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Abstract

Abnormalities in glycan biosynthesis have been conclusively linked to many diseases but the complexity of glycosylation
has hindered the analysis of glycan data in order to identify glycoforms contributing to disease. To overcome this limitation,
we developed a quantitative N-glycosylation model that interprets and integrates mass spectral and transcriptomic data by
incorporating key glycosylation enzyme activities. Using the cancer progression model of androgen-dependent to
androgen-independent Lymph Node Carcinoma of the Prostate (LNCaP) cells, the N-glycosylation model identified and
quantified glycan structural details not typically derived from single-stage mass spectral or gene expression data.
Differences between the cell types uncovered include increases in H(II) and Ley epitopes, corresponding to greater activity of
a2-Fuc-transferase (FUT1) in the androgen-independent cells. The model further elucidated limitations in the two analytical
platforms including a defect in the microarray for detecting the GnTV (MGAT5) enzyme. Our results demonstrate the potential
of systems glycobiology tools for elucidating key glycan biomarkers and potential therapeutic targets. The integration of
multiple data sets represents an important application of systems biology for understanding complex cellular processes.
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Introduction

Glycosylation, a broad term covering the addition of oligosac-

charides (glycans) to proteins and lipids followed by their subsequent

modification during transit through the secretory apparatus, is an

intricate intracellular process whose complexity hinders ready

interpretation from mass spectral and other data sets. Nonetheless,

three decades of research has made it clear that the glycosylation of

healthy and diseased cells often diverges resulting in glycan changes

that contribute to pathological progression [1,2,3,4,5]. A prime

example of the contribution of glycan analysis to the understanding

of a pathological process and the development of clinically relevant

biomarkers is provided by prostate specific antigen (PSA)

[6,7,8,9,10]. Changes in the glycosylation status of this widely used

biomarker for prostate cancer screening have been useful in

improving its specificity and ability to distinguish benign forms of

this disease from highly malignant cancer [11,12].

While considerable progress has been made from decades of

painstaking research focused on PSA, efforts to identify additional

glycan markers of disease suffer from the difficulties in identifying

specific glycosylation changes. However, with the current prolif-

eration of high throughput ‘omics’ approaches, opportunities are at

hand to develop and implement methodologies that analyze

the resulting large data sets in order to provide critical glycan

signatures of disease; for example to expand analyses from PSA to

additional prostate cancer biomarkers and, more broadly, from

prostate cancer to the numerous cancers and diseases known to

have abnormalities in glycosylation. Unfortunately, the disparate

sets of data needed to fully characterize glycosylation –including

expression profiles of the enzymes involved in glycosylation, the

activities of the resulting enzymes, and finally the large number of

glycans actually produced by these enzymes – cannot be directly

compared and there is yet no facile way to integrate the data to

generate meaningful biological insights.

Transcriptional profiling of mRNA allows quantitative global

assessment of the many genes involved in glycan biosynthesis i.e.

glycosyltransferases, the enzymes responsible for generating

glycans. A wealth of data is also becoming available from the

detailed assessment of the glycans using mass spectrometric

techniques [13]. Despite progress on both ‘omics’ fronts, useful

bioinformatics tools to identify glycan structural data and also to

link these findings with transcriptional profiles of the enzymes that

produce these sugars have lagged. For example, a common

approach for mass spectrometry-based glycoprofiling involves a

one-to-one data base matching of particular mass spectrometry

measurements to specific glycans from a known glycan library in

order to annotate the mass spectra [14,15]. Statistical database-

driven approaches have attempted to relate gene expression levels

to the abundance of specific glycan linkages [16,17,18]; however

these approaches do not provide quantitative predictions of

detailed glycan distributions. As a consequence, there is no clear

understanding of how mRNA levels relate to the actual amount
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and distribution of glycans found within a healthy or diseased cell.

In addition, current bioinformatic techniques only consider each

mass spectral peak in isolation and do not consider other relevant

peaks when making an identification or quantification.

In this work, we address this void with a novel systems biology

model that interconnects glycan structural data obtained from

mass spectrometry with changes in gene expression obtained from

mRNA profiling of the relevant glycan processing enzymes. The

glycobioinformatics approach interprets mass spectral data in

terms of the activity of glycan-processing enzymes and then

compares these values to those indicated from gene expression

profile. The model identifies a number of unrecognized glycan

structures and their abundances from mass spectral peaks by

analyzing the entire mass spectrum in concert instead of

considering each mass peak in isolation. The model can also

process the relative enzyme transcript gene expression levels, and

translates them into a synthetic mass spectrum and a quantitative

glycan profile. This model approach has been applied to uncover

subtle differences in the glycan signatures between two sets of

cancer cells, specifically low and high passage, androgen depen-

dent and independent (respectively) LNCaP prostate cancer cells.

This effort has yielded insights into glycan-specific changes

associated with malignant progression in this disease. In addition,

this model approach enables a comparison of the result from the two

‘omics’ platforms and enables identification of consistent and

inconsistent patterns across the two media. Moreover, this systems

biology methodology allows users to gain insights into the complex

multi-step cellular glycosylation process from disparate data sets and

will serve as a critical step along the path towards the identification

of key glycan biomarkers and therapeutic disease targets.

Results

Glycosylation model integration of gene expression and
mass spectrometric data

In previous publications we applied a comprehensive mathe-

matical model that incorporates a kinetic network for enzyme

processing of N-glycans to interpret mass spectral and other glycan

analytical data (HPLC) in terms of detailed glycan structures as

well as specific enzyme activities [19,20]. This analysis was useful

for screening differences in glycan profiles and enzyme activities

between different cell types. In this study we present an integrative

glycan systems modeling approach that considers mRNA gene

expression profiles for the glycosyltransferases and other enzymes

involved in glycan synthesis together with matching MALDI TOF

(Matrix assisted laser desorption ionization time of flight) mass

spectral data. This data integrative modeling approach provides a

thorough characterization of the changes in the glycan structural

profile and abundances through the mass spectra. Model sizes

used in this study are typically limited to about 10,000 to 25,000

glycan structures based on the implementation of a molecular

mass cutoff and a network pruning method. This allows prediction

of the complete glycan profile and its abundances for any set of

assumed enzyme concentrations and reaction rate parameters. A

schematic representation and explanation of how the model

integration of mass spectrometric and gene expression data works

is shown in Figure 1 (for more details see Materials and Methods).

MALDI TOF glycoprofiling of high and low passage
LNCaP cells

High and low passage LNCaP cells provide a model for cancer

progression from the androgen-dependent to the androgen-

independent state [21]. The MALDI TOF mass spectrometry data

for the low and high passage human prostate LNCaP cells are

available at the Consortium of Functional Glycomics (CFG)

database [22] and under supplementary material in Dataset S1

and Dataset S2. The C-33 cells, or low passage cells, include cells

between passages 25 and 35 and serve as a model for androgen-

dependent cells. The C-81 cells or high passage type were derived

from the low passage cell line and have diverged into an androgen

non-responsive state; they include cells between passages 81 and 125

[21]. The comparison of model generated synthetic mass spectra to

experimental MALDI TOF mass spectra (Figure 2 and Figure 3)

requires processing of the raw mass spectra, including baseline

correction, mass calibration adjustment, peak integration and

filtering of isolated spikes (individual peaks without isotopic satellites),

software development for that end is described in Materials and

Methods. Fitting of both MALDI TOF experimental data sets to

synthetic mass spectra obtained through solving our N-glycosylation

computational model as described in Figure 1 generates a set of

glycan structures and abundances. The parity plot in Figure 2 gives

the agreement of the calculated and measured experimental mass

spectrometric data in the range of 1400–4000 for both high and low

passage LNCaP cells. Peaks in agreement are located on the parity

line; in general, a good fit is obtained for many of the glycans. The

experimental mass spectrum extends to 5000; however, for this set of

data few molecular masses are significant in the 4000 to 5000 range

and thus the model was limited to the 4000 range.

