prediction exactly once. We then evaluated the predictions using

the McFadden index [58].

As a second check, we verified that the Gaussian Field Latent

Class model properly reproduced the global autocorrelation of the

observed infestation by generating 1,000 vector infestation maps

across the validation dataset and repeating the Moran’s I analysis

on each.

All analyses were performed in R [59]; the code is available in

Data S1 and updated versions are available at https://github.

com/cbarbu/spatcontrol.

Results

During the vector control campaign in Paucarpata, the Ministry

of Health sprayed 9,654 houses, among which 1,791 (18.5%) were

Table 1. Spatial kernels and corresponding fitted parameters.

Name Equation, h Shape DIC Shape factora, d Streets factor, l
Same Block
Indexb

Exponential
exp {

Dij

d

� �
Sharp top, thin tail 2526 9.00 (7.04–11.8) 0.30*** (0.12–0.61) 94.0% (89.8–96.9)

Gaussian
exp {

Dij

d

� �2
 !

Flat top, thin tail 2553 17.3 (14.4–21.2) 0.52 : (0.16–1.24) 93.7% (88.1–97.3)

Cauchy 1

1z
Dij

d

� �2

Flat top, fat tail 2553 8.25 (5.30–13.0) 0.08*** (0.04–0.14) 94.7% (91.4–97.3)

Geometric 1

1z
Dij

d

Sharp top, fat tail 2609 7.64 (2.08–26.3) 0.03*** (0.01–0.05) 95.1% (91.6–98.2)

aThe shape factor d is indicated in meters.
bSame Block Index: Percent of the spatial component of infestation explained by same city block neighbors (see Section 2 in Text S1). In parentheses are the 95%
Credible Intervals (CrI) according to the MCMC sampling. The probability of having no barrier effect of streets is indicated with the values of l: :pv0:1;
***pv0:001.
doi:10.1371/journal.pcbi.1002801.t001

Figure 2. Spatial distribution of Triatoma infestans presence in households of Paucarpata, Arequipa, Peru. Map of the study area. Black
indicates infested households, white non-infested households, and grey non-inspected households. The area encircled by dashes was used to fit the
Gaussian Field Latent Class model; the remaining area was used as a validation dataset. The close-up shows the urban grid underneath and the
aggregation of vectors within city blocks.
doi:10.1371/journal.pcbi.1002801.g002

Effects of City Streets on an Urban Vector
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infested with T. infestans (Fig. 2). Data was unavailable from an

additional 4,263 (30%) households, most of which chose not to

participate in the spray campaign.

Importance of streets as assessed by the decomposition
of Moran’s index

For all distance classes up to 120 m, the autocorrelation among

houses within the same city block was significantly greater than

that among houses separated by streets (H0: spatial autocorrelation

independent of streets, pv0:05) (Fig. 3). For the distance class

above 120 m, the difference was not significant, probably due to

decreased sample size of same city block neighbors. Interestingly,

the autocorrelation across a street is consistently similar to the

autocorrelation within a same block 30–45 m further.

Notably the expected difference Is{Id under the null hypoth-

esis is positive at short distances. This unintuitive result is due to

the non-negligible width of the rings we used to bin our data: at

short distances, houses across streets are further from each other

than those on the same block, hence there is a slightly positive

expectation for the difference in Moran’s I. Our permutation test

reproduces this effect and thereby controls for it in determining the

significance of the impact of streets.

Importance of the barrier effect of streets as assessed by
the Gaussian field model

Controlling for the spatial distribution of cofactors and inspectors,

we estimated the barrier effect of streets on infestation to induce a two

to thirty fold decrease (1=l) in the spatial weight between households

for a given distance, depending on the chosen kernel (Table 1). The

‘‘Same Block Index’’, quantifying the relevance of the city-block as a

spatial unit of infestation, exceeded 90% and our estimate was

extremely robust across all four kernels considered (Table 1).

Cofactors
As a part of the fitting process of the Gaussian Field Latent Class

model, we assessed the effect of cofactors on the presence of vector

infestation. We found that the presence of guinea pigs and the

presence of dogs were significant risk factors for vector infestation.

Conversely, we found that the presence of plastered walls inside of

the house was strongly and significantly protective against

infestation. The degree of the effect of these cofactors varied

across the four kernels considered (detailed results in Table S1).

Interestingly, for all four kernels, the standard deviation of the

continuous infestation predictor induced by the joint effect of all

the cofactors and the random effect (0.44–0.54) was threefold less

than the standard deviation of the estimated spatial component

across households (1.64–1.93).

Inspector sensitivity
We also assessed the quality of inspectors in terms of their

sensitivity—the probability that an inspector detects vectors in

households that are indeed infested. The mean inspector sensitivity

was 70%, with extremes at 41 and 90% (+1% depending on the

kernel). The relative ranking of inspectors by their sensitivity was

largely preserved across kernels, and the estimates of inspector

sensitivities did not vary greatly (v5%) between models with

alternative kernels.

