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Abstract

We present an approach for identifying genes under natural selection using polymorphism and divergence data from
synonymous and non-synonymous sites within genes. A generalized linear mixed model is used to model the genome-wide
variability among categories of mutations and estimate its functional consequence. We demonstrate how the model’s
estimated fixed and random effects can be used to identify genes under selection. The parameter estimates from our
generalized linear model can be transformed to yield population genetic parameter estimates for quantities including the
average selection coefficient for new mutations at a locus, the synonymous and non-synynomous mutation rates, and
species divergence times. Furthermore, our approach incorporates stochastic variation due to the evolutionary process and
can be fit using standard statistical software. The model is fit in both the empirical Bayes and Bayesian settings using the
lme4 package in R, and Markov chain Monte Carlo methods in WinBUGS. Using simulated data we compare our method to
existing approaches for detecting genes under selection: the McDonald-Kreitman test, and two versions of the Poisson
random field based method MKprf. Overall, we find our method universally outperforms existing methods for detecting
genes subject to selection using polymorphism and divergence data.
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Introduction

Background
Populations evolve over time and how they evolve is the

product of different evolutionary forces. Population genetic

theory gives us mathematical descriptions of how each of these

forces is thought to affect the patterns of genetic variability within

and between species. However, if the goal is not to start with an

evolutionary model and see what happens, but rather to start with

the data and understand what caused it one usually encounters an

identifiability issue. For this reason, most population genetic data

analyses looking for mutations under selection start by assuming a

neutral population genetics model (constant population size,

panmictic population, no migration), and test for deviations from

this model. Commonly used examples of such procedures include

tests based on summary statistics of the site frequency spectrum

(distribution of mutation frequencies), such as Tajima’s D [1].

However, since demographic factors (eg population growth) also

effect the site frequency spectrum these tests are usually

inconclusive. Tests based on linkage disequalibrium are also

quite sensitive to demography as well as assumptions on

recombination rates [2]. The HKA statistic [3] makes use of

divergence data as well as within species variation by estimating

the variance of divergence to polymorphism ratios among loci.

However, migration will result in a high variance of coalescent

times among the loci, making the HKA test also sensitive to

demography [4]. See Nielsen 2005 [2], for an excellent review of

these procedures.

One class of tests which is generally robust to demography are

those tests commonly referred to as ‘‘McDonald-Kreitman-type

tests’’ [4]. This class includes the McDonald-Kreitman (MK) test

[5] as well as MKprf [6]. The theory behind the MK test is

developed in the following section.

Unlike many of the tests mentioned above, the method we

present here assumes no particular population genetic model - in

other words it is a non-parametric approach. Similar to the MK

statistic, it is also generally robust to demography. Our method,

which we call SnIPRE for Selection Inference using Poisson

Random Effects, works by modeling the variation within and

between species as a combination of four types of ‘‘effects’’, one for

each class of variation. These effects are functions of unknown

population parameters of interest, including the selection coeffi-

cients.

Previously, we have developed a suite of powerful approaches

that can estimate the average strength of selection operating on a

locus and/or the distribution of fitness effects under a specified

population genetic setting for MK polymorhism and divergence

data (see [7]–[12]). A main advantage of the ‘‘MKprf’’ approach is

that it is much more powerful than carrying out individual MK

tests and then correcting for multiple tests. A perceived

disadvantage to some investigators is that it requires specifying a

population genetic model and then fitting the parameters of that

model. Some investigators have also been concerned about the use

of Bayesian priors on the distribution of effects and the impact

these can have on inference [13].
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There are two main advantages of SnIPRE over MK and

MKprf, which we highlight here. The first is that it can reliably

identify genes under weak and strong negative as well as positive

selection without needing to specify a population genetic model a

priori. Nonetheless, because it ‘‘borrows information’’ from the

rest of the genome regarding the average and variance in

polymorphism to divergence, it outperforms the one-at-time MK

test. This gain in power is attributable to SnIPRE’s use of a

‘‘James-Stein’’ class of estimator. The second advantage is that if

one is willing to assume a particular population genetic model, it is

possible to view the SnIPRE parameters as a re-parameterization

of the population genetic model. With these additional assump-

tions, we can extend our inference beyond idenfication of genes

that are not evolving according to the neutral theory, to

quantification of strength and directionality of the selection forces.

In this paper we will develop the model and the interpretation of

its terms, and then describe how that model can be fit in both the

empirical Bayes (SnIPRE) and fully Bayesian (B SnIPRE) settings.

We also show how this model is robust to demographic history and

recombination using standard coalescent simulations. Further-

more, we demonstrate how the Poisson Random Field estimates of

average selection intensity, species-split time, mutation rate, and

degree of selective constraint at the locus can be ‘‘extracted’’

directly from the SnIPRE estimates. We then compare the

SnIPRE methods to the MK statistic and MKprf methods in

detecting and estimating selection and other population param-

eters in simulations, and apply SnIPRE to data from a Drosophila

comparison and human-chimp comparison.

The MK statistic
Because SnIPRE works by picking up on the same type of

signature of selection as the MK statistic, we will start with a

review of this method and the theory behind it. While most

techniques to identify loci under selection require assumptions

about demography (particularly constant population size and no

substructure), the MK statistic does not. Like the HKA statistic, it

works by comparing divergence information between inferred

neutral sites (such as synonymous sites in a protein-coding gene)

and sites potentially under selection (such as non-synonymous sites

at the same gene). Strictly speaking, the test is a test of the neutral

protein evolution hypothesis which states that the vast majority of

evolutionary changes at the molecular level are caused by random

drift of selectively neutral mutants (not affecting fitness) [14].