This model approach can be readily implemented to assign a

group of glycans with specific details on their associated structures

and abundances to each peak in the MALDI TOF mass spectra of

diverse mammalian cell types. For example, the good agreement

obtained between the measured and synthetic mass spectra

obtained from the model as indicated in Figure 2 for both LNCaP

cell lines, is translated in Figure 3 as a close alignment of the

experimental mass spectral levels (blue line) with the model

predictions (red line) for most of the peaks. Overall, in Figure 3, we

present a selected portion of the mass spectra for the low and high

passage cell lines in the range of 2150 to 2750 with the dominant

glycan structures producing each peak indicated by schematic

structural diagrams. The comparative glycoprofiling of both cell

Author Summary

Glycans are the sugar attachments that are found on proteins
and lipids. These highly variable and structurally diverse
sugar chains confer distinctive characteristics to the cell
surface. Recent research has revealed that these glycan
profiles can represent important signatures of disease states
and thus understanding glycan processing and structures in
cells is an important systems biology goal. Glycan structures
are often characterized through mass spectral analysis while
their glycosylation processing enzymes are characterized
using gene expression profiling. Unfortunately, due to the
complexity of glycosylational processing, it has been difficult
to relate these disparate data sets until now. In this paper we
demonstrate for the first time the ability of a systems
glycobiology model to link glycan structural data obtained
from mass spectral analysis with mRNA expression data in
terms of enzyme activities catalyzing the glycosylation
reactions in the cells. We show that such a systems biology
model enables identification of distinctive and subtle glycan
fingerprints differences between prostate cancer cell stages
(androgen-dependent and more metastatic androgen inde-
pendent). This systems approach will enable us to use high
throughput glycomics and gene expression data sets in order
to specify glycan-based signatures as important diagnostic
markers of disease and potential therapeutic targets.

Transcriptome and Glycome Data Integration
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lines is discussed in the next section and the complete set of glycans

annotated across the 1500–4000 MS range is provided in Figure S1.

MALDI TOF comparative glycoprofiling of high and low
passage LNCaP cells

High and low passage LNCaP cells that provide a model of

cancer progression from the androgen-dependent to androgen-

independent state exhibited considerable similarity in N-glycan

patterns (Figure 3); this result was expected because both cell lines

come from the same progenitor and only differ in the number of

passages. However, the comparative glycoprofiling shown in

Figure 3 establishes that there are also several differences between

the two cell lines. For example, at the peak envelope starting at a

monoisotopic mass of 2418.21 (the lowest mass of the isotope

group), the high passage cells have about twice the signal of the low

passage cells, partially due to the appearance of a structure

containing the blood group H(II) epitope (Fuca1,2Galb1,4Glc-

NAcb) in the high passage glycans (See Figure 4 for N-glycan

processing diagram). Another peak envelope starting at a mass of

2592.30 is about four times higher for the high-passage cells, due to

the increased abundance of terminal fucose groups (Fuca1,2Galb).

Predictions of the abundances of glycans based on the model

analysis of the complete mass spectral data is shown in terms of

types of glycans in Figure 5 and glycan moieties associated into

blood group categories in Figure 6. The mass spectra for both high

and low passage prostate cancer LNCaP cells are most abundant

in high mannose glycoforms (Figure 5). Indeed, prostate-specific

Figure 1. Schematic representation of the N-glycosylation model. The N-Glycosylation model generates a detailed annotated mass spectrum from
the glycosylation reaction network by integrating three processing modules: 1-Glycan Network Generation, 2-Kinetic Model, and 3-Experimental Data
Fitting. The Network Generation module uses reaction rules that express enzyme specificity and are applied in the beginning to the initial glycan structures
(Man9 and Man8) in order to generate a set of reactions and subsequent product glycan structures. Next, the Kinetic Model module –where the Golgi
apparatus is modeled as 4 well mixed reactors with a set of enzymes distributed through them- is solved for any set of enzyme concentrations and reaction
rate parameters. These parameters include turnover numbers and dissociation constants for substrate and donor cosubstrate. Solving the model allows
prediction of the complete profile and abundances of the glycan structures obtained from the generated glycosylation reaction network. In the last module:
Experimental Data Fitting, a synthetic mass spectrum is obtained from the abundances of the significant glycan structures predicted by the model. This
synthetic mass spectrum is compared with the experimental MALDI TOF mass spectrum by a non-linear fitting algorithm that solves the model multiple
times by adjusting enzyme concentrations and other parameters each time. The ratio of the relative enzyme transcript gene expression levels can be
processed by the model and translated in terms of a synthetic mass spectrum and a quantitative glycan profile. The model outputs are optimized until good
agreement is achieved between the calculated glycan distributions expressed as a synthetic mass spectrum with the MALDI TOF experimental mass-spec.
doi:10.1371/journal.pcbi.1002813.g001

Figure 2. Parity plot. Shows fitting agreement between measured mass
spectra of glycans from LNCaP high passage human prostate cancer cells
(blue circle) and LNCaP low passage human prostate cancer cells (red square)
with synthetic mass spectra calculated from the model. The plot includes
mass numbers from 1400 to 4000 and has an associated RMS error of 0.05.
doi:10.1371/journal.pcbi.1002813.g002

Transcriptome and Glycome Data Integration
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membrane antigen (PMSA) protein derived from LNCaP cells was

found to contain high mannose structures [23] which indicates the

generation of these structures from this cell line. In addition, a series

of complex glycans with tetraantennary structures being the most

abundant followed by biantennary and triantennary glycans are

observed in both low and high passage cell lines (Figure 5) and were

reported in [24]. Here we see that the more metastatic high passage

cells have higher levels of hybrid glycans and lower levels of complex

glycans, especially tetraantennary. Nearly 70%–80% of the hybrid

and complex glycan structures (% based on hybrid and complex not

total glycans) in both low and high passage LNCaP cells are core

fucosylated (Figure 5). Indeed, previous studies have reported core

fucosylated glycan structures as characteristic of PSA from LNCaP

cells [8,10,25]. Complex glycans are mostly identified as non sialic

acid capped complexes of the bi, tri and tetraantennary type.

However, limited levels of monosialylated, bisected glycans

structures and lactosamine repeats (Galb1–4GlcNAc) are predicted.

Glycan moieties of type II are predominant in both cell lines

(Figure 5 and Figure 4). Note that a single glycan can contain more

than one of a particular glycan moiety, so the abundances of some

moieties can exceed 100% of the total number of glycans, used as

the basis for this percentage. In terms of blood group structures

which include antigens A, B, Lea, Leb, Ley, Lex and H in Figure 4,

the H(II) and the Ley epitopes, containing a1,2-fucose linkages, are

predicted in these types of prostate cancer cells, with greater

abundance in high passage LNCaP cells (Figure 5). Indeed, these

epitopes have been reported as characteristic markers for prostate

cancer [7,10,26,27,28,29,30].

Identification of LNCaP cell model characteristic
enzymatic profiles from MALDI TOF

The concentrations of the glycan-processing enzymes were

adjusted in the computational model until satisfactory agreement

Figure 3. Comparison of model calculated synthetic mass spectra with measured spectra. Panel (A) High passage, androgen independent
LNCaP cells at the top and panel (B) Low passage, androgen dependent LNCaP cells at the bottom. The plots show the mass range from 2150 to 2750
(full range modeled m/z 1400–4000). Units on the y-axis are relative intensities as % of total peak area of the spectrum in the modeled range. Units on
the x-axis are the average m/z value of the peak. Each ‘‘peak’’ in the figure is the envelope of the isotopic satellite peaks of a single signal, resulting
from the characteristic atomic content of a set of isomeric molecules.
doi:10.1371/journal.pcbi.1002813.g003