Model validation
The Gaussian Field Latent Class model allowed us to make

generally accurate predictions in hold-out households across the

four kernels (McFadden index [58] of 0:81+3% depending on the

kernel). The model also reproduced the patterns observed with the

Moran’s I analysis across all four kernels, both in terms of classical

Moran’s I and of decomposed Moran’s I (Fig. 4). Differences can

nevertheless be observed between the kernels. In particular, the

exponential kernel closely reproduced the global autocorrelation

up to 75 m and the impact of streets on the spatial autocorrelation

(IS{ID) at all distances. The DIC values [60] obtained with the

respective kernels (Table 1) also indicate particularly good

performance of the exponential kernel.

Figure 3. Spatial autocorrelation of Triatoma infestans presence in Paucarpata, Arequipa, Peru and the effects of streets. Left:
autocorrelation of the infestation status as a function of the distance. Solid line: Global Moran’s index. Dot-Dashed line: Moran’s Index for within
blocks household pairs. Dashed line: Moran’s Index for household pairs across streets. All Moran’s I values are significantly different from the expected
value under hypothesis of no spatial autocorrelation (pv0:01). Right: significance of the difference between the correlation within city blocks and the
correlation across streets. Box plots indicate the expected values under the null hypothesis using a permutation test. The boxes indicate the 25th, 50th

and 75th quantiles, and the whiskers depict the 95% CrI.
doi:10.1371/journal.pcbi.1002801.g003

Effects of City Streets on an Urban Vector
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Discussion

We observed a significant effect of streets on the spatial pattern of

Chagas disease vectors in Arequipa, Peru, and show that greater than

90% of the spatial component of infestation is determined by neighbors

on the same city block. In addition, the difference of autocorrelation in

the same block and between blocks indicate that the crossing of streets

is grossly equivalent to an added distance of 30–45 m in terms of spatial

autocorrelation. The limiting effect of streets was consistent across two

methodological approaches: a pair-wise analysis (decomposed Moran’s

I) and a field based model (Gaussian Field Latent Class). The latter

approach accounted for known cofactors and imperfect detection,

further confirming that streets constitute an important barrier to

aggregation of triatomine infestation above and beyond the uneven

spatial distribution of urban households.

The underlying cause of the barrier effect of streets on T.

infestans remains unclear. As we control for the spatial distribution

of known cofactors, and the varying sensitivity of different

inspectors surveying houses, the observed autocorrelation and its

perturbation by streets are likely to be related to the movements of

the insects [34,61]. We have previously shown that the majority of

T. infestans dispersal is due to early-stage nymphs [22]. These

insects, the size of a small ant, may simply be unable to cross

streets. In addition, it should be noted that the façades of houses

are usually plastered, representing a barrier to dispersion of T.

infestans, as for other insect species [62]. In contrast, the walls in the

back of houses are typically not plastered, loosely stacked stones or

bricks that provide hospitable habitats for vectors, and may

facilitate insect movement within the block.

Several authors have commented on the need to assess the role

of landscape heterogeneity in the context of epidemiological

[34,63] and ecological studies [38]. Previous work evaluating

barriers to animal dispersion or disease propagation has focused

on a small number of potential barriers using spatio-temporal data

Figure 4. Spatial autocorrelation of data simulated with the Gaussian Field Latent Class model of Triatoma infestans distribution. The
autocorrelation of infestation in the generated data is compared to the autocorrelation in observed data. Infestation data were generated on the
validation map using the estimated parameters for each of the kernels: exponential (first column), Cauchy (second column), Gaussian (third column),
and geometric (fourth column). We calculated the standard Moran’s I (first row) and the difference IS{ID between within block and across street
autocorrelation (second row) as a function of distance. The solid line indicates the values for the observed data. Box plots indicate the values
obtained from generated data. The boxes indicate the 25th , 50th and 75th quantiles, and the whiskers depict the 95% CrI.
doi:10.1371/journal.pcbi.1002801.g004

Effects of City Streets on an Urban Vector
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[64–66], observational and mark/recapture methods [67–69], or

population genetics [38]. These approaches have been used to

characterize the impact of roads on insect populations in rural

settings and the connectivity of vertebrate populations in urban

environments. Specifically, roads in open fields have been

implicated as barriers for a handful of insects, including ground

beetles [70–72], carabid beetles [67,73], bumble bees [74], and

dragonflies [75]. In urban settings, it has been shown that streets

act as a barrier to hedgehog movement [68] and structure rat

populations by city block [76]. Our study both extends existing

approaches to these questions by providing a methodology to

assess the importance of streets in the context of multi-variate

models and offers evidence of the strong effect of streets on T.

infestans populations.

We have shown previously that the presence of guinea pigs, the

presence of dogs and the presence of other animals are risk factors

for triatomine infestation and that fully cemented plaster walls are

protective [27]. These findings held true in our current analysis,

but the influence of cofactors was small compared to the spatial

component of our model. Our previous studies were conducted in

a peri-urban area where T. infestans populations were established,

and exhibited no spatial clustering [27]. In the current study site,

which is more urban, vector populations exhibit strong spatial

clustering, suggesting that they may be expanding [61]. When

populations are in a continuous dynamic of dispersal or

redispersal, the effect of heterogeneous habitats is often weak

compared with that of the spatial dynamics of colonization [77]. In

Paucarpata, we believe vector dynamics trumped the effects of

traditional cofactors, which would be more predictive of infesta-

tion in a stable system.