Although very tempting, the test itself does not allow for inference

about the type of selection (negative, positive, or balancing). For

example, as noted in original paper, negative selection in recently

expanding populations may appear as positive selection. Thus,

without additional assumptions on population dynamics the

direction cannot be inferred. There have been notable extensions

to the MK test, including using non-coding sites whereby

upstream regions of a gene are compared to neighboring introns

or synonymous sites [15]. Another extension is the estimator a,

[16] which estimates the the proportion of amino-acid substititutes

which are driven by adaptive selection. These extensions, and the

additional set of assumptions they require, are not considered here.

In its traditional form the MK table consists of counts for four

categories of mutations which occur in the coding region of a gene:

polymorphic synonymous, divergent synonymous, polymorphic

non-synonymous, and divergent non-synonymous, see Table 1. A

mutation that occurs in every individual in the sample from one

species is considered divergent, otherwise considered polymorphic.

A mutation that occurs where it changes the amino acid produced

is considered non-synonymous, otherwise considered synonymous.

If the mutations are neutral, one would expect the ratio of

polymorphic synonymous (PS) to divergent synonymous (DS)

mutations to be the same as the ratio of polymorphic non-

synonymous (PN) to divergent non-synonymous (DN) mutations,

PS=DS&PN=DN. If this is not true, then we are seeing either an

excess of DN mutations, or shortage DN mutations. Intuitively, it

makes sense to consider an excess of DN as evidence supporting

positive selection as it appears that mutations that change the

amino acid are being fixed in the population at a higher rate.

Alternatively, a shortage of DN could be considered as evidence of

negative selection as it would appear as though mutations that

change the amino acid are being fixed at a lower rate. This

interpretation of the data is fairly straightforward considering an

additive model of selection with stationary population sizes.

However, as mentioned above and as discussed in [17], asessment

of directionality from the MK statistics should be used with

caution as it is sensitive to changing population dynamics. It

should be noted, however, that in the case of strong negative (i.e.

purifying) selection, the signature will be less clear in an MK table

since mutations are not likely to segegrate in the population long

enough to contribute to the polymorphism count. Thus, in the

Table 1. MK table.

MK SnIPRE

Polymorphic Divergent Polymorphic Divergent

Synonymous PS DS y00 y01 n1

Non-Synonymous PN DN y10 y11 n2

d

Notation used for the MK statistic and SnIPRE. yij = the number of mutations a gene has in category ij; i = 1 if the mutations are non-synonymous, 0 otherwise; j = 1 if the
mutations are divergent, 0 otherwise.
doi:10.1371/journal.pcbi.1002806.t001

Author Summary

We present a new methodology, SnIPRE, for identifying
genes under natural selection. SnIPRE is a ‘‘McDonald-
Kreitman’’ type of analysis, in that it is based on MK table
data and has an advantage over other types of statistics
because it is robust to demography. Similar to the MKprf
method, SnIPRE makes use of genome-wide information to
increase power, but is non-parametric in the sense that it
makes no assumptions (and does not require estimation)
of parameters such as mutation rate and species
divergence time in order to identify genes under selection.
In simulations SnIPRE outperforms both the MK statistic
and the two versions of MKprf considered. We then apply
our method to Drosophila and human-chimp data.

SnIPRE

PLOS Computational Biology | www.ploscompbiol.org 2 December 2012 | Volume 8 | Issue 12 | e1002806



case of strong negative selection a reduction in the number of both

polymorphic and divergent non-synonymous mutations is to be

expected, and the MK test will have reduced power to detect this

type of selection.

McDonald and Kreitman [18] use Fisher’s exact test of

independence on MK tables to identify genes under selection.

This test can be justified using coalescent theory where we have

the additional assumptions of i) no recombination within a gene ii)

all mutations are selectively neutral [19]. In this setting, the MK

test constitutes a test of this second assumption. Under the

coalescent theory model, mutations are Poisson distributed across

a gene genealogy with expected value ht
2

across a geneology of

length t, where h is the mutation rate. Thus, conditioning on the

total mutations (sufficient statistic for tree length) we have that

DSDn1*Bin(p1,n1)

and DN Dn2*Bin(p2,n2):

We wish to test H0 : p1~p2, the probability that a synonymous

mutation appears fixed is the same as the probability that a non-

synonymous mutation appears fixed in the sample. Under this null

hypothesis, DN DDSzDN~d follows a hypergeometric distribu-

tion with parameters, (n1zn2, n2, d ).

P(X~DN Dn1zn2,n2,d)~

n2

DN

� �
n1

d{DN

� �

n1zn2

d

� �

As long as the non-synonymous and synonymous sites are

interspersed among each other, they will be similarly affected by

demography and have the same distribution of coalescent times,

thus the test is robust to demography.

Motivated by the MK statistic, the SnIPRE framework uses the

MK table polymorphism and divergence data for identifying genes

under selection. Using generalized linear mixed models we

incorporate genome wide effects into our analysis as fixed effects,

and individual gene effects as random effects. This method allows

us to pool information across genes which increases our power to

detect those under selection.

MKprf is another method that was developed by us which

directly estimates the posterior distributions of genomic parame-

ters, such as the species divergence time, based on the MK tables’

synonymous cell entries. The posterior of the selection coefficients

for each gene are then calculated conditional on these genomic

parameters and the non-synonymous cell entries in the MK table,

see [7].

Methods

Data
The data consists of MK table counts for each gene, as well as

the total number of synonymous sites and non-synonymous sites

surveyed. Incorporating the number of sites into our model allows

us to extend our inference beyond non-synonymous and divergent

interaction effects to include effects due to changes in the mutation

rate, both in the synonymous and non-synonymous sites.