Transcriptome and Glycome Data Integration
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was obtained between the in silico mass spectral profile with the

experimental mass spectral profile for both data sets. Shown in

Table 1 (columns 4 and 5) are the adjusted enzyme activities that

provided the best fit with both experimental mass spectral data sets

and produced the glycan abundances in Figure 5 and 6. A

comparison of the observed changes in the enzyme levels between

high and low passage LNCaP cells provides a succinct way of

interpreting the differences in glycan structural profiles between these

LNCaP cells lines. In general we observe that model predicted enzyme

activities are in qualitative agreement with available published enzyme

Figure 4. Schematic N-glycosylation pathway representation characteristic of high and low passage LNCaP cells. The steps to
elaborate the glycan structures corresponding to both LNCaP cells lines are represented in a simplified N-glycosylation pathway according to the
mass spectral structural data as well as the transcription expression data. A main feature for this pathway is the lower levels of Type I glycans (light
blue filled rectangles) compared to type II glycans (light orange filled rectangles) in both cell lines, implying that glycans characteristic of both cell
lines are principally type II glycans. Where indicated, genes in the pathways are listed in parenthesis and located below their corresponding enzymes.
For example, the enzyme b4GalT, associated with type II glycans, is mainly represented by expression of B4GALT1 and B4GALT3 genes among other
genes. The main difference between low and high passage LNCaP cell lines is the increased expression of FucTH (FUTI) in high passage LNCaP cells as
noted in both microarray data and mass spectra based model predicted enzyme levels. This is also translated in increases of H(II) and Ley epitopes
(indicated by the glycan structures within the dark orange border rectangles). The dashed arrows point to glycan structures that are absent or
marginally present. Quantitative detail of the corresponding type I and type II glycan abundances for the structures in this figure are depicted in both
Figures 5 and 6. Initial steps of glycan formation as well as sialylation processing are omitted for simplicity.
doi:10.1371/journal.pcbi.1002813.g004

Transcriptome and Glycome Data Integration
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values in terms of increasing and decreasing levels between cases. A

description of some of the trends that were observed in the enzymatic

activities corresponding to the resulting glycan profiles for the two

LNCaP cell lines are described in following sections.

a2-Fuc-transferase (FucTH) is elevated in high passage,

androgen independent LNCaP cells. The highest percentage

change in enzyme levels the model predicts for the high passage

LNCaP cells with respect to the low passage cells is an increase in

a1,2-fucosyltransferase (FucTH) activity (see Table 1 columns 4

and 5). As shown in the processing diagram of Figure 4; FucTH

mediates a1,2 linkages of fucose to a terminal galactose moiety of

Type II (Galb1,4GlcNAc) or Type I (Galb1,3GlcNAc) structures

(Figure 4), and it is associated with expression of blood group H

(Figures 4 and 6). The H epitope can be further augmented by

other fucoses to form Lewis b (Leb), and Lewis y (Ley) antigens

(Figures 4 and 6). Indeed, FucTH enzymatic activity has been

reported in LNCaP cells. For example Chandrasekaran et al.

purified FucTH from LNCaP cells and characterized several

substrates for this enzyme [35]. Furthermore, Marker et al.

proposed that a1,2 fucose activity in LNCaP cells may modulate

pathological prostatic growth [28]. These previous findings are

consistent with the presence of FucTH activity in LNCaP cells

predicted by the model.

Sialic acid content in LNCaP cells. The model simulation

based on the mass spec profile predicted low levels of sialylated

glycan structures (Figure 6) in both LNCaP cell lines, which

correspond to minimal levels of a3-Sialyltransferase (a3SiaT)

(Table 1-columns 4 and 5). In previous studies, glycan sequencing

of released glycans using high performance liquid chromatography

(HPLC) coupled with exoglycosidase digestions on PSA from

LNCaP cells at passage 70–75 showed only neutral (nonsialylated)

structures [10]. In another glycosylation study of the same tumor

cell line, researchers also noted the lack of sialic acid on glycan

structures of PSA using lectin analysis coupled with glycan

sequencing [25]. However, it should be noted that some other

studies did report sialic acid present on LNCaP cells [8] [33]; the

differences in these reports may be due to clonal variability,

number of passages, analytical method sensitivity, and general cell

culture conditions.

Other enzymatic trends. Additional enzymatic trends pre-

dicted by the model are the presence of b4GalT enzyme that catalyzes

Type II (Galb1,4GlcNAc) glycans and, in comparison, low levels of

the b3GalT enzyme that catalyzes Type I glycans (Galb1,3GlcNAc)

(Table 1 columns 4 and 5). Model capability to differentiate type I and

type II glycans is based on the presence of iGnT and IGnT enzyme

activities as shown in Figure 4 that act on type II glycans but not on

type I glycans. Interestingly, the interpretation of the mass spectral

data thus points to the predominance of type II glycans and their

derivative products in comparison to Type I glycans abundance in

these LNCaP cell lines (Figure 6).

Previous studies of PSA from LNCaP cells noted the presence of

Type II structures using Erithrina cristagalli lectin (ECL) [25], and the

presence of the H(II) epitope (Fuca1,2Galb1,4GlcNAc) [10,28].

Indeed, the model outputs for both LNCaP cell lines confirms the

presence of the enzymes involved in the processing of the Type II

glycans moieties, which include LacNAc (Galb1,4GlcNAc), Lex

(Fuca1,3Galb1,4GlcNAc), H (II) epitope (Fuca1,2Galb1,4GlcNAc),

and Ley-(Fuca1,3(Fuca1,2Galb1,4)GlcNAc) structures (Figure 6

and Figure 4). Alternatively, the lack of type I based Lewis a (Lea)

and Lewis b (Leb) antigens has been reported in prostatic carcinoma

[34] and is in agreement with model predictions for the absence of

Lea and Leb epitopes (Figure 4 and 6). Correspondingly, the model

predictions show a lack of FucTLe activity in Table 1, which

catalyzes the a-4 fucose addition for generating Lea and Leb. The

model also predicted the presence of core Fucose glycans arising

from a6-Fucosyltransferase, which agrees with studies on PSA from

LNCaP indicating the presence of glycans with a6-core Fucose [10].

Consistent with model predictions showing Blood group A a3-

GalNAc-transferase (GalNacT-A) and Blood group B a3-Gal-

transferase B (GalT-B) enzymes having low activity (Table 1

columns 4 and 5 and Figure 4), minimal or lack of A and B blood

group antigens has been reported on prostate cancer tissues and

observed in the model [26,27] (Figure 6). Although no information

has been reported on GnTIII, in LNCaP cells, this enzyme is

predicted to be low or marginal in the model simulations (Table 1

columns 4 and 5).

Incorporating gene expression data
Mapping of model enzymes Table 1 (column 1) to gene probes

(columns 6 and 7) on the Consortium of Functional Glycomics

(CFG) Glycogene microarray (Glycochip version 3, CFG) was

performed for both low and high passage human prostate LNCaP

cell line data available at the Consortium of Functional Glycomics

website (MAEXP_291_040606) and also included in Dataset S3

[22]. Listed in columns 8 and 9 of Table 1 are the observed changes

in expression levels of these genes as determined from mRNA

analysis of microarrays for the low passage and high passage LNCaP

cells. These expression signals were obtained by averaging three

replicate samples for each glycogene in the microarray and

represent the average relative abundance of a transcript. The

glycogenes were assigned calls by CFG of present (P), marginal (M)

or absent (A) (more information on the classification criteria is found

in Materials and Methods). In Table 1 the marginal or absent calls

are indicated with numbers in bold. Note that more than one gene

can encode the same type of enzyme activity.

In addition to the genes for N-Glycan processing as discussed

for Table 1, the glycochip version 3 includes genes for many other

glycosylation-related genes. However, in some cases not all the

genes that encode for a given enzyme are included on the CFG

version 3 microarray. Interestingly, the largest shifts in gene

expression observed between the two types of prostate cancer cell

types from the glycochip are those that encode for the enzyme

glucuronosyltransferase (EC 2.4.1.17), which is involved in

androgen/estrogen metabolism but has no effect on N-glycan

structure [36,37,38].