There are several limitations to our study. The effect of streets

detected in our approach could be confounded by unmeasured

cofactors strongly clustered within blocks. Two reasons neverthe-

less limit the probability of such a scenario. First our Gaussian

Field Latent Class model explicitly accounts for the main known

cofactors of infestation by Chagas vectors as identified previously

[27,52,78,79]. Second, taking into account these known cofactors

has a limited influence on the estimated influence of streets

(Section 3 in Text S2).

We were only able to obtain binary data on the presence or

absence of vectors; data on vector densities could provide more

information with which to assess the effect of streets. While our

analysis is tailored to binary observations, it could be extended to

consider discrete measurements. Our Gaussian Field Latent Class

model can be applied to a wide variety of datasets without

adaptation of the priors; however, care should be taken to

correctly choose the order of magnitude when assigning a prior on

the shape factor of the spatial autocorrelation kernel. The use of

100m as a threshold distance beyond which correlation is assumed

to be null is a simplification needed to lessen computation time; we

assessed the effect of this simplification and determined that our

findings were not affected by it.

The flat prior used here for inspector sensitivity may shrink the

posterior towards the mean of the prior, 50%. The true sensitivity

is then likely greater than the estimate provided here, 70%.

However, the strong estimated effect of streets is robust to

variations of the prior (Section 4 in Text S2).

Further extension of the model would be necessary to determine

whether wider streets pose a greater barrier to insects than

narrower ones. Interestingly, if, as we hypothesize, the barrier

effect is mainly due to the asymmetry in housing materials in the

front and back of houses, broader streets may not pose a greater

barrier to insects. Finally, further work is needed to assess if the

impact of streets is affected by the seasonality of T. infestans

dispersion. This would provide much needed biological insight

given the importance of seasonality in triatomine dispersion

[29,33].

Our findings have implications for adapting control strategies to

disease transmission dynamics. First, city blocks have been used as

a practical unit of study previously [80–82], and here we show that

they are a relevant spatial unit for the study of urban Chagas

disease. Given the high cost of insecticide application, it may be

much more efficient to develop targeted control strategies that are

appropriate for the urban geography – taking greatest advantage

of the barrier effect of streets. More specifically, current practices

in such localized interventions are based on ring treatment that

ignores the impact of streets. Our results suggest that control

efforts may be more effective if they are expanded further within

the same city-block (30–45m), before crossing a street: more of an

‘‘oval’’ treatment strategy, giving preference to houses on the same

block when resources are limited. Second, as city blocks seem

adequate for describing infestation and thus exposure of inhab-

itants to disease agents, they may also be valuable in modeling

parasite transmission [83] and targeting screening for infection

[21,84]. Third, over the long term, it is expected that resistance to

pyrethroid insecticides will be observed in urban settings as it has

already been in rural areas [85–88]. The fragmentation of the

vector population by streets may then affect the propagation of

resistance alleles [89]. Finally, we expect the distribution of streets

to affect the dynamics of the vector spread both in terms of speed,

as different localities have different densities of streets, and

direction, as city-blocks are usually twice as long as they are wide

across a neighborhood.

The difficulties presented in controlling Chagas vectors in cities

are similar to those of other urban disease vectors and pests such as

the mosquito vectors of Dengue (Aedes aegypti) and bed bugs (Cimex

lectularius). The effect of streets and other aspects of the urban

environment should be considered when designing control or

elimination campaigns against these organisms.

Supporting Information

Data S1 Annotated code in R with data. Two datasets are

given. One corresponds to the original, de-identified data

(realData.R) where spatial relationships are given through the

distance matrix between points. The second dataset (JitteredDa-

taPaucarpata.csv) corresponds to a generated dataset having the

same spatial characteristics as the original dataset. The given

examples with this second dataset (example_structuredMI.R and

example_fit_GMRF.R) provide a model for application of these

methods to new datasets. Please see the README file for details.

Updated code can be accessed through github: https://github.

com/cbarbu/spatcontrol.

(ZIP)

Table S1 Detailed parameters estimates. Estimates for

each spatial kernel of all fitted parameters with their 95% credible

intervals.

(PNG)

Text S1 Details about the mathematical model. Detailed

description of the Latent Class Gaussian Field implementation

(model and sampling).

(PDF)

Text S2 Sensitivity analyses. We further investigate the

sensitivity of the Latent Class Gaussian Field model to the distance

threshold D, the handling of missing data, the included cofactors,

and the inspector sensitivity prior.

(PDF)

Effects of City Streets on an Urban Vector

PLOS Computational Biology | www.ploscompbiol.org 7 January 2013 | Volume 9 | Issue 1 | e1002801



Acknowledgments
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