Model
Let K be number of genes in the sample. Thus we have 4K

mutation counts yijk, where i~1 if the mutation is non-

synonymous, 0 otherwise, j~1 if the mutation is fixed in the

sample among the two populations being compared, 0 otherwise,

and k~1,:::,K according to gene identification number. The

mutation counts are assumed to be Poisson distributed,

yijk*P(mijk), conditional on the covariates. The log of the

expected mutation count is modeled using a generalized linear

mixed effects model. The fixed effects include an intercept, an

effect if the mutation is non-synonymous, an effect if the mutation

is fixed, and an interaction effect if the mutation is both fixed and

non-synonymous. Additionally the model includes four random

effects: a gene effect, and the two-way and three-way interactions

between the gene, non-synonymous, and divergence effects. An

offset term is used to control for the number of sites sampled in the

gene where a mutation of type i could occur, Tsites0 for

synonymous mutations, Tsites1 for non-synonymous mutations.

log (mijk)~ log (Tsitesi)zbzbNizbDjzbNDijzbG
k zbNG

k iz

bDG
k jzbNDG

k ij
ð1Þ

By using fixed and random effects in the model we are assuming

that these gene-specific effects come from some distribution, and

that distribution is estimated from the data. The use of mixed

effects is particularly relevant in this setting where it capitalizes on

the fact that genes share a phylogeny. Thus, even though the

mutation rate, coalescent times, constraint and selection forces will

vary across genes, the distribution of the influence of these forces

across genes can be well estimated by viewing the data set as a

whole. From this perspective we estimate the fixed effect terms

(genome-wide average estimates) of our model, as well as the

variability in the distribution in of the random (gene-specific) effect

terms of the model. The random effects, or gene-specific

parameters, are then estimated given this context. Below we

describe how the terms in this model allow us to estimate for any

given gene the average effect of mutation, divergence, constraint

and selection levels over time.

Of primary interest is identifying genes under selection, either

positive or negative. Identification of these genes can be done quite

easily in the SnIPRE framework with only the assumptions of the

MK test: i. synonymous and non-synonymous sites sampled are

interspersed; ii. synonymous sites are not under selection. The

non-synonymous-divergent interaction effects, bND and bNDG ,

capture an average genome-wide selection effect and the gene-

specific selection effects. The gene-specific selection effect bNDG
k for

a particular gene k, captures how the kth gene varies from the

average selection effect, bND, of all genes included in the sample.

The kth gene’s selection effect relative to neutrality is reflected in

the sum of these two interaction terms, bNDzbNDG
k . Thus, we

refer to bNDzbNDG
k as the selection effect for the kth gene. For

example, an estimated bND of greater than 0, say 0.5, means that

the expected selection coefficient for a gene from that data set is

positive. A gene-specific selection effect, bNDG , may be negative,

say 20.3, indicating that the estimated selection effect for that

gene is lower than the average for genes in the data set. The

estimated selection effect on that gene relative to neutrality (zero

being neutral) is the sum of these two effects. In this example, the

estimate would be positive, 0.5+(20.3) = 0.2.

The other terms in the SnIPRE model are also quite

interpretable. The interecept and the gene specific effect, b and

bG reflect the mutation rate. Here again the bG
k term captures how

the mutation rate for the kth gene varies from the average

mutation rate of the genes in the sample, b. We refer to bzbG
k as

SnIPRE

PLOS Computational Biology | www.ploscompbiol.org 3 December 2012 | Volume 8 | Issue 12 | e1002806



the gene effect. Similarly, bD and bDG reflect divergence time, and

bDzbDG is referred to as the divergence effect. The proportion of

non-synonmyous mutations that are non-lethal are reflected in bN

and bNG . We refer to bNzbNG as the constraint effect. These

relationships are summarized in Table 2. A precise relationship

between these model parameters and the evolutionary parameters

that influence them is defined the Poisson Random Field

framework and discussed in the next section. Examples of the

interpretation of these model parameters is provided in the

application section.

We fit this model in R [20] using the lme4 package [21], and a

Bayesian implementation is also fit using WinBUGS [22], [23]. In

the Bayesian setting (B SnIPRE) we construct credible intervals for

these effects based on the MCMC samples (other packages may be

used instead to fit the model, e.g. the R package MCMCglmm

[24] or JAGS [25]). In the empirical Bayes setting (SnIPRE)

confidence intervals are constructed for the random effect

estimates based on the standard errors. When fitting SnIPRE

using the lme4 package we specified a general (unstructured)

covariance. Using a structure other than a general covariance

structure presupposes a functional form, e.g. a covariance matrix

with the off-diagonal elements all zero would indicate that the

gene specific effects are independent of each other. Incorrectly

assuming a particular form would lead to spurious results, and the

the property of best linear unbiased estimates would no longer

hold for the model coefficients. While inference would be more

powerful if the correct form of the covariance matrix was known,

the unstructured covariance allows for conservative estimation

directly from the data. In practice we have found that allowing the

general covariance structure versus assuming the random effects

are independent of each other greatly improves the fit of the model

and improves the prediction of genes under selection. Modeling a

general covariance structure makes sense intuitively. For example,

for a particular gene the non-synonymous and selection effects are

especially likely to be correlated as selection affects the amount of

time a non-synonymous mutation exists as a polymorphism before

becoming fixed or eliminated. The selection effect reflects the

selection coefficient c, and the non-synonymous effect reflects

mutation constraint, 1{f . Because of this relationship, one may

be interested in examining the joint distribution for these estimated

effects for a particular gene. This is easily accomplished in the

Bayesian setting using the MCMC chains. As an example, see

Figure 1.

For the Bayesian model the fixed effects have Normal priors

with mean m~0, and precision t~:01. The priors for the random

effects for each gene were multivariate normal with mean

m~(0,0,0,0), and precision Y4|4. The precision matrix is

modeled as a hyperparameter in order to estimate the covariance

structrue among the random effects. Using the conjugate prior, the

Wishart disribution, we set Y*W (S4|4,10), where S4|4 is the

identity matrix. Because the mutation counts are low these priors

are considered non-informative.