Comparison of experimental glycosyltransferase gene
expression levels to model-derived enzymatic activity
levels obtained from MALDI TOF data

In general transcript expression levels from the microarray are

consistent with the enzyme activities resulting from the model, at

Figure 5. Abundance of N-glycans by type from model matching of MALDI-TOF data. Model predicted glycan abundances from MALDI
TOF are listed together with reported literature data on the alteration of glycan processing in prostate cancer, especially trends in N-glycosylation for
LNCaP cells. Reported literature are noted as: 1 LNCaP cells (mostly from PSA) unless indicated; 2 Prostate cancer tissue; 3 Seminal fluid; 4 Serum; 5
Other cell lines; 6 Metastases from human prostatic carcinoma; A Absent. High mannose glycans with 9 and 8 mannose residues (M9 and M8) leaving
the endoplasmic reticulum (ER) are modified in the Golgi by the action of ManI to produce glycans with fewer mannose residues down to Man5.
Hybrid glycans are formed by the action of enzymes GnTI, ManII and a6FucT on Man5 glycan structures. Complex glycans are formed by the addition
of N-acetylglucosamine to form bi, tri and tetra antennary glycans that can undergo further modifications (Figure 6).
doi:10.1371/journal.pcbi.1002813.g005

Transcriptome and Glycome Data Integration
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least in terms of the presence or absence of enzymes in the model

and on the gene expression array. Enzymes whose genes are

classified as marginal or absent in the microarray data include

GnTIII, a6SiaT, GalTB and GalNacT-A (Table 1 columns 8 and

9 in bold). Interestingly, enzymatic activity levels for this same

collection of enzymes were also predicted by the model to be low

or zero independently based on fits of the mass spectral data

(Table 1 columns 4 and 5).

Figure 6. Type I and Type II Glycan moieties from model matching of MALDI-TOF. Blood groups can be classified based on the glycan
moieties on the cell surfaces, the percentage abundance of different glycan moieties on low passage, androgen dependent and high passage,
androgen independent LNCaP cells are included. Glycans with the moiety (Galb1,3GlcNAc) are of type I. Further sugar additions to the branches of
type I structures result in mature glycans with characteristic epitopes such as Lewis a, Lewis b, H(I) epitope, and A and B epitopes. Glycans with the
moiety (Galb1,4GlcNAc) are of type II. Further sugar additions to the branches of type II structures result in mature glycans with characteristic
epitopes such as Lewis x, Lewis y, H(II) epitope, and A and B epitopes. The glycan maturation processing for type I and type II structures is
summarized in Figure 4. Model predicted glycan abundances from MALDI TOF are listed together with reported literature data on the alteration of
glycan processing in prostate cancer, especially trends in N-glycosylation for LNCaP cells. Literature values reported as: 1 LNCaP cells (mostly from
PSA) unless indicated; 2 Prostate cancer tissue; 3 Seminal fluid; 4 Serum; 5 Other cell lines; 6 Metastases from human prostatic carcinoma; A Absent.
doi:10.1371/journal.pcbi.1002813.g006

Transcriptome and Glycome Data Integration
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The most significant percentage shift in enzyme activity that

differentiates high and low passage LNCaP cells was increased

FucTH activity in high passage or androgen independent LNCaP

cells. Although the model based solely on mass spectrometry

measurements deduced this finding of increased FucTH activity,

the uptick in FucTH expression was also correlated with mRNA

microarray expression data for the FUT1 gene (Table 1 columns 8

and 9). The FUT1 gene has been experimentally identified in

LNCaP cells and prostate cancer tissues as responsible for

production of the H (II) epitope [10,28].

In addition model-fitted mass spectra data indicate a lower

capacity for generating type I glycans relative to type II glycans as

b3GalT activity is lower than b4GalT activity in Table 1. This

finding also correlated with the relative gene expression data in

that the expression of b3GalT genes encoded by B3GALT1,

B3GALT2, and B3GALT5 are marginal in both data sets from

both cell lines (Table 1 columns 8 and 9). In contrast, gene

expression levels for the B4GALT1, B4GALT2, B4GALT3 and

B4GALT5 (Table 1 columns 8 and 9) encoding b4GalT activity

for type II glycans is robust in both cell lines as it is the generation

of type II glycans as indicated by the model fitting of mass spectral

data and predicted b4GalT enzymatic activity.

While there were many consistencies between model interpre-

tation of mass spectrometry and gene expression profiles, there

were also some disagreements between the model-calculated

enzyme levels and the expression levels obtained from mRNA,

such as for GnTV, a3SialT and FucTLe. For some enzymes, these

differences can be attributed to shortcomings in the mRNA

profiling chips. A case in point is that the inactivity of a probe set

for MGAT5 (one of two genes encoding GnTV activity) in the

glycochip version 3 from CFG led to a reported lack of expression

of this gene despite the presence of GnTV activity in the results

modeled from the mass spectral data (Table 1 column 4 and 5).

Interestingly, by reviewing all experimental cases run with the

glycochip version 3 for all cell lines posted on the CFG we found

that the probe set for MGAT5 gene was inactive. Furthermore,

the presence of GnTV indicated by the model interpretations of

the mass spectral data agrees with a previous experimental study

that reports positive GnTV enzymatic activity using a zymography

assay and active expression of MGAT5 through RT-PCR in

LNCaP cell lines [32]. Results from model testing of this proposed

deficiency in the glycochip version 3 are discussed in Text S2,

Figure S2, and Figure S3. These findings support the interpreta-

tion that the inactivity of the GnTV in the microarray data is due

to a defect in this specific probe on the microarray.

For other enzymes, the lack of model agreement with gene

expression data is likely due to the scope of the current model. For

example, the microarray data indicates significant levels of a3SiaT

mRNA for both LNCaP cell passages, although the enzymatic

model interpretation from MALDI TOF indicated that LNCaP

cells have low a3SialT activity. Interestingly, analysis of expression

of genes associated with sialic acid biosynthesis, a feature not

included in the current model, indicates that the transcript levels

for the GNE gene (that encodes the bifunctional UDP-N-

acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) for

both cell lines are interpreted as absent. Bifunctional GNE

catalyzes two critical steps involving sequential reactions in the

biosynthesis of the sugar nucleotide CMP-Neu5Ac (CMP-sialic

acid) (Figure S4, Text S3), which is the co-substrate for a3SiaT.

The a2,3- or a2,6-linked sialylated N-glycans are generated by the

transfer of the sialic acid (Neu5Ac) group from the nucleotide

donor sugar CMP-Neu5Ac onto the oligosaccharide acceptor

ending in a galactose (Gal) residue. Thus, the formation of a

limited number of sialylated glycoforms may be due to low levels of
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the nucleotide sugar substrate, CMP-Neu5Ac, rather than due to a

limitation in the a3SiaT activity as currently manifested in the

model. While the current model has focused on glycosyltransferase

activities, it can be readily expanded to include other metabolic

reactions such as the generation of sugar nucleotides including

CMP-Neu5Ac and others.

For the FucTLe enzyme, the model predictions show lack of

activity, while the microarray data shows gene expression signal for

FucTLe. Both FucTLe and a3FucT enzymes catalyze the addition

of a-3 fucose to GlcNAc residues on type II chains as shown in

Figure 4. They only differ on Type I chains, in the generation of Lea

and Leb structures. The lack of these Le structures makes it difficult

for the model to separate the two enzyme activities and at least part

of the activity the model shows for a3FucT may be due to FucTLe.

Glycan model profiling using enzymatic transcript
expression data

As an alternative predictive approach, the potential also exists

for using gene expression profiles to estimate changes in enzyme

activities. Appreciating that mRNA levels do not always reflect

enzyme levels directly, we assumed shifts in gene expression data

were related to shifts in enzyme levels. These shifts in gene

expression were then used to predict the corresponding shifts in

glycan profile and abundances for high and low passage LNCaP

cells. To get the transcript expression level of the enzymes in the

model, the average of all mRNA-microarray gene signals

corresponding to each enzyme was used. Next the ratios of

average signals (high/low passages) for each enzyme were used as

inputs to the N-glycosylation model based on the assumption that

they are estimates of the relative enzyme levels for high and low

passage LNCaP cells. The implementation of this methodology

into the model also required adjusting the enzyme levels in the

model to match the experimental mass spectra data for one case

(low passage for this study) while maintaining the enzyme activity

ratios to be equal to the experimental values obtained from the

microarray data (Table S1). The ratios of expression levels of high

to low passage cells were then used to predict the enzyme levels for

the high passage case and the resulting glycan profile predicted.