An alternative formulation of the Bayesian model using

hierarchical centering maybe be preferable as it results in quicker

convergence [26]. In the hierarchical centering formulation the

fixed effects appear as hyper parameters about which the random

effects are centered. The models are equivalent and as long as

convergence criteria are met will yield the same inference.

Coalescent and Poisson random field frameworks
In standard coalescent theory we have j lineages coalescing at

time points exponentially distributed with rate equal to
j(j{1)

2
. The

number of segregating sites follows a Poisson process with rate h=2

Table 2. SnIPRE coefficients and population genetic
parameters.

Terms Related parameters

bzbG
k

hk , mutation rate for the kth gene

bD
j zbDG

jk
tk , divergence time for the kth gene

bN
i zbNG

ik
fk , proportion of non-synonymous

mutations that are non-lethal for the kth gene

ck , selection coefficient for kth gene

bDN
ij zbDNG

ijk
ck , selection coefficient for kth gene

tk , divergence time for kth gene

Summary of the relationship between SnIPRE coefficients and population
genetic parameters.
doi:10.1371/journal.pcbi.1002806.t002

Figure 1. Example joint distribution of the estimated selection effect and the constraint effect for a particular gene. Data simulated
using PRFREQ. The blue asterisk denotes the true location of parameters.
doi:10.1371/journal.pcbi.1002806.g001

SnIPRE
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per unit of time. Conditioning on the length of genealogy, t, which is

a function of the coalescent times, the number of segregating sites is

Poisson distributed with mean
ht

2
. Thus, we have the expected

mutation count, mijk, is a function of the sample coalescent times, as

well as the mutation rate h [19]. Additionally, the expected

mutation count should be adjusted for constraint, f , and selection c.

This is consistent with our model where the effects of mutation rate

and divergence is estimated from the synonymous mutations, and

constraint and selection are estimated from the non-synonymous.

Our model also works well in the Poisson random field (PRF)

framework which assumes i. mutations arise at exponentially

distributed times, ii. each mutation occurs at a new site, and iii.

each mutant follows and independent Wright-Fisher process (no

linkage)[27]. SnIPRE can be viewed as a re-parameterization of

the PRF framework. Thus it is convenient to use the relationships

between the SnIPRE coefficients and the PRF model to obtain

estimates of c (c~2Nes, where 1+s is the fitness of mutants, and Ne

is the effective population size), as well as t, f , and h (h~4Neu

where u is the nucleotide mutation rate). We can derive the

relationship between the population genetic parameters and the

SnIPRE coefficients by comparing the predicted MK table counts

provided by SnIPRE, see Table 3, which are written in terms of

model coefficients, to the theoretical expected MK table counts

given in Table 4. These relationships are derived below; n and m

represent the number of samples from the population of interest

and the outgroup.

The gene effect bzbG , is a function of the mutation rate h.

exp (bzbG)~h L(m)zL(n)½ � ð2Þ

The divergence effect, bDzbDG , is a function of the divergence

time t.

exp (bDzbDG)~
exp (bzbGzbDzbDG)

exp (bzbG)
ð3Þ

~
tz 1

m
z 1

n

� �
L(m)zL(n)½ � ð4Þ

The selection effect bNDzbNDG , is a function of the selection

coefficient c, and the time to the most recent common ancestor t.

exp (bNDzbNDG)~
exp (bzbGzbNzbNGzbDzbDGzbNDzbNDG)

exp (bzbGzbNzbNG) exp (bzbGzbDzbDG)
|

exp (bzbG)

ð5Þ

~
tzG(m)zG(n)½ � L(m)zL(n)½ �

F (m)zF (n)½ � tz
1

m
z

1

n

� � ð6Þ

The selection effect reflects the interaction of the non-synonymous

and divergent effects on the expected mutation count. Under the

PRF framework we assume a neutral demography. Thus, a positive

(negative) selection effect corresponds to a positive (negative)

selection coefficient. That positive (negative) selection leads to the

higher (lower) rate of fixation for non-synonymous mutations makes

sense intuitively. A positive selection effect indicates that mutations

that are non-synonymous are being fixed at a higher rate than

expected under the null hypothesis of no selection. A negative

selection effect indicates that mutations that are non-synonymous

are being fixed at a slower rate than expected.

The non-synonymous effect, bNzbNG , may also be thought of

as a constraint effect since it is a function of the proportion of non-

synonymous mutations that are non-lethal f , as well as the

selection coefficient, c.

exp (bNzbNG)~
exp (bzbGzbNzbNG)

exp (bzbG)
ð7Þ

~
f

2c

1{e{2c
F(m)zF (n)½ �

L(m)zL(n)½ � ð8Þ

The constraint effect, bNzbNG, reflects the effect that mutations

being non-synonymous (versus synonymous) has on the expected

count. A negative (positive) constraint effect indicates that non-

synonymous polymorphic mutations are either being fixed or

eliminated at a higher (lower) rate than synonymous mutations.

Thus, after estimating the selection coefficient to account for the rate

at which non-synonymous mutations are fixed, we can estimate

from the constraint effect the proportion of mutations that are lethal,

and therefore quickly eliminated from the population. While the

selection effect is useful for identifying selection on mildly deleterious

mutations as well as advantageous mutations, the constraint effect

can be used to identify cases of strong negative or purifying selection.

It is interesting to note that these are the relationships used by

Sawyer and Hartl (1992) to fit their single locus PRF models to

Table 3. SnIPRE predicted mutation counts.