No constraint was placed on the concentrations of GnTV or ManI

in the model as these enzymes have either a probe defect (GnTV)

or are missing in the glycochip version 3 (Man I).

The results of keeping the enzyme ratios constant and equal to

the microarray ratios are shown in Figure 7, which show the

abundances of different categories of glycans. The percentage of

different structures predicted by the model using MALDI-TOF

mass spectral data alone (green bars) are compared to the

abundances obtained after fixing the gene expression mRNA ratios

(orange bars). Predictions for the low passage, androgen dependent

LNCaP cells are indicated by light green bars for mass spectral data

and light orange bars for mRNA data. Similarly, predictions for

high passage, androgen independent LNCaP cells are indicated by

dark green bars for mass spectra data and dark orange bars for

mRNA data. This approach allows the model to predict changes in

glycan structure profile and glycan abundances based on compar-

ative N- glycosylation enzyme gene expression data.

Although constraining model fitting to fixed gene expression ratios

resulted in a higher RMS error (lower model agreement) with respect

to the model fitting to the mass spectra data alone (as would be

expected for additional model constraints), the trends in glycan

structures and abundances are comparable in both cases with a few

minor exceptions. In general, glycan structure prediction from both

data sets (gene expression and mass spectra vs. mass spectra alone)

show consistency in terms of presence, absence and increased or

decreased abundances of glycans in high passage with respect to low

passage LNCaP cells. For example, both model predictions with

mass spectra and gene expression data suggest an increase in

abundance of hybrid and biantennary structures in the high passage

cells and a corresponding decrease in the tetraantennary structures.

Both mRNA data and models predict high levels of type II chains in

both low and high passage LNCaP cells, reaffirming that these cell

lines contain predominantly type II glycans. The model based on

gene expression data suggested lack of type I glycans, principally due

to imposing a strict restriction on b3GalT which in reality may not

be as strict as the mRNA data for the genes encoding this enzyme are

classified as either marginal or absent.

Discussion

In this study, a systems biology computational model that connects

diverse experimental data sets was used to evaluate N-glycan data

from MALDI-TOF mass spectra and mRNA expression arrays for

androgen independent, high passage LNCaP cells, and androgen

dependent, low passage, LNCaP cells. Most significantly, insights into

the N-glycosylation processing for LNCaP high and low passage cells

were found based on model predictions of enzyme activities, glycan

structures and gene expression profiles. The model was also useful for

identifying consistencies as well as incongruities between glycan

structural information and gene expression data.

The N-glycosylation model identified and quantified glycan

structural details not typically derived from single-stage mass

spectral or gene expression data, such as the type of fucosylation

(Fuc-a1,2-Gal vs. Fuc-a1,3-GlcNAc and Fuc-a1,6-GlcNAc), the

predominance of Type II chains (Gal-b1,4-GlcNAc) versus Type I

chains (Gal-b1,3-GlcNAc) or the number of antennae. This is

possible by analyzing the total mass spectrum in terms of the

underlying processing events and enzyme activities that generate

both the individual structures and the assemblage of structures

resulting in the complete mass spectrum. For example, Fuc-a1,2-

Gal can be differentiated from Fuc-a1,3-GlcNAc because they

include the different molecular weight linked sugars of Gal and

GlcNAc. More relevant to the current modeling approach, Fuc-

a1,3-GlcNAc and Fuc-a1,6-GlcNAc can be differentiated because,

even though both include the same molecular weight linkages,

Figure 7. Comparison of model predicted glycan abundances
(%) from MALDI TOF MS and fixed Gene Expression ratios for
low passage, androgen dependent and high passage, andro-
gen independent LNCaP cells. Percents values can be more than
100% as the number of structures counted within the glycans can
overpass the number of glycans.
doi:10.1371/journal.pcbi.1002813.g007
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Fuc-a1,6-GlcNAc is added to the glycan core early in processing,

while the Fuc-a1,3 is only added later to GlcNAc on one of the N-

glycan branch extensions. The presence of a collection of mass

spec peaks provides a fingerprint that the model can interpret to

indicate whether this fucose is added earlier (Fuc-a1,6-GlcNAc) or

later (Fuc-a1,3-GlcNAc) in the N-glycan processing pathway.

Thus the model creates a picture of the complete N-glycan

processing, including enzyme activity levels acting sequentially

through the secretory apparatus that is consistent with the entire

collection of glycan peaks across the molecular weight spectrum.

Comparison of the underlying enzyme activities derived by the

model from the mass spectral data with changes in gene expression

levels measured by the CFG glycogene microarray show them to

be consistent for most enzymes, which tends to verify that the

model-derived shifts are meaningful. The agreement also suggests

that the model could be used to predict shifts in glycan structure

from a well-defined base case based on changes in microarray

expression data when MS data for other cases is not available.

It is important to note that aberrant N- and O-glycosylation are

important features of cancer cells. Indeed a number of the genes

included in the model act on both N-glycans and O-glycans, while the

model infers changes in the total enzyme activities based only on the

observed shifts in N-glycan structures. Thus if the levels of O-glycan

structures that compete with N-glycan structures for a number of

enzymes changes significantly, the fraction of those enzymes activities

that are available for N-glycan processing could also change, distorting

the comparison between model predicted enzyme activities and

enzyme gene expression levels. While our N-glycosylation model gave

very good agreement between the model-predicted and measured

mass spectra, it is expected that the incorporation of O-glycosylation

together with N-glycosylation will improve the model predictability. In

addition, these competing reactions will be better modulated in the

model. Implementation of O-glycosylation in the current model

framework is possible since kinetic parameters for the corresponding

O-glycan enzymes as well as experimental data are available to tune

the model. Of course, processing larger data sets including O-glycans

may very well elucidate limitations in the model that will need to be

addressed through appropriate modification of model parameters.

Interestingly, the most significant difference found between high

and low passage prostate cancer cell lines was the increase in

expression of a1,2-Fuc-transferase (FucTH) enzyme in the high

passage LNCaP cells, as predicted by the model based on mass

spectrometry and verified by the gene expression data. The

microarray data indicates that the FUT1 gene is predominant in

high passage LNCaP cells with respect to low passage LNCaP cells.

The FUT1 gene has been experimentally identified in LNCaP cells

and prostate cancer tissues and associated to the H (II) epitope

(Fuca1,2Galb1–4GlcNAc) [28]. Moreover, the presence of Fuca1-

2Gal residues that results from the enzymatic action of FuTH has

been reported in PSA from LNCaP cells [10,28,31,35].

The high passage LNCaP cells in this work were obtained from

low passage LNCaP cells (androgen dependent) after successive

passages and they have diverged into an androgen independent

state. Our finding that high passage LNCaP prostate cancer cells

(androgen independent) have increased levels of the enzyme

FucTH (FUT1 gene) responsible for a1, 2-fucosylation and the H

(II) and Ley epitopes with respect to low passage LNCaP cells may

represent a potential marker of higher malignancy or androgen

refractory prostate cancer cells and may be relevant in diagnosing

prostate cancer stage. For example it may be possible to compare

glycan mass spectra of PSA concentrated from blood serum,

presumably originating in cancer cells, to PSA from semen samples,

derived mostly from normal prostate cells, to evaluate the stage of

the cancer.

Our results also indicate that b4GalT is present in both high

and low passage LNCaP cells. The most expressed member of the

family is the B4GALT1 gene followed by the B4GALT3 gene.

Evidence of b4GalT in prostatic cancer samples is found by

detection of Galb1,4GlcNAc (Type II) structure with the Erithrina

cristagalli lectin (ECL) in PSA from prostate cancer serum and PSA

from LNCaP medium as compared to seminal plasma (normal

control) [25]. This type II structure was also detected with a set of

lectin-immobilized columns together with enzyme-linked immu-

nosorbent assays (ELISA) on prostate cancer serum PSA and

LNCaP cells PSA as compared to benign prostate hyperplasia

(BHP) serum PSA [31].

Interestingly, screened experimental data on prostate cancer

predominantly reports the presence of Galb1,4GlcNAc (Type II)

glycans and some of its derivatives and almost no information is

found for Galb1,3GlcNAc (type I) glycans. In agreement with that,

the model predicted the presence of H type II (Fuc1,2Galb1,4Glc-

NAc) and Ley-(Fuc1,2Galb1,4GlcNAc Fuc1-3) glycans and also

increased levels of these epitopes in the more metastatic high

passage LNCaP cells. Importantly, several previous studies have

reported type II based epitopes H [10,26,27,28] and Ley as blood

group antigens as characteristic of prostate cancer [7,29,30,39].

For example, lectin histochemistry comparisons between normal

human prostate and prostatic carcinoma tissues show increased

expression of galactose (using DSA lectin suggesting presence of

Galb1,4GlcNAc), and fucose [6] (using UEA-I, a marker for the H

antigen). Also, investigations of PSA serum from 40 patients

revealed an increase in the glycans containing Fuca1,2-

Galb1,4GlcNAc and GalNAcb1,4GlcNAc for patients with

prostate cancer as opposed to those with benign prostatic

hyperplasia (BPH) [31]. Moreover the production of the H (II)

epitope (Fuc1,2Galb1–4GlcNAc) has been associated with the

potential for carcinogenic cell proliferation (Marker et al, 2001).

Most importantly, these findings reflect trends predicted by both

gene expression data and mass spectral data.

A corollary glycan signature predicted by the model from mass

spectra is lower relative levels of the b3GalT enzyme, which was

even more pronounced in the gene expression data as indicated by

the low levels of transcript signals for the genes encoding for

b3GalT. In addition to the lower abundance of type I glycans in

both cell lines, derivatives including Lea and Leb epitopes were also

absent. These observations are in agreement with studies reporting

low levels or the complete absence of type I based antigens Lea and

Leb [34] in prostatic carcinoma. Additionally, the A and B blood

group antigens from type I and Type II glycans, were predicted

absent or minimal in agreement with [26,27].

Moreover, the comparisons of model predictions from glycan

structural data with gene expression findings pointed to deficien-

cies in the mRNA microarray, such as a lack of a sensitive probe

for the MGAT5 gene for GnTV. This was further confirmed by

computationally suppressing GnTV enzyme activity and demon-

strating that the modified model could not regenerate the

experimental mass spectra (Text S2, Figures S2 and S3). Indeed,

the presence of GnTV indicated by the computational model

agrees with a previous experimental study that reports GnTV

enzymatic activity using zymography assay together with detection

of expressed MGAT5 using RT-PCR in LNCaP cell lines [32].

In summary, this study demonstrates the potential of systems

glycobiology approaches as means to connect and interpret

disparate data sets obtained with widely different experimental

methods, in this case mass spectral data and gene expression

profiles. The resulting model approach allows users to better

understand N-glycosylation processing events in a prostate

carcinoma cell line and also helps to define consistent patterns
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and incongruities between data obtained from mass spectrometry

and microarrays. Consistent patterns observed in data sets from

multiple methods may represent potential glycan biomarkers for

cancer and other diseases. Furthermore, by using these compu-

tational tools, we have been able to show how changes in the

mRNA data can be used to describe glycan patterns in low and

high passage LNCaP cells. In this way, the model can increase the

value of current mRNA profiling data as a useful tool for

indicating changes in glycan processing. This effort will contribute

significantly to the current need for bioinformatics and systems

biology tools in glycobiology. The method allows users to

interpret, integrate and compare multiple complex data sets in

order to identify and validate critical biomarkers involving N-

glycosylation processing in normal and diseased cells and tissues.

Materials and Methods

Model validation
The model has been extensively validated with several public

available mass spectra data sets (http://www.functionalglycomics.

org) of mammalian human and CHO cells. Methods demonstrated in

previous publications of the model (Krambeck 2005 [20], and

Krambeck 2009 [19]) with other experimental data sets enable using

the model comparatively between a control case and other case/s.

These methods have the advantage of allowing a common

adjustment to the model for two or more cases while using only the

enzyme concentration levels to differentiate the samples. This

principle limits case-to-case variations as much as possible to just

the enzyme concentrations while holding almost all other model

parameters to uniform values for all cases. In this respect the accuracy

of this approach depends on how sensitive the predictions are to the

assumed values of unknown parameters in the model. For example

sensitivity analysis on the effect of total glycan concentration on the

enzyme levels shows that the predicted effects of changes in enzyme

concentration drive similar shifts in glycan profiles for different total

glycan concentrations. Similar studies have been applied to analyze

sensitivity effects to assumed values of other parameters. As the range

of experimental data the model can accommodate expands, the more

robust and reasonable the model results will become. Thus

establishing a wide database of analyzed glycans from numerous

cells and tissues is essential to improving model robustness.

Reaction network generation
In the current model framework, glycan structures are expressed

using a condensed version of IUPAC linear formulas [40] with some

minor modifications. The first modification is to order the branches

at a branch point based just on the branch locants (the carbon atom

numbers of the attachment points of each branch) without regard to

the lengths of the branches as is used by the IUPAC scheme. In

addition the sugar abbreviations have been replaced with the

shorter abbreviations of the Linear Code [41], but we have not used

the complicated branch ordering scheme of the Linear Code.

Figure 8 shows the sugar symbols used in glycan structures for our

model as well as an example of the condensed linear formulas used

to represent glycan structures for a 9 -mannose glycan. This scheme

provides linear formulas that are general, are easily readable by

humans, are unique for each glycan structure, and allows the model

to apply to N-glycans, O-glycans and glycolipids.

Enzyme reaction rules
Table 2 gives a list of the enzymes included in the current model

and the set of reaction rules for each enzyme. These are sufficient

to produce most of the N-glycans present in human cells. The

basic idea is that the ‘‘Substrate’’ column is a substring of the

linear formula that must be present for the enzyme to act. The

‘‘Product’’ column specifies what the substrate string is replaced

with through action of the enzyme. The ‘‘Constraint’’ column

specifies a set of additional conditions that must be satisfied for the

enzyme to act. These conditions are usually the presence or

absence of another substring somewhere in the substrate formula.

These are combined using the ‘‘not’’ operator (,), the ‘‘and’’

operator (&) and the ‘‘or’’ operator (or), with parentheses as

appropriate. To simplify these expressions a number of additional

conventions have been added. All substrate formulas are assumed

to be enclosed in parentheses before searching for the substrate

substring. Thus an initial ‘‘(’’ always indicates the terminal end of a

branch. Other codes and abbreviations used in formulating the

Figure 8. Sugar codes used in formulas and example of a glycan structure using condensed formulas.
doi:10.1371/journal.pcbi.1002813.g008
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reaction rules are summarized in Table 3. (See example in Table

S2 and further detail in Text S1).

The model kinetic reaction network (Table S3) is generated by a

series of string searches and substitutions which begin with a list of

starting structures (9 and 8 -mannose glycans e.g. Figure 8). Each

substrate rule and corresponding constraint rule is then applied to

each structure in the list to determine which structures are

substrates for each rule. For structures that satisfy the rules, the

product structure is determined, essentially by substituting the

product substring of Table 2 for the substrate substring, taking the

various abbreviations into account. If the structure is not already

in the list of structures it is added to the list. At the same time, the

new reaction is added to a reaction list. The reaction list includes

the enzyme, substrate, cosubstrate, product and coproduct strings

for each reaction. This process is repeated until no new reactions

can be generated. A molecular mass cutoff to limit the size of the

glycans generated to those observable in the mass spectral data is

included. To reduce the size of the model further a network

pruning method was used based on roughly estimating the

abundances of the structures and dropping those structures of

negligible abundance. Starting with the 9-mannose glycan shown

in Figure 8, and including an inert structure with an additional

Table 3. Codes used for reaction rules in Table 2.

Symbol Meaning String expression

… Ligand Any string (possibly empty) with all parentheses matched.

_ Continuation Any string (possibly empty) where every ‘‘(’’ is matched with a following ‘‘)’’

| Possible branch point Empty string or (…).