Polymorphic Divergent

Syn Tsites0 exp (bzbG) Tsites0 exp (bzbGzbDzbDG)

Non-syn Tsites1 exp (bzbGzbN zbNG) Tsites1 exp (bzbGzbNzbNGz

bDzbDGzbNDzbNDG )

The predicted mutation counts expressed in terms of the number of
synonymous and non-synonymous sites sampled Tsites0 , Tsites1 , the gene

effect bG , nonsynonymous effect bN , divergent effect bD , and their interactions.
doi:10.1371/journal.pcbi.1002806.t003

Table 4. Expected mutation counts.

Polymorphic Divergent

Syn Tsites0h L(m)zL(n)½ �
Tsites0h tz

1

m
z

1

n

� �

Non-syn
Tsites1f h

2c

1{e{2c
F (m)zF (n)½ � Tsites1f h

2c

1{e{2c
tzG(m)zG(n)½ �

L(n)~
Xn{1

i~1

1

i

F (n)~

ð1

0

1{xn{(1{x)n

1{x

1{e{2cx

2cx
dx

G(n)~

ð1

0

(1{x)n{1 1{e{2cx

2cx
dx

The expected mutation counts expressed in terms of the number of
synonymous and non-synonymous sites sampled Tsites0 , Tsites1 , selection
coefficient c, the species-split time t, the mutation rate h, the proportion of
lethal non-lethal mutations f , and the number of samples in the population of
interest and the outgroup n and m, according to the Poisson Random Field
framework.
doi:10.1371/journal.pcbi.1002806.t004

(9)

(10)

(11)

SnIPRE
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2|2 MK data. What is different about our approach is that we do

not require a PRF parameterization for inference; rather, it

naturally falls out from consideration of the standard log-linear

model analysis of multi-way contigency tables. Several of the

simulations in the next section are done in the PRF framework

using PRFREQ [12]. Also included are several simulations using

SFS_CODE [28] that show our estimation of population genetic

parameters to be fairly robust to the PRF assumption of no linkage

between sites. Specifically, the false positive rate remains low for

identification of genes under selection. The primary consequence

of linkage is underestimation of the magnitude of selection. We

plan to explore these results more in a later paper.

Results/Discussion

To assess and compare the performance of the SnIPRE

methods against the MK statistic and MKprf method we

simulated data using 3 different methods. The first method, based

on coalescent theory, was implemented in R. The second method,

PRFREQ, simulates data based on the PRF framework. The third

method is a forward simulation method, SFS_CODE. In these

simulations our first goal was to compare the false positive rates of

the methods using simulations under neutrality. Additionally, we

simulated data with selective constraint but without selection

which illustrates SnIPRE’s ability to distinguish between muta-

tional constraint and selection. Using PRFREQ, we were also able

to simulate data sets with a distribution of selection coefficients and

use this to compare the methods in a litany of non-neutral settings.

For the results reported below, the MK test (Fisher’s exact test)

was applied and the resulting p-value left unadjusted for multiple

testing, significance was determined by an a~0:05 cutoff. For B

SnIPRE, and the two versions of the MKprf significance was

evaluated based on the posterior distributions; if at least 97.5% of

the posterior distribution lay to one side of zero, the estimate was

deemed significant. This cutoff was chosen to correspond to a two-

sided test at a~0:05 level. For SnIPRE, significance was

established based on the standard error and estimate of the effect

of interest. A more precise calculation of the significance of an

effect is possible in the empirical Bayes framework by estimating

the profile likelihood via Laplace approximations. This estimation

procedure is not discussed here.

Simulations under neutrality
To assess false positive rate FPR for each of the methods, we

simulated data using standard coalescent theory. In Table 5, we

report the false positive rate for a data set with 1,000 neutrally

evolving genes simulated from a pair of populations of constant

size that split t~10|2Ne generations ago, with mutation rate

h~4Neu~:001. The standard MK approach had an FPR = 0.02.

SnIPRE performed very well with an FPRv0.001 for both the

Bayesian and empirical Bayes approaches. MKprf had mixed

performance, depending on assumptions regarding the variance of

the distribution of fitness effects. For fixed variance, s2~10, the

FPR = 0.14 which is relatively high. This is a mode of MKprf that

has a very wide prior distribution that is not updated by

information from other loci. When that information is incorpo-

rated we see that MKprf (estimated s2) also has a low FPR, 0.012.

Next we investigated the impact of demographic history as well

as recombination on the FPR of the methods using the forward

simulator SFS_CODE. In Table 6, we report simulation results for

5 demographic settings for 1,000 gene data sets including three

bottleneck scenarios, one population growth model, and constant

population size. From these simulations we see that both the MK

method and SnIPRE methods have very low false positive rates,

with the SnIPRE methods performing slightly better. MKprf with

estimated variance has similarly very low false positive rates,

however MKprf with s2~10 has consistently higher false positive

rates. As stated above, all these methods should be robust to

demography. This appears to be the case in our simulations as the

false positive rates remain consistent for each method across

demographies.

The key point from all these simulations is that SnIPRE

performs just as conservatively as the MK test and better than

MKprf under a litany of neutral scenarios that might be cause for

concern in analyses for inference of selection.

Simulations with constraint
A particularly interesting application of SnIPRE is to identify

regions of the human (or a new genome) that show very low levels

of variation based on both polymorphism and divergence data.

These might be interpretable as regions of high selective constraint

either at the amino acid or non-coding level (for comparison with a

flanking ‘‘neutral’’ standard) and may represent biologically

meaningful sequences, see [29], [30].

Table 5. False positive rate.

Method False Positive Rate

SnIPRE 0.00

B SnIPRE 0.00

MKprf (s2~10) 0.14

MKprf (estimated s2) 0.01

MK 0.02

False positive rate in a data set of 1000 genes simulated using the coalescent
method.
doi:10.1371/journal.pcbi.1002806.t005

Table 6. False positive rate and demography.

Bottleneck 1 Bottleneck 2 Bottleneck 3 Expansion Constant

SnIPRE 0.00 0.00 0.00 0.00 0.00

B SnIPRE 0.00 0.00 0.00 0.00 0.00

MKprf (s2~10) 0.11 0.08 0.01 0.11 0.13

MKprf (estimated s2) 0.00 0.00 0.00 0.00 0.03

MK 0.02 0.02 0.01 0.02 0.03

False positive rates when no selection, and under various population growth models.
doi:10.1371/journal.pcbi.1002806.t006
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To quantify the power of SnIPRE to identify constrained loci, we

used the coalescent method to simulate three different scenarios

with varying degree of selective constraint, or f , among genes in

1,000 gene data sets. Here we consider the case where some

proportion of sites are very strongly constrained (any mutation at

these locations is considered lethal), and not the case where the

mutations are of weak negative effect and could rise in frequency

and contribute to polymorphism (considered in the simulations

below). That is, these regions do not exhibit a deviation in

polymorphism verus divergence; however, they will be outliers with

regard to the genome-wide pattern of overall genetic variation. In

Table 7 and Figure 2 we see the results from three coalescent

simulations with three different distributions on mutational

constraint, f . A comparable estimate of constraint from the MKprf

methods is a function of its estimated nonsynonymous and

synonymous mutation rates hN , and hS :

hN=# Non-Synonyomous sites

hS=# Synonymous sites

The SnIPRE methods performed quite well on data from

distribution one with 98% and 99% correct, the MKprf methods

yielded only 43% and 67% correct. Distribution 2 has a wider

variety of constraint and presents more of a challenge for both

SnIPRE (66% and 86%)and MKprf (38% and 51%) methods.

Distribution three contained only mild to moderate constraint and

was the most challenging of the three distributions. Here, the B

SnIPRE method proved to be the most powerful of the four

methods, with 45% correctly classified, and the MKprf methods

yeilded approximately 21% correct, and SnIPRE approximately

17% correct. For all three distributions the SnIPRE methods

correctly classified the selection effects as neutral. From these results

we see that the SnIPRE model is able to detect strong constraint,

and can distinguish these effects from those of selection.

A comparison can also be made when selection is present, and

there is no constraint (f ~1). To do this we considered a data set

with selection coefficients drawn from a normal distribution with a

mean of zero, a standard deviation of two, and with no constraint.

In Figure 3 A we see that SnIPRE’s estimated constraint effects are

quite accurate (very close to one), while the MKprf methods have

much more variable estimates. The SnIPRE method’s estimates of

constraint are somewhat correlated with the selection coefficient,

however we see in Figure 3 B that the effect of this trend is minimal.

Simulations with selection
Classification of selection effect. To assess performance

when the selection coefficients come from some distribution, we

simulated data using PRFREQ for six data sets of 1,000 genes.

Figure 2. Classification of constraint. Top: Distribution 1, 2, and 3 of f used in the coalescent simulations for Table 7. Bottom: Proportion of
constraint effects classified as significant by SnIPRE; x-axis is true proportion of non-lethal mutations, f .
doi:10.1371/journal.pcbi.1002806.g002

Table 7. Realized coverage of 95% CI for f and c when c~0, f
varies, and there is linkage among sites.

% Correct c % Correct f

Dist 1 Dist 2 Dist 3 Dist 1 Dist 2 Dist 3

SnIPRE 100.0 100.0 100.0 98.7 66.1 17.9

B SnIPRE 100.0 100.0 100.0 99.2 86.0 43.4

MKprf (s2~10) 69.3 92.2 87.9 43.0 38.7 21.5

MKprf (estimated s2) 71.1 99.3 99.3 67.6 51.6 20.7

Results for coalescent model simulations with a distribution on f , and no
selection c~0. h~0:001.
doi:10.1371/journal.pcbi.1002806.t007
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Selection coefficients for our simulations are drawn from three

distributions, which are shown at the bottom of both Figure 4 and

Figure 5. These selection coefficients were then used to simulate

data with drosophila-like parameters h~r~0:01, and with

human-like parameters h~r~0:001. In Figures 4 and 5 each

row of histograms illustrates a particular method’s performance on

data from each of the simulations. The colored portions of the

histograms represent the proportion of selection coefficients in

each bin correctly classified as under selection, with the true

selection coefficient values given along the x-axis. These results are

also summarized in Table 8. From our simulations, we found the

SnIPRE method to be a dramatic improvement over other

methods in identifying genes under selection, especially when table

counts are low, as with a human-like mutation rate of h~:001. For

example, the SnIPRE methods classify 72%{88% of genes

correctly, MKprf methods classify 42%{60% correctly, and the

MK statistic just 12%{20% correctly. For the drosophila-like

simulations the SnIPRE methods classify 90%{95% correctly,

MKprf methods classify 83%{90% correctly, and the MK

statistics classifies 67%{77% correctly. Specifically, the SnIPRE

methods are more sensitive for small (close to zero) and more

accurate for extreme valued selection coefficients. The selection

coefficients not identified by SnIPRE as significantly different from

zero, are generally within +1 of zero.

It is important to note that the increased power of SnIPRE does

not rely on the type of selection, since positive, negative, or

balancing may affect the MK table counts similarly. We focused

here on data simulated with negative and positive selection with

constant population sizes, however, SnIPRE will have more power

to detect deviations from the neutral expection of

PS=DS&PN=DS than the MK regardless of the reason. For

example, if balancing selection disrupts the PS=DS~PN=DN

equality to the same extent as some other selection pressure (for

example, an average selection coefficient of c~{1:1 under

constant population size, which is simulated here), the relative

improvement in SnIPRE over MK would be the same.