* Reaction site Position of first difference between product and substrate strings

Gnbis Bisecting Gn Ma3(GNb4)(…Ma6)Mb4

# Number of

, Logical not

& Logical and

or Logical or

doi:10.1371/journal.pcbi.1002813.t003

Table 2. Current reaction rules.

Index Enzyme Substrate Product Constraint

1 ManI (Ma2Ma (Ma ,*2Ma3(…Ma6)Ma6 & ,Ga3

2 ManI (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6) ,Ga3

5 ManII (Ma3(Ma6)Ma6 (Ma6Ma6 (GNb2|Ma3 & ,Gnbis

6 ManII (Ma6Ma6 (Ma6 (GNb2|Ma3 & ,Gnbis

7 a6FucT GNb4GN GNb4(Fa6)GN GNb2|Ma3 & #A = 0 & ,Gnbis

8 GnTI (Ma3(Ma3(Ma6)Ma6)Mb4 (GNb2Ma3(Ma3(Ma6)Ma6)Mb4

9 GnTII (GNb2|Ma3(Ma6)Mb4 (GNb2|Ma3(GNb2Ma6)Mb4

10 GnTIII GNb2|Ma3 GNb2|Ma3(GNb4) ,Ab & ,Gnbis

11 GnTIV (GNb2Ma3 (GNb2(GNb4)Ma3 ,Gnbis

12 GnTV (GNb2Ma6 (GNb2(GNb6)Ma6 ,Gnbis

13 iGnT (Ab4GN (GNb3Ab4GN ,*_Ma3|Mb4

14 b4GalT (GN (Ab4GN ,*GNb4)(…Ma6)Mb4

15 a3SiaT (Ab4GN (NNa3Ab4GN

16 IGnT (Ab4GNb3Ab (Ab4GNb3(GNb6)Ab

17 a6SiaT (Ab4GN (NNa6Ab4GN

18 b3GalT (GN (Ab3GN ,*GNb4)(…Ma6)Mb4

20 FucTLe Ab3GNb Ab3(Fa4)GNb

21 FucTLe (…Ab4GNb (Fa3(…Ab4)GNb

22 FucTH (Ab3GNb (Fa2Ab3GNb

23 FucTH (Ab4GNb (Fa2Ab4GNb

24 a3FucT (…Ab4GNb (Fa3(…Ab4)GNb

25 GalNAcT-A (Fa2Ab (Fa2(ANa3)Ab

26 GalT-B (Fa2Ab (Fa2(Aa3)Ab

doi:10.1371/journal.pcbi.1002813.t002
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glucose residue (Ga3), the rules of Table 2 generate a reaction

network containing 10,809 structures and 28,797 reactions. The

maximum mass cutoff used to generate this network was 4000 on a

permethylated basis and network pruning was enabled.

Reaction kinetics
Consider the glycosylation of a glycan Pi with a monosaccharide

S catalyzed by an enzyme E. Assuming that the donor cosubstrate

is UDP-S, (mM) the overall reaction is shown in equation (1):

PizUDP{S<Piz1zUDP ð1Þ

Assuming that the product Pi+1 competes for the same enzyme

site as the substrate Pi (mM), that the donor cosubstrate UDP-S

occupies a second site on the enzyme, and that the reaction is

reversible, the Michaelis-Menten kinetic equation takes the form

shown in equation (2).

r~

kf ½Et� ½UDP{S�½Pi�{ 1

K
0
eq

½Piz1�½UDP�
� �

Kmi(Kmdz½UDP{S� 1z
P

j

½Pj �
Kmj

� �

K
0
eq~

Kf Km,iz1

KrKmdKmi

ð2Þ

Here [Et] is the Enzyme concentration, mM, kf (min21) and kr

(min21 mM21) are the forward and reverse rate coefficients, Kmi and

Kmd are the dissociation constants for the substrate and donor

cosubstrate in mM, and K ’eq is the apparent equilibrium constant for

the overall reaction. The symbols ½ �� in equation (2) denote equilibrium

concentrations. The subscript ‘‘j’’ in the summation in the denominator

is taken over all the substrates that compete for the same enzyme. A

derivation for equation (2) is given in the KB2005 model [20].

Kinetic parameters and adjustment rules
The values of the kinetic parameters kf, Km and Kmd for a given

enzyme can vary significantly for different substrates. This was

accommodated by selecting base values for these parameters for

each reaction rule and adding a set of structure-dependent

adjustment rules. Development of these parameter values and

adjustments for CHO and human cell enzymes are detailed in

[19,20]. The base parameter values currently used for each of the

reaction rules in Table 2 are shown in Table 4. Adjustment rules for

the parameters are given in Table 5. Each adjustment rule includes

a condition on the substrate structure and multipliers to apply to

each of the three parameters whenever the condition is satisfied.

Table 4. Base reaction rate parameters corresponding to the
rule indices in Table 2.

Index Enzyme kf Km Kmd

1 ManI 1923.75 827 0

2 ManI 1923.75 5000 0

5 ManII 1923.75 200 0

6 ManII 1923.75 100 0

7 a6FucT 253 25 46

8 GnTI 990 260 170

9 GnTII 1320 190 960

10 GnTIII 607.2 190 3100

11 GnTIV 187 3400 8300

12 GnTV 1410 130 3500

13 iGnT 24.66 700 55

14 b4GalT 8712 150 0

15 a3SiaT 484.1 260 57

16 IGnT 25 440 0

17 a6SiaT 25 180 0

18 b3GalT 25 110 250

20 FucTLe 481 1900 10.5

21 FucTLe 25 1600 5

22 FucTH 28.2 1500 108

23 FucTH 28.2 5700 108

24 a3FucT 25 1400 9

25 GalNAcT-A 294 15 13

26 GalT-B 390 281 285

doi:10.1371/journal.pcbi.1002813.t004

Table 5. Adjustment rules and factors corresponding to the
rule indices in Table 2.

Adjust Index Rule kf Km Kmd

1 1 #M = 9 1 182.052 1

2 1 #M = 8 1 4.21136 1

3 1 #M = 7 1 1.72953 1

4 1 #M = 6 1 1 1

5 10 ,GNb2|Ma6 1 20 1

6 11 ,GNb2|Ma6 1 5 1

7 11 Ab4GNb2|Ma6 or
Ab4GNb6)Ma6

1 1.5 1

8 11 GNb6)Ma6 1 0.178 1

9 11 GNb4(Fa6)GN 1 1 1

10 12 GNb4)Ma3 1 0.69231 1

11 12 GNb4(Fa6)GN 1 1 1

12 13 *_Ma3 1 10 1

13 13 *_GNb2Ma6 1 4 1

14 13 *_GNb2Ma3 1 4 1

15 14 *_GNb6)Ma6 1 0.8 1

16 14 *_GNb2|Ma6 1 5.4 1

17 14 *_GNb4)Ma3 1 0.66667 1

18 14 *_GNb2|Ma3 1 1 1

19 14 Gnbis &
GNb2|Ma6

1 3.62 1

20 14 ,GNb2|Ma6 1 26.6667 1

24 15 #NN.1 1 5 1

25 20 Fa2Ab3* 0.051975 0.10526 0

26 20 NNa3Ab3* 0.051975 0.35263 0

27 21 (*Fa2Ab4 1 0.6875 0

28 21 (*NNa3Ab4 1 0.0625 0

29 24 (*Fa2Ab4 4.08 0.5 1

doi:10.1371/journal.pcbi.1002813.t005
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Simulation model
The Golgi compartments were modeled as well-mixed reactors

with bulk flow of the contents from each compartment to the next

compartment in line while the enzymes remain fixed in the

compartments. At steady state the concentrations of the various

structures satisfy the balance equations.

cij~ci,j-1ztjrij ð3Þ

where cij is the concentration of structure i in compartment j, tj is

the residence time of compartment j, and rij is the net rate of

production of structure i per unit volume of the compartment due

to all the biochemical reactions that occur. The total concentration

of N-glycans, ctot, is the same in each compartment and is given by

pt1/v1, where p is the total production rate of glycans and v1 is the

volume of compartment 1. In the balance equations for the first

compartment the concentration ci0 is given by the fraction of total

glycans that initially have structure i multiplied by ctot. Using the

above Michaelis-Menten kinetics for the glycosylation reactions,

equations were derived to solve for the concentrations of each of

the individual glycan structures in each of the Golgi compart-

ments.