The methods were also tested on a data set which contained

both genes with and genes without mutations under selection

(h~0:001, selection strength of at least +1, simulation done in

PRFREQ). In Figure 6 the true positive rate is plotted versus the

false discovery rate. Here we see that at the cutoff needed for the

MK statistic to have identified half the genes under selection

(TPR = 0.5), approximately half of the discoveries are false

(FDR&0.5). The MKprf methods offer a dramatic improvement

of the MK statistic with a FDR approximately equal to 0.1 at a

TPR = 0.5, but the SnIPRE methods offer further improvement

with a FDR of zero at TPR = 0.5.

Estimation of selection coefficient, c. As previously

mentioned, the SnIPRE method can be used not only to reject

the hypothesis of neutral evolution for a particular gene, but can

also be used with additional assumptions to provide estimates of

the selection coefficient, c. We compare the SnIPRE and MKprf

classification success of c for the PRFREQ simulation data in

Figures 4 and 5. The distribution of the differences between the

estimates and the true selection coefficent ĉci{ci for each method

is shown in Figure 7. The SnIPRE methods generally yield

reasonable results for genes with selection coefficients from {2 or

higher. However, for genes under strong negative selection cell

counts are often quite small or zero, and since the cell counts are

bounded below by zero it is hard to estimate precisely the extent of

negative selection. Because of this, both the SnIPRE methods and

MKprf method suffer in precise estimation of negative selection

coefficients. However, as seen in Figure 5 the SnIPRE methods

still classify these coefficients as negative, whereas MKprf does so

for only a fraction of the more extreme cases.

Application
We also applied these methods to Drosophila simulans data with a

Drosophila melanogaster outgroup. This data was originally presented

by Begun et al [31]. Our results are consistent with others’ findings

of abundant positive selection among Drosophila [32–33] [16]. B

SnIPRE identifies an additional 613 genes (nearly a 60% increase)

with significant evidence of positive selection that were not

significant by the traditional MK test using an un-adjusted p-value

cutoff of 0.05. We also find evidence of a significant amount of

mutational constraint, see Figure 8. These results are consistent

Figure 3. Comparison of estimates of constraint when f~1 (no constraint). A: The distribution of constraint estimates. B: Constraint
estimates versus the selection strength.
doi:10.1371/journal.pcbi.1002806.g003
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Figure 4. Classification of selection effect for Drosophila-like simulations. Shaded regions of histogram represent the proportion of genes
under selection classified as under selection; x-axis is true selection coefficient; h~0:01.
doi:10.1371/journal.pcbi.1002806.g004
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Figure 5. Classification of selection effect for human-like simulations. Shaded regions of histogram represent the proportion of genes under
selection classified as under selection; x-axis is true selection coefficient; h~0:001.
doi:10.1371/journal.pcbi.1002806.g005
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with the large effective population size of Drosophila and the

strong efficacy of selection. It is important to note when

interpreting these results that all the tests discussed here have an

underlying assumption that the synonymous sites are under no

selection. These synonymous sites act as a baseline, thus

conclusions of positive or negative are actually measured relative

to the level of selection acting on synonymous sites. For example, if

there is selection against unfavored codons, this may artificially

inflate the non-synonymous to synonymous ratio and be misin-

terpreted as positive selection at non-synonymous sites. If codon

bias is believed to be widespread amongst the genome, a better

indicator of selection levels may be to compare the gene specific

effects to the genome average, rather than comparing the sum of

these effects to zero.

In contrast, when we applied SnIPRE to human data, we found

few genes with evidence of strong positive selection and an

overwhelming signal of negative selection, see Figure 9. This is

consistent with our previous interpretation of the results in [10]

and [12], where we argued weak negative selection is the

predominant mode of selection operating across the majority of

human evolutionary history. Again, this is consistent with the small

long term Ne of our species. An implication of this result is that

many genes likely harbor mutations of small negative effect that

can reach appreciable frequencies.

The application to humans in particular illustrates nicely the

improved power in the SnIPRE model to detect genes under

strong negative selection (constraint) and recurrent negative

selection on mildly deleterious mutations. Because of the relatively

low mutation rate in humans, genes under varying degrees of

negative selection usually have such low mutation counts in the

MK table that the MK test is unable to achieve significance. For

example, consider the spermatogenic Odf2 gene, which plays an

important role in sperm morphology and infertility. The MK table

counts are as follows: PS = 1, DS = 9, PN = 1, and DN = 1. The

MK test is testing the equality 1/9 = 1/1, but failed to reach

significance (p-value = 0.32). SnIPRE, however, found significant

evidence of negative selection, as well as mutational constraint.

The SnIPRE estimated selection effect for this particular gene was

bNDzbNDG~{0:75 (significantly different from zero, and lower

than the genomic average of bND~{:60), and the estimated

reduction in non-synonymous mutations was also quite strong,

bNzbNG~{1:49 (compared to a genomic average of

bN~{1:14). From here we can conclude that there is significant

evidence of selection, and additionally, there may be evidence of

mutational constraint, or purifying selection, as we are observing

significantly fewer non-synonymous mutations than expected. It is

difficult to interpret the significance of the constraint, however,

without first estimating the strength of negative selection. This is

because the strength of selection also influences the expected

number of non-synonymous mutations. If we are willing to accept

the additional assumptions of the PRF framework, then using the

relationship defined in (7) and (8) we estimate the average selection

coefficient acting on this gene to be equal to ĉc~{0:89, and the

estimated proportion of mutations that are non-lethal in this gene

to be f̂f ~0:28 (a proportion which is found to be significantly

different from 1). Under the PRF framework the SnIPRE model

also tells us that the gene effect for Odf2, bzbG~{5:32 may be

interpreted as mutation rate of ĥh~0:0013 mutations per

generation, per site (slightly higher than the estimated genomic

average estimated from this data of ĥh~0:00089); and the

estimated divergence effect, bDzbDG~1:06, leads to an estimated

scaled coalescence time for this gene at t̂t~11:37 (slightly higher

than the genomic average estimated here of t̂t~9:56).

The BRC2 gene, associated with breast cancer and important

for DNA repair, is another illustration of a case where examining

the individual MK table we are unable to find significant evidence

of selection. However the SnIPRE model indicates a significant

amount of mutational constraint, indicating strong negative

selection. The MK table for this gene has PS = 13, DS = 16,

PN = 9, and DN = 17. While there is little evidence of negative

selection (bNDzbNDG~{0:24, not significantly different than

zero), the SnIPRE model indicates evidence for mutational

constraint (bNzbNG~{0:95). From the MK table alone we

would not see this as the total synonymous and non-synonymous

mutations are similar. However, considered with the additional

information that the number of non-synonymous sites sampled

was nearly three times the number of synonymous sites sampled,

the SnIPRE model in the PRF framework estimates the

proportion of mutations that are non-lethal to be f̂f ~0:41,

significantly different than one. The average mutation rate for

this gene is estimated to be ĥh~0:0011 and a more recent

coalescent time of t̂t~7:95.

Due to the overwhelming evidence of negative selection and

constraint in humans, signatures of positive selection are difficult

Table 8. Selection classification for simulations by method.

h~:01 (Drosophila) h~:001 (Human)

Dist 1 Dist 2 Dist 3 Dist 1 Dist 2 Dist 3

SnIPRE 0.95 0.92 0.95 0.86 0.72 0.88

B SnIPRE 0.93 0.90 0.93 0.85 0.76 0.86

MKprf (s2~10) 0.90 0.83 0.89 0.50 0.45 0.60

MKprf (estimated s2) 0.90 0.83 0.89 0.52 0.42 0.57

MK 0.77 0.67 0.76 0.20 0.12 0.15

Proportion of genes correctly classified under selection where the selection
coefficients are from distribution 1, 2 and 3; mutation rate h.
doi:10.1371/journal.pcbi.1002806.t008

Figure 6. True positive rate versus false discover rate. Results for
data set of 2,000 genes, 550 of the genes are under selection with
cv{1 or cw1.
doi:10.1371/journal.pcbi.1002806.g006
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to detect even with the increase in power with the SnIPRE

framework. B SnIPRE detects only 4 genes under positive

selection not identified by the traditional MK statistic, which

identifies 10 genes. For this reason it may be informative to

consider the effect of selection on a gene relative to the genome-

wide average. Because the selection effect represents the average

effect of selection on that gene throughout time, it may represent

an average of both positive and negative selection forces.

Assuming a model where we can interpret the the sign of the

selection effect as indictive of the direction of selection, genes with

selection effects significantly higher than the genome-wide average

will have had either more positive selection or less negative

selection acting on them than the typical gene. For example, in this

data set B SnIPRE identifies 628 genes with selection effects

significantly higher than the genome-wide average of 20.60.

Conclusions
The SnIPRE framework models MK table data in a way

consistent with population genetic theory and with minimal

assumptions on the demographic model may reject the neutral

Figure 7. Distribution of residuals for selection coefficient estimates by method. The top row displays the distribution of constraint, the
middle row displays residuals for simulations using h~r~0:001; the bottom row displays residuals for simulations using h~r~0:01. Residuals
grouped by true selection strength.
doi:10.1371/journal.pcbi.1002806.g007
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theory. However, just as with the traditional MK test, conclusions

about type of selection (positive, negative, or balancing) require

further assumptions. The parameters of the SnIPRE model are

easily interpreted and can be effectively used to estimate the affects

of selection, constraint, divergence time, and mutation rate on

genome-wide patterns of variation on a gene-by-gene basis. Effects

may be readily evaluated in the absolute, or relative to the

genome-wide estimates.

The simulations provided here illustrate the significant increase

in power over the traditional MK test that the SnIPRE model

provides, while maintaining a low false positive rate. This makes

sense since we are using genome-wide data to improve our

estimate of the influence of mutation rate, species divergence time,

constraint, and selection effects. The fixed effects reflect genome-

wide averages of these effects; the random effects reflect the gene-

by-gene variation in the influence of these forces and provide

estimates of this variation with James-Stein-type shrinkage. Both

the empirical Bayes and fully Bayesian implementation borrow

strength across genes to improve estimates of the parameters of

interest. The success of the method in simualtions, as well as the

consistency of the Drosophila and human-chimp results with other

findings corroborates the legitimacy of this methodology in this

setting.

When the assumptions of the PRF are met, our simulations

indicate the method provides estimates of the selection coefficient

as un-biased as the more parametric method MKprf, and with

Figure 8. D. simulans estimated selection effects and non-synonymous effects for 8,887 genes. Plots A and B shows the estimated
selection effects using SnIPRE and B SnIPRE respectively.
doi:10.1371/journal.pcbi.1002806.g008

Figure 9. Human estimated selection effects and non-synonymous effects for 11,624 genes. Plots A and B shows the estimated selection
effects using SnIPRE and B SnIPRE respectively. B SnIPRE classifies far more genes as having a negative average selection effect, and this difference
can be explained in part by the construction of 95% confidence interval versus the credible interval.
doi:10.1371/journal.pcbi.1002806.g009
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generally smaller confidence intervals. While in this paper we have

focused on the interpretation of SnIPRE parameters in the PRF

framework, we believe an extension of the model could be used in

another framework which allows for arbitrary dominance. One

such framework is described in Williamson et al [34] in which the

dominance parameter is estimated based on additional informa-

tion from the site frequency spectrum. However, as with any

method that makes conclusions about strength and directionality,

such as MKprf or a, in order to asses the type of selection

assumptions would need to be made about effective population

size changes and their timing.

In the future, we will explore the impact of varying recombi-

nation rate on the accuracy of parameter estimates and, in turn,

the efficacy of natural selection in weeding out deleterious alleles

while promoting favorable mutations to high frequency.
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