Numerical methods
The model equations are nonlinear algebraic equations which

are solved for the concentrations of each of the structures in each

of the four Golgi compartments. These are solved using a

constrained Newton-Raphson method with the Harwell MA28

sparse linear solver (HSL 2002). The efficiency of a sparse linear

solver for large numbers of variables depends on the problem

Jacobian being sparse. The Michaelis-Menten denominator terms

in Equation (2) involve a large number of species that compete for

each of the enzymes. This could make the Jacobian matrix rather

dense. To avoid this, the denominator terms for each enzyme are

formulated as separate variables with equations added to specify

how the denominators are calculated. This confines the equations

with large numbers of variables to only one for each enzyme.

Analytical derivatives were used. While each compartment could

be solved separately in sequence to give four subproblems, each

one fourth the size, this was not found to be necessary.

In addition to solving the model for a given set of model

parameters, provision was also made to adjust parameters to

match a given set of data. This was done using the Marquardt-

Levenberg method with analytical derivatives [42]. The same

method was used for optimizing model parameters to achieve a

desired distribution of glycan structures.

The Marquardt-Levenberg method is typical of nonlinear

optimization algorithms in that it makes use of a sequence of

local linear approximations to the nonlinear model to converge to

a solution that is a local optimum. Except in special cases there is

no way to determine whether the nonlinear problem possesses an

even better solution far removed from this point. Experience in

using this method shows, however, that if a reasonably good fit is

obtained with the local optimum it is also a global optimum for the

parameter estimation problem. Robust solution methods were

devised to allow simultaneous solution of the approximately

45,000 nonlinear equations for the concentration of each of the

glycan structures in each of the four compartments of the model.

Other parameters needed for the calculations, include com-

partment residence times, enzyme distributions between compart-

ments, compartment volumes, total glycan concentration, and

donor cosubstrate concentrations. These were estimated based on

a variety of literature sources as detailed in our previous

publications [19,20]. It should be emphasized that these numbers

are intended to be reasonable initial estimates subject to further

refinement.

Mapping glycan structure distributions to MALDI MS
Several steps are involved in generating the synthetic spectrum:

N The chemical formula of each model-predicted glycan structure is

calculated after sample preparation. This step is necessary because

after glycans are removed from their protein or lipid carrier; they

are permethylated to improve the stability of the ions and reduce

the variability of the mass spectrometer response factors of

different glycans. This process replaces each OH group with an

OCH3 group. The glycans also receive a sodium ion. These steps

change the mass of the glycan necessitating this calculation.

N A table of isotope masses and abundances for each element is

used to calculate the relative abundances and masses of the

isotopic satellite peaks for each glycan. These follow a

multinomial distribution.

N The model-predicted concentration of each glycan is multi-

plied by the relative abundances of each of its isotopic peaks

and these are summed for all the glycans in the model.

The most significant isotope peaks for each glycan (those

amounting to at least 1026 of the total for the glycan) are

calculated and stored in a database.

Processing experimental mass spectra
The experimental MALDI mass spectra require processing

before comparison with the synthetic mass spectra through baseline

correction, mass calibration adjustment and peak integration.

The baseline correction method was adapted from Williams et

al. (2005) [43]. The mass calibration was done by finding the

linear mass adjustment that maximizes the sum of the experimen-

tal peaks interpolated to the theoretical masses of the model-

predicted glycan peaks. An approximate area for each peak in the

baseline-corrected and mass-calibrated spectrum was calculated as

follows: First the nearest local maximum to the theoretical mass for

each peak was determined to give a ‘‘peak height’’. Then a ‘‘peak

width’’ was determined for the 50 largest peaks by finding the

point on either side of the maximum with an intensity of exp(-p/4)

(or 45.6%) of the peak height. Note that multiplying this peak

width by the peak height would give the exact area of a Guassian

peak and also approximates the area of a skewed peak, such as a

relatively narrow gamma distribution. The peak widths for the

largest peaks so determined are then correlated as a linear function

of peak molecular mass to accommodate the broadening of mass

spectrometer peaks with increasing mass. The linear correlation of

peak width vs. peak molecular mass is then used to calculate a

peak width for every peak in the spectrum. The calculated peak

width is multiplied by the peak height to estimate peak area. These

peak areas are then normalized to add up to 100%. Examples of

processed experimental spectra and calculated synthetic spectra

are shown in Figure 3 and in Figure S1. The points on this plot are

the area of each peak plotted against the mass at the peak

maximum. Thus the curves on the plots are isotope envelopes.

After processing the experimental mass spectra still contain a

significant number of minor peaks (actually isotopic satellite groups

of peaks), which do not correspond to any glycans in the model. In

most cases they do not correspond to any known N-glycans.

Presumably these are artifacts of the sample processing, perhaps

fragments produced in the mass spectrometer. In any event to avoid

confounding of the model parameter adjustment step the prepro-

cessed experimental spectra were further adjusted by projecting

Transcriptome and Glycome Data Integration

PLOS Computational Biology | www.ploscompbiol.org 16 January 2013 | Volume 9 | Issue 1 | e1002813



them onto only the masses contained in the model by means of a

nonnegative linear regression method. This allows us to match the

model parameters to only that part of the experimental mass

spectrum explained by the model. However in visually comparing

the model spectrum to the experimental spectrum, for example in

Figures 2 and 3, the original unprojected experimental spectra have

been used. Figure 9 shows the comparison of the model-generated

mass spectra with the projected experimental spectra.

Experimental data
Both experimental glycan structure measurements via MALDI

TOF mass spectrometry and gene expression measurements using

mRNA microarray are available at the Consortium of Functional

Glycomics (CFG) website [22] and also in supplementary material

Datasets S1, S2, and S3, which contains such results for a series of

low, medium and high passage human prostate LNCaP cells.

These cell types, with N-glycan mass spectra and the microarray

data (MAEXP_291_040606) provided by Pi-Wan Cheng, repre-

sent a progression from androgen dependent cells to an androgen

independent state. The human prostate cancer LNCaP C-33 and

C-81 cell model used was established and characterized by [21].

C-33 cells include cells between passages 25 and 35, and C-81 cells

include cells between passages 81 and 125.

Gene expression data analysis
Three independent experimental mRNA data sets

(MAEXP_291_040606- Dataset S3) for each of the high passage

and low passage cell lines were used [22]. Expression levels were

detected with the CFG Glycochip version 3, a custom designed gene

chip that uses the Affymetrix technology and contains probe sets for

over 1,000 human glycogenes. Each targeted mRNA transcript

sequence was interrogated by 11 probe pairs of 25 base

oligonucleotides each. Each probe pair consists of one perfect

match (PM) - oligonucleotide complementary to a given portion of

the targeted gene- and one mismatched (MM)-oligonucleotide

identical in sequence to the PM probe, except for a single

mismatched base-. The difference between the PM and MM probe

signals among all probe pairs for a given gene was used to calculate

the hybridization signal. This signal is a weighted average calculated

for each probe set that represents the relative abundance of a

transcript. In addition, a one-sided Wilcoxon Signed Rank Test is

applied to this probe-pair intensity distribution to generate the p

value. Thus, (p,0.04) is called present (P), p above 0.06 is called

absent (A), and (0.04,p,0.06) is called marginal (M) [22].
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Figure 9. Parity plot. Shows fitting agreement between projected
experimental mass spectra of glycans from high passage LNCaP cells
(blue circle) and low passage LNCaP cells (red square) with synthetic
mass spectra calculated from the model (RMS error 0.03). The
comparison with unprojected experimental mass spectra is shown in
Figure 2. Mass numbers from 1400 to 4000 were included.
doi:10.1371/journal.pcbi.1002813.g009
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